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Abstract 16 

Background: Malaria is still a major global health burden, with more than 3.2 billion people in 91 countries 17 

remaining at risk of the disease. Accurately distinguishing malaria from other diseases, especially 18 

uncomplicated malaria (UM) from non-malarial infections (nMI) remains a challenge. Furthermore, the 19 

success of rapid diagnostic tests (RDT) is threatened by Pfhrp2/3 deletions and decreased sensitivity at low 20 

parasitemia. Analysis of haematological indices can be used to support identification of possible malaria 21 
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cases for further diagnosis, especially in travelers returning from endemic areas. As a new application for 22 

precision medicine, we aimed to evaluate machine learning (ML) approaches that can accurately classify 23 

nMI, UM and severe malaria (SM) using haematological parameters. 24 

Methods: We obtained haematological data from 2,207 participants collected in Ghana; nMI (n=978), UM 25 

(n=526), and SM (n=703). Six different machine learning approaches were tested, to select the best 26 

approach. An artificial neural network (ANN) with three hidden layers was used for multi-classification of 27 

UM, SM, and uMI. Binary classifiers were developed to further identify the parameters that can distinguish 28 

UM or SM from nMI. Local interpretable model-agonistic explanations (LIME) were used to explain the 29 

binary classifiers.  30 

Results: The multi-classification model had greater than 85 % training and testing accuracy to distinguish 31 

clinical malaria from nMI. To distinguish UM from nMI, our approach identified platelet counts, red blood 32 

cell (RBC) counts, lymphocyte counts and percentages as the top classifiers of UM with 0.801 test accuracy 33 

(AUC = 0.866 and F1-score = 0.747). To distinguish SM from nMI, the classifier had a test accuracy of 34 

0.960 (AUC= 0.983, and F1-score = 0.944) with mean platelet volume and mean cell volume being the 35 

unique classifiers of SM. Random forest was used to confirm the classifications and it showed that platelet 36 

and RBC counts were the major classifiers of UM, regardless of possible confounders such as patient age 37 

and sampling location.  38 

Conclusions: The study provides proof of concept methods that classify UM and SM from nMI, showing 39 

that ML approach is a feasible tool for clinical decision support. In the future, ML approaches could be 40 

incorporated into clinical decision-support algorithms for the diagnosis of acute febrile illness, and 41 

monitoring response to acute SM treatment particularly in endemic settings. 42 

Background 43 
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In 2018, there were 228 million cases of malaria worldwide, 93% of which occurred in the African region 44 

[1]. Furthermore, approximately 450,000 deaths were reported, of which 61 % were children under 5 years 45 

old  [1]. According to WHO 2018 report, over 2.7 billion US dollars were spent towards various control 46 

and elimination efforts to address the global burden of malaria [1]. This includes over 2.74 billion doses of 47 

artemisinin based combination therapies, procured in 2017 [1]. Unfortunately, incorrect diagnosis leads to 48 

incorrect treatment. It can increase the chances of antimalarial drug resistance, or for false negative 49 

diagnosis, it may result in misdiagnosis of malaria, appropriate treatment and progress to severe disease or 50 

death [2–4]. The gold standard for malaria diagnosis is microscopy, which requires extensive training, but 51 

rapid diagnostic tests (RDTs) have become the frontline diagnostic tools for malaria because of their ease 52 

of use at point-of-care [5]. 53 

One drawback of RDTs is the emergence of gene deletions of the target antigen, histidine rich protein 54 

(Pfhrp2/3), in the parasite genome, which render parasites undetectable by the most common RDTs [6]. 55 

Other challenges include insufficient sensitivity to detect low-level parasitemia, and the number of tests 56 

which need to be performed per positive result in settings with declining or low transmission [7–9]. 57 

Different problems are faced in non-endemic countries, where imported malaria must be suspected as a 58 

possible cause of fever before an RDT or microscopy would be performed in the first place, and failure to 59 

identify cases at first contact with health services often results in worse clinical outcomes [10, 11]. 60 

Therefore, improved and complementary malaria diagnostics techniques are required, which can overcome 61 

some or all of these limitations.  62 

Complete blood counts (CBCs) is the most commonly performed laboratory test in most hospitals in both 63 

developing and developed countries. The CBC is usually relied upon to provide clues for diagnosis of 64 

patients where advanced methods for detection of specific diseases are lacking, with a parameter such as 65 

decreased platelet counts often associated with severe malaria (SM) [12, 13]. In addition, hemoglobin levels 66 

(Hb) are very important for the classification of SM cases [14]. Indeed, the changes in haematological 67 
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parameters during clinical malaria have been studied extensively, to aid in the understanding of disease 68 

pathogenesis [15–21]. However, the diagnostic value of haematological parameters measured by commonly 69 

available automated haematology analyzers has not been fully studied using unbiased approaches such as 70 

