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Background 

The coronavirus disease 2019 (COVID-19) has grown up to be a pandemic within a short span 

of time. The quantification of COVID-19 transmissibility is desired for purposes of assessing the 

potential for a place to start an outbreak and the extent of transmission in the absence of control 

measures[1]. It is well known that the transmissibility can be measured by reproduction number. 

For this reason, the large amount of research focuses on the estimations of reproduction number of 

COVID-19. However, these previous results are controversial and even misleading. To alleviate 

this problem, Liu et al[2] advised to use averaging technique. Unfortunately, the fluctuant 

consequence principally arises from data error or model limitations rather than stochastic noise, 

where the averaging technique doesn’t work well. This has inspired a collection of studies on 

reproduction number of COVID-19. 

Objective 

To find out the reason for estimation change and then the most reliable estimation of base 

reproduction number. 

Definitions 

Reproduction number can be subdivided into basic reproduction number and effective 

reproductive number. In this paper, our discussion will be confined to basic reproduction number 

since it is harder to calculate than the other[3]. Even so, the definitions of both are presented here 

for comparison. 

(1) Basic reproduction number (BRN) R0 is defined as the expected number of secondary 

infectious cases generated by an average infectious case in an otherwise uninfected population[1, 

4].  

(2) Effective reproductive number (ERN), Re, is the number of secondary cases generated by an 

infectious case once an epidemic is underway[1].  

BRN R0 can be expressed as R0=kpd, where k is the number of contacts each infectious 

individual has per unit time, p is the probability of transmission per contact between an infectious 
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case and a susceptible individual, and d is the mean duration of infectiousness[1]. In the absence 

of control measures, Re=rR0, where r is the proportion of the population susceptible [1]. Here, 

� � 1. 

Data  

Google Scholar and Science Citation Index were used to search for eligible studies about BRN 

of COVID-19. The estimations of BRN range from 0.3[5] to 8.213[6]. An extensive and resulting 

description is given in Table 1.  

Table 1. The base reproductive number R0 

ID Date R0 95% CI Place First author 

1 1/11 2.2 1.4-3.9 Wuhan, China  Li [4] 

2 1/13 0.3 0.17–0.44 Wuhan, China Wu[5] 

3 1/15 2.6 2.49−2.63 China Zhao[7] 

4 1/18 2.2 - Wuhan, China Riou[8] 

5 1/18 4.6 3.56-5.65(90%) Hubei,China Anastassopoulou[9] 

6 1/22 3.11 2.39–4.13 Wuhan, China Read[10] 

7 1/22 3.15 - China Tian[11] 

8 1/23 2.9764 - Anhui, China Tian[12] 

9 1/24 2.24 1.96-2.55 China Zhao[13] 

10 1/24 3.58 2.89-4.39 China Zhao[13] 

11 1/24 3.2 2.7-3.7 Wuhan,China Jung[14] 

12 1/24 2.1 2.0-2.2 Wuhan,China Jung[14] 

13 1/28 2.68 2.47–2.86 Wuhan, China Wu[15] 

14 1/30 4.7092 - Wuhan, China Zhao[16] 

15 1/30 5.934 - Hubei, China Zhao[16] 

16 1/30 1.5283 - China Zhao[16] 

17 2/2 2.55 2.25-2.96 China Aghaali[17] 

18 2/8 2.79 -  - Liu[2] 

19 2/11 5.2 5.04-5.47 Wuhan, China Mizumoto[18] 

20 2/29 2.7999 - China Dur-e-Ahmad[19] 

21 2/29 1.78 1.36-2.58 South Korea Aghaali[17] 

22 2/29 2.6 2.4–2.8 Japan Kuniya[20] 

23 2/29 3.15 2.41-3.90  - He [21] 

24 3/1 2.6 2.3-2.9 Korea Zhuang[22] 

25 3/1 3.2 2.9-3.5 Korea Zhuang[22] 

26 3/4 2.7 2.1−3.4 Shahroud, Iran Khosravi[23] 

27 3/5 2.6 2.3-2.9 Italy Zhuang[22] 

28 3/5 3.3 3.0-3.6 Italy Zhuang[22] 

29 3/6 2.71 - Wuhan, China Wang[24] 

30 3/7 1.82 1.64-2.05 Iran Aghaali[17] 

31 3/7 3.47 3.16-3.84 Qom, Iran Aghaali[17] 

32 3/8 2.76-3.25 - Italy Remuzzi[25] 
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33 3/9 0.945 - Wuhan, China Ndairoua[26] 

34 3/9 3.37 3.03-3.81 Italy Aghaali[17] 

35 3/10 7.9 - Wuhan, China Zhu[27] 

36 3/13 3.2-3.6 - Wuhan, China Davies[28] 

37 3/19 2.3 - Ontario, Canada Tuite[29] 

38 3/23 1.593 1.582-1.604 Korea Xu[6] 

39 3/23 8.213 8.139-8.288 USA Xu[6] 

40 3/25 5.25 - Brazil Crokidakis[30] 

41 4/3 2.58 - Costa Rica Chaves[31] 

42 4/5 2.38 - Italy Giordano[32] 

43 4/19 5.0692 - Heilongjiang, China Sun[33] 

44 5/2 4.86 - Iran Sahafizadeh[34] 

Note that CI indicates confidence interval. Date means the time when data was collected.  