ML techniques. These haematological parameters have the potential to be used in differentiating clinical 71 

malaria from other febrile illnesses, especially in areas where the reliability of RDTs is challenged by high 72 

prevalence of Pfhrp2/3 deletion mutant parasites.   73 

The potential and diagnostic value of all the CBC parameters for diagnosis of malaria can be realized by 74 

using machine learning (ML). ML approaches use algorithms based on statistical assumptions and 75 

mathematical rules to learn patterns and produce meaningful classifications based on the association of each 76 

variable with the disease outcome [22–26]. These classifications can then be applied to new disease cases 77 

to make classifications on the most probable cause. This classification capability of ML has not been 78 

extensively implemented in the diagnosis of clinical malaria.  79 

To date, only a single study has reported the use of ML to diagnose malaria using clinical history and 80 

symptoms captured verbally and visually [27]. The sample size (n=376) was very small to deduce 81 

meaningful classifications and the author concluded that more work would be needed [27].  Despite this, 82 

there have been far reaching studies on application of ML in other areas of malaria research [28–32]. The 83 

diagnosis of malaria using ML on clinical datasets has been impaired by lack of large data, as well as 84 

difficulty in data curation. Moreover, classical modelling is prone to over-fitting or under-fitting of data 85 

[33], but recent approaches such as imputation, encoding, centering and scaling of variables, and model 86 

optimization [26] enable augmented use of ML in malaria classification.  87 

We hypothesized that we can classify clinical malaria and non-malarial infections (nMI) with an ML 88 

approach. We first collected and curated data from 2,207 patients including (nMI) (n=978), uncomplicated 89 

malaria (UM) (n=703), and severe malaria (SM) (n=526). We generated ML models to classify clinical 90 

malaria (UM and SM) from nMI using haematological parameters.  91 
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Methods 92 

Study population and sample collection 93 

Standards for Reporting Diagnostic Accuracy Studies (STARD) guidelines [34, 35] were followed in this 94 

study. The current study utilizes unpublished data of 868 patients from a previous case-control study of SM 95 

conducted by the Navrongo Health Research Centre (NHRC) located in the Kassena-Nankana Districts 96 

(KNDs) in the Upper East Region of Northern Ghana. In the original study, children with acute febrile 97 

symptoms admitted to the Navrongo War Memorial Hospital (NWMH), the only referral facility in the 98 

KNDs were evaluated for inclusion into the study from August to December 2002 and May 2003 to April 99 

2004. Full details of the study procedure, inclusion criteria, demographic and clinical characteristics of SM 100 

cases may be reviewed in Oduro et al [36]. 101 

 In brief, inclusion criteria for SM cases was: (1); all children between 6-59 months who had fever (or 102 

history of fever in past 24 hours) and were admitted to the (NWMH), (2) residence in the Navrongo Health 103 

and Demographic Surveillance System area [36], and (3) willingness of parents/caregivers to offer informed 104 

consent. Criteria for SM diagnosis and enrollment into the original study were classified as having SM by 105 

the WHO standard guidelines, that include hemoglobin < 5g/dl or hematocrit < 15% [36, 37]. Ethical 106 

approval for the SM study was obtained from Navrongo Health Research Center (NHRC) Institutional 107 

Review Board (IRB), Noguchi Memorial Institute of Medical Research (NMIMR) IRB, Naval Medical 108 

Research Center IRB, and the Ghana Health Service (GHS) Ethics Committee. Informed consent was 109 

obtained and documented, followed by administration of a questionnaire about the presenting symptoms 110 

and clinical examinations. Participants who did not consent, meet the study inclusion criteria and those who 111 

had reported taking antimalarial treatment in the past two weeks were excluded from the study, while those 112 

who turned out to be malaria negative by standard microscopy were withdrawn from the study. All study 113 

samples were taken prior to initiation of treatment except for samples taken for clinical monitoring during 114 

admission or for the follow-up after discharge from hospital.     115 
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The nMI and UM participants were recruited in a hospital-based cross-sectional study involving two 116 

hospitals; Kintampo North-Municipal Hospital, Kintampo and Ledzokuku Krowor Municipal Assembly 117 

Hospital (LEKMA), Teshie in Accra. The inclusion criteria were; (1) outpatient children 1-15 years old, 118 

(2) presenting with fever or history of fever in the past 24 hours or axillary temperature ≥38°C, (3) and (4) 119 

signed informed consent by self (adolescents) and parent/guardian. The exclusion criterion was participants 120 

with known chronic disease or history of antimalarial drug use in the past two weeks. Ethical approval was 121 

also obtained from NMIMR, GHS, and Kintampo Health Research Centre (KHRC). A case was defined as 122 

nMI if the individual presenting to the hospital was malaria negative by RDTs and microscopy. Clinical 123 

data such as age, sex, body temperature and symptoms such as fever were collected on recruitment. 124 

Sample Collection Procedure 125 

Venous blood was collected in the ante-cubital fossa. Tourniquet was not applied beyond one 126 

minute during venesection to avoid haemo-concentration, which could give erroneous results for 127 

all parameters measured. Samples were taken mostly between 8 am and 12 pm to avoid variations 128 

due to individuals’ activity (such as rehydration and food intake). Samples (5 mL) were taken into 129 

K3 EDTA tubes (BD Vacutainer; Becton Dickinson, NJ, USA). Samples that could not get 130 

analyzed within two hours from the time of collection were stabilized at 2-8°C to avoid changes 131 

that could occur in some haematological parameters should the sample be left on the bench for 132 

more than three hours. Samples were analysed not later than 24 hours from the time of sample 133 

storage at 2-8°C. No capillary blood sample was taken during the study as it presents with subtle 134 

variations from venous blood parameters. CBC analysis was performed using the automated ABX 135 

Micros 60 haematology analyzer. Data were manually cross-referenced twice for accuracy to 136 

ensure consistency in sample collection procedures. 137 

 Statistical classifier: median split 138 
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Kernel density estimation, which is a non-parametric technique, was used to estimate the probability density 139 

function of each haematological parameter and kernel distribution for each parameter between nMI, UM 140 

and SM and visualized using density plots in R (R-version 4.0.2). Median value within each diagnostic 141 

group (nMI, UM, and SM) was computed, and the mean of any two group medians was used for ‘median 142 

split’ to generate a dichotomous variable for each parameter (low and high levels representing below and 143 

above median respectively)[38]. Contingency tables were used to summarize the relationship between 144 

clinical diagnosis (nMI, UM, and SM), and each dichotomous parameter. The general linear models for 145 

predictive analysis were used to explain the relationship between the clinical diagnosis and the dichotomous 146 

parameter. Odds ratios were computed through the exponent of the regression coefficients (logits) to 147 

estimate the strength of the relationship. Any OR with 95% confidence interval (CI) that includes a null 148 

value (1.0) indicated that the parameter was not significantly associated with clinical diagnosis. ANOVA 149 

was used to compare the model with null model and Chi-square test used to compute the degree of 150 

significance. All the analysis was done in R (R-version 4.0.2) 151 

Data pre-processing and normalization 152 

A multivariate imputation via chained equations (MICE) plot was used to visualize the missing observations 153 

in the data. It was difficult to determine whether the missing values were missing ‘completely at random’, 154 

or ‘missing at random’ or ‘not at random’ to enable selection of imputation method. Therefore, the 155 

demographic/clinical data and microscopy results were not imputed and were not used for modeling. The 156 

majority of the haematological parameters had less than 5 % missing data and the missing values were 157 

imputed using MICE package in R. Each variable in the training and test data were transformed using Yeo-158 

Johnson function, centered to have a mean of zero, and scaled to have a standard deviation of one. The 159 

original dataset (before pre-processing and normalization) is available in Additional File 1.  160 

Machine learning  161 
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Six ML algorithms were evaluated to identify the best algorithm that can classify the binary data. These 162 

include partial least squares (PLS) logistic regression, multiple adaptive regression splines (MARS), 163 

random forest, decision trees, support vector machine and artificial neural networks. PLS logistic regression 164 

was implemented by reducing the dimension of haematological parameters so as to increase accuracy. We 165 

used 10-fold cross-validation while tuning through 16 principal components (PC), whereby the optimal 166 

model used 2 PC. The optimal hyperparameters for MARS (with cross validation) were determined in a 167 

grid search of 30 different combinations of 3rd degree and sampling 1000 terms to retain the final model 168 

[40]. Decision tree were implanted with the rpart function, which performs auto tuning with an optimal 169 

subtree of 10 total tree splits. Random forest and support vector machines were implemented by first 170 

performing a grid search to identify the optimal hyperparameters followed by classification analysis. Three 171 

ANN were developed, one multi-classification ANN (nMI vs UM vs SM) and two binary classifications 172 

denoted as ANN (UM and nMI), and ANN (SM and nMI). For each ANN, the data were split into 80 % 173 

training and 20 % testing. The outcome was the clinical diagnosis of the participant (as concluded by the 174 

attending clinicians) having either UM or nMI or SM. Haemoglobin and hematocrit levels were not 175 

included in the modeling because they are used to support diagnosis of malaria [12, 21, 37, 39] 176 

Hyperparameter tuning for artificial neural networks  177 

The ANN was composed of an input layer of 15 haematological parameters. The loss was computed using 178 

categorical cross-entropy for the multi-classifier and binary cross-entropy for binary classifiers, while 179 

accuracy was used as the main evaluation metric. During training, the 80 % training data was further split 180 

into 70 % training and 30 % validation with randomization (Figure 1). Tensor board visualizations were 181 

used to check the dynamic graphs of our training and test metrics (Supplementary figure 2). 182 