Discussion 

BRN increases with time 

In order to prove the BRN varies with time，the data is divided into two groups: (1) Group I 

consists of the first 22 estimations of BRN in Table 1; (2) Group II is composed of the last 22 

estimations. A statistical hypothesis testing is carried out here. The null hypothesis is that the 

mean of Group I is no less than Group II. The alternative hypothesis is that the mean of Group 

II is more than Group I.  

Suppose the estimations follows a normal distribution, if the null hypothesis is really true, 

the test statistic t which follows by the Student's t-distribution should be more than -1.732 

with probability 95%, while it is -2.256 according to the data. Therefore, the null hypothesis 

is rejected and the conclusion is that BRN increases with time. 

Difference between methods 

For more than two categories, some of which have small numbers, statistic analysis tends to 

pool some of the categories together[35]. For this reason, the estimation methods of BRN are 

divided into three broad categories: (1) methods based on exponent-growth-like models, (2) 

methods based on SIR epidemic models, and (3) others. For convenience, we will hereafter use 

‘EX method’ to denote the method based on exponent-growth-like models and ‘SIR method’ to 

indicate method based on susceptible–infectious–removed (SIR) model.  

At first, we suspect there is a significant difference between the groups in variance. This is 

confirmed by using Levene’s test (on the means) since the Levene test statistic 12.28 is far more 

than 3.23, which is the upper critical value of the F distribution with 2 and 40 degrees of freedom 

at a significance level of 0.05. 

For the reason that the variances and sample sizes are unequal across groups, Welch’s Test is 
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used to perform an ANOVA analysis. Here, the null hypothesis is that the means of the three 

groups are equal. The alternative hypothesis is that more than one group is different from others. 

From the data, the Welch’s test statistic is 3.25, which more than the upper critical value F(2, 

14.165) at a significance level of 0.1. As a result, the conclusion can be drawn that more than one 

group is different from others. 

Further, the results of three methods are shown by points in Figure 1. Here, the estimation 

(3.2-3.6) provided by Davies [28] is substituted by 3.4 for the convenience of pictorial display, 

and 2.76-3.25 by 3.005 for the same reason. Regression analysis is implemented separately for 

each method, as the lines shown in Figure 1. They all show that BRN increases with time. Note 

that BRN 0.3 is rejected since an epidemic can occur if and only if .  

 

Figure 1. The estimations of BRN based on various methods from the data collected at different time. EX indicates 

the methods based on exponent-growth-like models and SIR denotes the ones based on SIR models. 

The mean and standard deviation of BRN calculated by different classes of method are 

tabulated in Table 2. It can be observed that the output of SIR methods is higher but more 

divergent than others. The reason for this is complicated.  

Table 2. The mean and standard deviation of BRN calculated by different classes of methods. 

Parameters EX method SIR method Others 

Mean 2.72 3.64 2.37 

Standard deviation 1.07 1.96 0.90 

At the beginning of the break of COVID-19, the data reported by Wuhan in China is less than 

the ground truth[15, 36, 37]. Note that EX methods are only competent to calculate BRN from 

early transmission data[8, 38]. In contrast, SIR methods can be applicable to the whole 

development process of an epidemic and hence more data can be available. For this reason, the EX 

methods suffer more ill effects of under-reporting than the SIR methods. 

On the other hand, for parameter estimation of epidemic models, the SIR methods usually 

involve nonlinear optimization, which can easily get stuck into improper local minima[39]. Worse, 

the parameters are frequently estimated at the cost of model simplification. It is hard to obtain a 

balance between simplicity and practicality. For this reason, the results of SIR methods are 

relatively unstable. This may provide an explanation of why the output of SIR methods is more 

divergent than others. 
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Transmissibility increases with time? 

From Figure 1, it is a consensus that the estimations of BRN increase slightly with time. Does 

the transmissibility of COVID-19 increase as well? In fact, the possible causes of BRN increase 

are threefold: (1) behavior changes of population, (2) increase of transmissibility of infectious 

agent and (3) computational errors. Among them, behavioral changes such as wearing mask 

typically reduce the probability of transmission and ultimately lower rather than enhance BRN. So, 

if the third cause is impossible either, it is reasonable that the transmissibility of infectious agent 

of COVID-19 increases with time.  

To explore the reason, we carried out a further investigation into the estimation process of BRN. 

Among them, we found that up to 27 estimates are derived directly from original data reported by 

Wuhan authority, which is less than the ground truth due to delays in diagnosis and laboratory 

confirmation in the early stage [15, 36, 37]. Therefore, under-reporting results in an 

underestimation, which can give a reasonable explanation for BRN increase. As a consequence, no 

enough evidence demonstrates the transmissibility increase of infectious agent of COVID-19 

throughout the world.  