Hyperparameters were tuned to identify the optimal model parameters for each classification. A hyper-grid 183 

was developed that adjusts the model capacity, normalization term, kernel regularization, and learning rate. 184 

To maximize the validation error performance, we tuned 12, 32, 64, 128, 256, 512 rectified linear units 185 
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(ReLU) in three hidden layers. We used batch normalization on each hidden layer for gradient propagation 186 

and performance improvement. We varied the dropout rate from 0.1, 0.2, 0.3, and 0.4 in all the three layers 187 

to identify the best dropout regularization that prevents the model from latching to happenstance patterns 188 

that are not significant. We used “Adam” as the optimizer, but we varied the learning rate (0.1, 0.05, 0.001, 189 

and 0.0001) to find a global minimum. The tfruns R package was used to implement the hyper-grid in R, 190 

using 500 epochs, batch size of 64 and validation split of 0.3. These Keras models composed were initialized 191 

for all the three models (supplementary figure 1) and the optimal model was selected. 192 

ANN Model evaluations 193 

Yardstick package was used to perform classifications on the test data as well as compute the performance 194 

of the model. The confusion matrix, accuracy, area under the Receiver Operating Characteristic Curve 195 

(AUC), precision and recall, and F1- Score were the metrics used to evaluate performance. The F1 score is 196 

a measure of test data accuracy, which is a weighted average between precision and recall.  To explain the 197 

model, we used local interpretable model-agonistic explanations (LIME Package in R) [41]. The 198 

classification model was set up, and an “explainer” of the classifying model was developed using the 199 

training data and the model output classifications. The explainer was used to explain the results of the test 200 

dataset as classification explanations (feature weights). The feature weights were used to build a heatmap 201 

for each ANN indicating how each feature explains the model.  202 

Effect of patient age and sampling location on the model predictions 203 

To test if patient age and sampling location significantly affected the models, we used three models 204 

(1) a model for all the UM and nMI cases (n=1,823), (2) a model for UM and nMI from Kintampo 205 

cases only (n=900), and (3) a model for only Kintampo cases and ages >4 years. We tested the 206 

possibility of using the ANN to evaluate the models but there was some level of over-fitting and 207 

under-fitting of the 2nd and 3rd models, due to sample size limitation. Therefore, random forest was 208 
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subsequently used, because of (1) its robustness to smaller sample size with minimal over-fitting 209 

of the data (2) its ability to reduce  the high variance from decision trees by combining several 210 

trees into one ensemble tree [42]. 211 

Statistical analysis 212 

The clinical categorical data was analyzed using Pearson’s Chi-square while the continuous data such as 213 

the haematological parameters were analyzed using Kruskal Wallis test with Dunn’s post hoc tests across 214 

the three groups (UM, SM and nMI). All tests were two sided and statistical significance was set at (P<0.05) 215 

for all analyses with adjustment for multiple testing.  Data analyses was performed using R-development 216 

software (R version 4.0.2), R-studio (Version 1.1) and Python (Version 2.7). The R code with the methods, 217 

including the curated data files can be found on git-hub: https://github.com/misita-falcon.   218 

Results 219 

Characteristics of the study participants 220 

Participants were recruited as follows; 38.8 % (857/2,207) from Accra, 32.9 % (726/2,207) from Kintampo, 221 

and 28.3 % (624/2,207) from Navrongo (Figure 1). These participants from all the three locations constitute 222 

44.3 % (978/2,207) nMI, 31.8 % (703/2,207) for UM, and 23.8 % (526/2,207) for SM cases (Figure 1). The 223 

median age was 3 years (range: 2-6 years) for nMI, 4 years (range: 2-7 years) for UM, and 1 year (range: 224 

1-2 years) for SM. The median ages were significantly different as determined by Kruskal Wallis test 225 

(P<.001) (Table 1). The sm cases had a significantly higher median body temperature (38.3; range =37.5-226 

39.2), compared to the nMI (37.2; range = 36.5-38.4), UM (38.1; range = 37-39) and the SM cases (38.3; 227 

range =37.5-39.2) (P<.001). There was a significant difference in proportions of individuals (P<.001) 228 

among nMI, UM, and SM from different locations (Kintampo, Navrongo, and Accra) as determined by chi-229 

square analysis (Table 1). There was no association between sex and clinical diagnosis, although the number 230 

of females was higher than males in all three groups (P=0.247); nMI was 51.2 % (501/978), UM was 54.9 231 
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% (386/703) and SM was 55.1 % (290/526) (Table 1). Fever was more common in SM (99.2 %, 522/526) 232 

compared to UM (85.5 %, 601/703) and lowest in nMI (59.4%, 581/978), and chi-square analysis shows 233 

that there was an association between fever and clinical diagnosis (P<.001) (Table 1).  234 

Participants with UM had a higher geometric mean density (27,467.59 Parasites/µL, SD=8.44) compared 235 

to SM individuals (16,674.41 Parasites/µL, SD=8.61). But, the median levels did not vary significantly 236 

between the two groups (P=0.592) (Table 1). Participants with nMI were negative by microscopy.  There 237 

were 212 different suspected infections in the nMI group and the top 10 include; upper respiratory tract 238 

infections (17 %, 167/978), malaria (9.5 %, 93/978), gastroenteritis (7.6 %, 75/978), sepsis (6.1 %, 60/978), 239 

otitis media (5.9 %, 58/978), enteric fever (2.6%, 26/978), fever (2.1 %, 23/978), tonsillitis (2.3 %, 23/978), 240 

pneumonia (2.1%, 21/ 978) and anaemia (1.9 %, 19/978) (supplementary figure 1). Laboratory results 241 

indicated that majority of the samples were undetermined/not available/not known (96 %, 937/978), with 242 

only 4 % having accurate laboratory result (41/978). Some of the organisms that were laboratory confirmed 243 

include; Streptococcus pneumonia, Staphylococcus aureus, Salmonelella thypi, Coxiella burnetii, and 244 

Dengue virus (Figure 2). Only 2 UM participants had co-infections (laboratory confirmed) with P. 245 

falciparum and these individuals had 4 and Group D streptococcus (1). Since the sample size of laboratory 246 

confirmed nMI cases was low, all the samples were grouped as nMI, instead of individual diseases during 247 

ML classifications.   248 

Haematological parameters vary between nMI, UM and SM 249 

Median values for all the haematological parameters were significantly different among nMI, UM, and SM 250 

(P<.001) (Table 2), but most of the parameters do not show distinct distributions between the different 251 

clinical diagnosis groups (Figure 3). More so, Dunn’s post hoc tests indicated that platelet distribution 252 

width, percentage neutrophils and percentage lymphocytes were not significantly different between the nMI 253 

and SM (Table 2). Similarly, the pairwise comparisons showed that mean cell volume Neutrophils count 254 

and mean platelet volume were not significantly different between nMI and UM (Table 2). Despite the 255 
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statistical test, we hypothesized that the median differences for each parameter cannot be used to confidently 256 

classify the disease outcomes.  257 

To further confirm this hypothesis, the median was used to split the variables into categorical variables (low 258 

and high levels). The relationship or predictive value of the categorical parameters to accurately classify 259 

the clinical diagnosis was determined using contingency tables (Additional File 1, sheet 2). The percentage 260 

number of individuals who had low levels of each parameter and were classified with nMI ranged from 29 261 

-70 % (UM group), 7-82 % (SM-group) (Figure 4A). Comparatively, the percentage of individuals who 262 

had low levels of each parameter and were classified with UM ranged between 30 - 71 %, while the 263 

percentage of individuals who were classified with SM ranged between 17 – 91 % (Figure 4B). There were 264 

similar trends for percentage number of individuals who had high levels of each parameter and were 265 

classified with either nMI, UM, and SM (Figure 4C –D).  266 

Additionally, we determined whether the levels could predict whether an individual has UM or SM. First, 267 

we predicted UM, and majority of the parameters were associated with clinical diagnosis of SM and nMI 268 

(P<.001), except mean cell volume, mixed cells counts and neutrophil counts. The parameters that were not 269 

associated for nMI-UM category were WBC and RBC counts, Mixed cells percentage, neutrophil 270 

percentages, mean cell Hb concentration, mean platelet volume and neutrophil counts (Supplementary 271 

Table 2). Furthermore, some of the haematological parameters had a 95 % confidence interval that included 272 

the null value (1) when evaluating the odds ratios, which signifies that they are not significantly associated 273 

with clinical diagnosis (Supplementary Table 2).  274 

Machine learning attained over 77.7 % accuracy in classifying clinical malaria from nMI 275 

Since there is no clear distinction between the distributions, and the inability of the median based categories 276 

to clearly classify the participant’s clinical diagnosis, we sought to evaluate six ML approaches to classify 277 

clinical malaria from nMI. The UM vs nMI model was trained on 942 samples, validated on 403 samples, 278 

and tested on 336 samples for each ML approach. The SM vs nMI model was trained on 843 samples, 279 
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validated on 361 samples, and tested on 300 samples for each ML approach (Figure 1). Amongst the six 280 

ML approaches, the training accuracies ranged between 0.794 – 0.857 to classify UM while the training 281 

accuracies ranged between 0.937- 0.985 in classifying SM. The test accuracies ranged from 0.777 to 0.857 282 

for the UM model, and 0.930 to 0.973 for SM model (Supplementary Table 3). The SVM approach and the 283 