Magnitude of BRN 

According to the aforementioned definition, because k and p are related to numerous biological, 

sociobehavioral, and environmental factors in the special geographical location and historical 

period, BRN R0 is not a biological constant for a pathogen, or a measure of disease severity[3]. 

Nevertheless, under the same or similar sociobehavioral and environmental conditions, BRN, as 

an epidemiologic metric, should be higher for the stronger infectious agents. For this reason, we 

compared the outbreak of COVID-19 with SARS, as tabulated in Table 3. Obviously, the outbreak 

size of COVID-19 has already far exceeded SARS. In this sense, the BRN of COVID-19 should 

be far more than that of SARS, i.e., 2.3-3.6[1, 40].  

Table 3. The comparison of transmissibility between SARS and COVID-19[41] 

item Cases in 

China 

Control measures in 

China 

Cases in the 

world 

Countries with 

confirmed cases 

year 

SARS 7,747 No lockdown 8,422 29 2002-2003.6 

COVID-19 89,526 Lockdown 20,423,897 212 2019-2020.8.13 

BRN R0 is originally designed to reflect the characteristic of an infectious agent and hence it is 

required to be measured from the data in the early stage and in the absence of control measures. In 

this sense, the data of Wuhan, in which COVID-19 began[42], should be the optimal choice to 

measure the BRN. On the other hand, BRN is more likely to be closer to the estimation from the 

data of countries with fewer control measures, such as USA. For this reason, here we focus on the 

BRN of COVID-19 in USA and Wuhan. 

 The BRN of COVID-19 in USA is estimated to be 8.21 by Xu et al [6]. In fact, after hearing the 

dangerousness of COVID-19 from Wuhan, American masses may change their behaviors more or 

less. Therefore, if COVID-19 spreads from USA, the BRN should be more than the estimation 

8.21. 
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With regard to the BRN of COVID-19 in Wuhan, it is a more complex problem due to 

under-reporting. Despite a large amount of underestimation appearing in the literature, the several 

estimations are still similar to the BRN in USA. How to do so? We investigated the data and 

method, as given in Table 4. It can be observed that most of them utilized compartment models 

and all of them did not use the raw number of confirmed cases reported by Wuhan authority. 

Therefore, it is possible to avoid misestimating.  

Unlike EX methods, SIR methods can be tested by the predicted results. And, Zhao et al[16] 

and Zhu et al[27] made a prediction about the end time of COVID-19 in Wuhan, as presented in 

Table 4. The fact is that, on April 15, the last support medical team was evacuated from Wuhan[43] 

and Wuhan Thunder Mountain Hospital was officially closed on the same day[44]. For this reason, 

we believe that the model presented by Zhu et al[27] is more reasonable. In addition, the result 

computed by Tang[45] demonstrates that the BRN in Wuhan should be more than 6.47, since BRN 

is typically more than control reproduction number. Given these points, there is strong possibility 

that the BRN of COVID-19 in Wuhan is 7.9.  

Table 4. The data and method of estimation of COVID-19 in Wuhan city. 

Date R Data Model Predicted 

end time  

First author 

1/22 6.47# Corrected data SEIR - Tang[45] 

1/30 4.71 Removed early data SUQC late-Mar. Zhao[16] 

2/4 2.35* Confirmed cases in nationals SEIR - Kucharski[46] 

2/11 5.2 Confirmed cases in nationals  EX - Mizumoto[18] 

3/10 7.9 Confirmed cases in nationals SEIR-HC 15 Apr. Zhu[27] 
# “control reproduction number”, i.e., reproduction number when control measures are enforced[45]. 

* “median daily reproduction number” is the mean number of secondary cases generated by a typical infectious 

individual on each day in a full susceptible population[46].  

In summary, the most likely estimation of BRN of COVID-19 in USA and Wuhan is about 8.21 

and 7.9. Arguably，it is timely hospitalization that is the reason why the BRN in Wuhan is lower 

than USA. It is worth noting that limited evidence supports the applicability of BRN outside the 

region where the value was calculated[47]. For this reason, BRN just reflects the transmissibility 

of an infection in the special location and period and no BRN is fit for everywhere. To compare 

with other infections, an alternative term, which is independent of population density, social 

organization, seasonality and folkway, is desired but still open. 

Findings 

The early data is crucial to estimate BRN. Underreporting tends to make an underestimation. In 

terms of BRN estimation of COVID-19, the SIR-like models are more useful than exponential 

growth model. The most likely estimation in USA and Wuhan is about 8.21 and 7.9. However, no 

enough evidence demonstrates the transmissibility increase of infectious agent of COVID-19 

throughout the world. Note that it is dangerous to use BRN outside the region where the value was 

calculated. To compare with other infections, an alternative term, which is independent of 

population density, social organization, seasonality and folkway, is desired but still open. 
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