ANN generated the overall best classification outcome. 284 

Hyperparameter tuning (n=55,290 combinations) showed that the optimal model for multi-classification 285 

had 0.831 training accuracy with a model capacity of 3 layers (128, 64 and 16), with dropouts of 0.4 for 286 

layer 1, 0.3 for layer 2, and 0.4 for layer 3, and learning rate of 0.001. The optimal model (n=55,290 287 

combinations) for ANN (nMI vs SM) with 0.975 accuracy had a model capacity of 3 layers (16, 128, and 288 

256 RELU units respectively), the dropout rate was 0.2 and 0.4 for the first two layers, the last layer had 289 

0.1, and a learning rate of 0.0001. The optimal model (n=55,290 combinations) for ANN (nMI vs UM) with 290 

0.869 training accuracy had a model capacity of 3 hidden layers of 256, 64, and 16 RELU units respectively, 291 

the dropout rate was 0.1 for the first and last layer and 0.3 for the second layer, and a learning rate of 0.0001. 292 

Training and validation history plots for the ANN showed good levelling off for accuracy and loss, as well 293 

as acceptable divergence between training loss/accuracy and validation loss/accuracy for all the three 294 

models (Supplementary figure 3).  295 

Also, the history plots suggest that there was near zero over-fitting or under-fitting of the data as indicated 296 

by closeness of the training and validation curves (Supplementary figure 3). The ANN (UM vs. nMI), 297 

achieved 0.856 training accuracy and 0.842 validation accuracy, while the testing accuracy of the model 298 

was 0.801 (Kappa 0.583) (Table 3). The training and testing accuracies demonstrate the confidence of the 299 

networks in classifying UM.  The ANN (SM vs. nMI) achieved a higher accuracy (≥ 0.960) for training, 300 

validation and testing accuracy (Table 3). Both ANN had an F1 score of above 0.747, which means the 301 

model can be used for the classification of clinical malaria (Table 3). Since the binary classifiers had the 302 

best performance, we also performed a multi-classification analysis to assess the ability of the ANN to 303 
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differentiate among UM, SM and nMI. The data available for the multi-classification model was 2,207 304 

samples, which were split to 80 % training (n=1,766) and 20 % testing (n=441). The training data was 305 

further split to 70 % (n=1,236) training and 30 % (n=530) cross-validation with accuracies of 0.862 and 306 

0.828 respectively. The test accuracy was 0.853 (kappa = 0.768), the precision, recall and F1-score of the 307 

model was 0.747 (Table 3). The accuracy of multi-classification model provides confidence in the binary 308 

classifications.  309 

Diagnostic value of the models using ROC curves 310 

Having shown the accuracy of the models, we determined the ROC curves of ANN (UM vs nMI) and ANN 311 

(SM vs nMI) to show the diagnostic ability of these binary classifiers. Both classifiers had very good 312 

performance with an AUC 0.866 for ANN (UM vs. nMI) and AUC of 0.983 for ANN (SM vs. nMI)  (Figure 313 

5 and Table 3). This showed that the models could be used to distinguish individuals with SM or UM from 314 

those with nMI. The cut-offs for UM show that there is a trade-off in sensitivity and specificity as the cut-315 

off increases or decreases, which is not the case for SM. These results could frame the clinical utility of the 316 

models and provide a benchmark for future studies.  317 

Platelet and RBC counts classify clinical malaria from non-malaria infections 318 

The models were investigated to identify which haematological parameters were classified to be important 319 

for either SM, UM or nMI using local interpretable model-agnostic explanations (LIME). Case by case 320 

analysis of the individuals showed that some haematological parameters are important classifiers of UM 321 

(Supplementary figure 3). Case by case analysis was merged into heatmap to generate a consolidated picture 322 

of useful parameters for classification (Figure 6). The top three parameters that had low feature weights for 323 

UM are platelet counts, RBC counts and lymphocyte percentages (Figure 6A). Based on the order of 324 

importance, the top three parameters that were important for SM classification include RBC counts, platelet 325 

counts and mean platelet volume (Figure 6B). This shows that both platelet and RBC counts are important 326 

parameters for clinical malaria while the lymphocyte percentages was unique for UM.  These parameters 327 
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might be used to classify clinical malaria cases from nMI, with a very good diagnostic ability as shown by 328 

the ROC analysis (Figure 4).  329 

Patient age and sampling location do not affect the model classifications 330 

We further tested if the models are agnostic to age and location variance. There was a significant difference 331 

in patient age between nMI and UM (P<.001), but there was no significant difference in samples within 332 

Kintampo as well as children under the age of 4 years (Figure 7, supplementary figure 5 & 6).  The 333 

performance accuracy of the random forest models was 0.806, 0.767, and 0.768 for model 1, 2 and 3 334 

respectively (Figure 7).  The most important parameters that featured across the three models were platelet 335 

and RBC counts, which are similar to the top two parameters identified by the ANN. Therefore, the data 336 

illustrates that age and location do not affect model classifications, and the platelet or RBC counts 337 

determined by ANN can be used to reliably classify clinical malaria from nMI in these datasets.  338 

Discussion 339 

Automated CBC is one of the blood tests routinely performed for children presenting to health 340 

facilities with fever. However, CBC analysis generates a significant amount of data on a range of 341 

haematological parameters, the data is underutilized with only Hb and Hct levels being routinely 342 

used as an indicator of clinical malaria. Thus, an automated algorithm to detect malaria based on 343 

the haematological parameters as outlined in this study, could have great value as a complementary 344 

malaria diagnostic strategy, particularly at front-line health centers where CBC is routinely done. 345 

Such an algorithm also has the added value of enabling the monitoring of treatment outcomes for 346 

in-patients.  347 

In malaria endemic settings, malaria rapid diagnostic tests (mRDTs) have revolutionized diagnosis 348 

and significantly reduced presumptive treatment, particularly in rural settings where trained 349 
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microscopists are lacking [3]. However, reports of emerging Pfhrp2/3 gene deletions threaten the 350 

future reliability of the RDTs. False negative RDT results are also known to occur in low density 351 

infections [7–9]. Thus, an approach that is automated and agnostic to parasite genetic variation is 352 

critical both as a fail-safe and a surveillance strategy for false negative mRDTs (which might occur 353 

due to supply chain mismanagement or gene variation) [9]. In very low transmission settings, ML 354 

models have the potential to replace the primary use of mRDTs when diagnostic yield of mRDTs 355 

becomes very low (i.e. many mRDTs needed to detect a single case of malaria). In non-endemic 356 

settings where malaria may occur in immigrants and non-immune travelers, the models may allow 357 

another fail-safe mechanism in case the diagnosis of malaria was not suspected by clinicians and 358 

malaria RDT or microscopy was not performed.  Despite these advantages, there would be a little 359 

extra cost associated with incorporating the algorithm and an automated message into haematology 360 

analyzer output, a message that can prompt clinicians to consider malaria in the presence of 361 

suggestive haematological features.   362 

Previous ML studies have looked into haematological parameters more generally and to classify 363 

sickle cell anaemia using deep convolutional networks [43, 44], but did not classify clinical 364 

diagnosis. For the first time, ML approaches that can classify infections in children based on 365 

haematological parameters have been generated. Six different ML methods were evaluated and 366 

they were all shown to classify clinical malaria from nMI with high accuracy especially the SVM 367 

and the ANN. We used the ANN to deconvolute the results: it identified platelet and RBC counts 368 

as the top features in classifying both UM or SM from nMI. Low RBC counts can be attributed to 369 

extensively parasitized RBCs, which are sequestered during SM [45]. This highlights the 370 

significance of RBC counts during Plasmodium falciparum malaria infections. In most occasions 371 

except cerebral malaria, SM is associated with anemia due to RBC lysis during parasite invasion 372 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.23.20200220doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.23.20200220


 

 

17 

 

as well as many other RBC abnormalities [46]. This makes the diagnosis of SM much easier than 373 

UM, whereby one parameter, such as Hb level of <5g/dL, can diagnose or classify the disease.  374 

Cohen et al, analyzed data from 680,964 individuals with fever and confirmed that majority of 375 

antimalarial drugs are given to malaria negative individuals [47]. Overtreatment indicates that, 376 

most nMI can go without being treated, for their true cause, which is also possible for UM and this 377 

can lead to drug resistance. Therefore, the difference between febrile outpatient infections is far 378 

more challenging, especially between nMI and UM due to similarity in clinical presentations. In 379 

large population studies, differences in median can be significant but they do not necessarily 380 

distinguish the populations as either nMI or UM as observed in this study. But, using the ML 381 

approach shown here, distinguishing the nMI and UM can be improved by combining all 382 

haematological parameters and learning the data-patterns before making classifications. The 383 

predictions made by ML are more accurate and reliable, and can be improved by analyzing more 384 

datasets.  Lymphocytes counts/percentage were identified to be affected during UM, and can be 385 

used to distinguish UM from nMI, mainly because individuals with malaria generally have a 386 

distinct immune response compared to nMI individuals [29, 48, 49].  387 

Previous work in our laboratory showed differences in haematological presentation among areas 388 

of varying transmission intensity in Ghana [50]. To show that differences in age and transmission 389 

zones (sampling location) are not driving our diagnostic classifications, we down-sampled the data 390 

and used random forest to perform the classifications.  The results showed that, platelet and RBC 391 

counts were the key features in classifying UM and nMI regardless of age and sampling location 392 

of the participants. There were differences in the top three important features between the random 393 

forest and ANN, but this could be due to the differences in approach of each algorithm [25, 51]. 394 
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This illustrates that the patient age and location do not substantially influence the diagnostic 395 

classifications. The ROC curves further showed that the models could be used for diagnosis with 396 

very reliable AUC values.  397 

There are four limitations to be considered in the use of this ML approach in routine diagnosis and the 398 

generalization of our approach. First, the models can distinguish between nMI and clinical malaria, but 399 

whether they can be used to distinguish the clinical disease state will depend on the pre-test probability or 400 

prevalence of malaria in different settings. Second, all study subjects being Ghanaian children may limit 401 

the generalizability of the models; this is also the case for the limited range of SM manifestations in our 402 

dataset, and the spectrum of laboratory confirmed nMI. Lastly, the study did not have adults >15 years to 403 

comparatively understand the role of age in differentiating clinical malaria based on haematological 404 

parameters. Therefore, we recommend that more studies are needed to inform the broader utility of this 405 

work.  Despite that only 4.6 % (75/1,645) of the cases were discordant between microscopy and RDT, 406 

probably due to hrp2/hrp3 deletions, there is an insignificant chance that misclassification of malaria could 407 

have had an impact on our study.  These limitations will be taken into account for further studies to inform 408 

the broader clinical utility of this work. 409 

 Conclusions 410 

Fever is the most common symptom reported in sSA, and correct diagnosis of the implicated 411 

pathogen is of high importance for precision medicine. Personalized treatment reduces 412 

overtreatment, decreases malaria mortality and antimalarial resistance. This report demonstrates 413 

proof-of-principle that ML can be used to distinguish clinical malaria from nMI using routine 414 

haematological data. Case by case analysis showed that, the models can make classifications based 415 

on combination of three parameters: platelet and RBC counts, lymphocytes counts/percentage and 416 

mean platelet volume. These could be used for precision diagnosis of an individual’s risk of having 417 
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malaria, to inform the need for confirmatory diagnosis by microscopy or to prompt investigation 418 

for other diagnoses when malaria is unlikely. Further work is to calibrate and improve the 419 

classification capability of the model using more data from other geographical and transmission 420 

settings, demographic groups, co-infections, and different disease severities. Our findings hold 421 

promise for the design of clinical software to support diagnosis of malaria in the WHO African 422 

region, and might also prove useful for diagnosis of malaria in returning travelers from non-423 

endemic countries. 424 
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Tables 457 

Table 1 Characteristics of study participants for nMI, UM, an SM (n= 2,207). Average age and 458 

hemoglobin levels were analyzed using Kruskal Wallis test while recruitment location, sex and fever were 459 

analyzed using Chi-square test at 95% CI. All the participant characteristics were significantly different 460 

between the nMI, UM, and SM.  461 

Characteristic Non-Malaria Infections Uncomplicated Malaria Severe Malaria  

N=2207 N=978          (44.3%) N=703       (31.8%) N=526          (23.8%) p-value 
Patient Age         
Mean                (SD) 4.23 (3.57) 4.95 (3.57) 1.66 (0.93) < .001a 
Median             (Range)    3.0 (2-6) 4.0 (2-7) 1.0 (1-2)  

Body Temperature         
Mean                (SD) 37.4 (1.18) 38.1 (1.23) 38.4 (1.15) < .001a 
Median             (Range)    37.2 (36.5-38.4) 38.1 (37-39) 38.3 (37.5-39.2)  
Parasite Density        
Geometric Mean   (SD) 0 0 27467.59 8.44 16674.41 8.61 0.592c 
Median            (Range) 0 0 29,426 3,144-105,351 25,160 3,560-86,560  
Location        
Accra               (n, %) 657 (67.2%) 200 (28.4%) 0 (0.0%) <.001b 
Kintampo        (n, %) 321 (32.8%) 405 (57.6%) 0 (0.0%)  

Navrongo        (n, %) 0.0 (0.0%) 98 (13.9%) 526 (100.0%)  

Sex        
Female           (n, %) 477 (48.8%) 317 (45.1%) 236 (44.9%) 0.209 b 

Male               (n, %) 501 (51.2%) 386 (54.9%) 290 (55.1%)  

Fever symptom        
No                  (n, %) 395 (40.4%) 97 (13.8%) 4 (0.8%) <.001 b 
Yes                 (n, %) 581 (59.4%) 601 (85.5%) 522 (99.2%)  

Missing          (n, %) 2 (0.2%) 5 (0.7%) 0 (0%)  

a Kruskal-Wallis Test  b Chi-square test c Dunn (1964) Kruskal-Wallis multiple comparison – UM vs SM only 462 
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Table 2 Comparison of median and interquartile ranges in haematology values measured in nMI, UM, and SM cases.  P-values were analyzed 463 

using Kruskal Wallis test with post hoc tests (supplementary table 2). The parameters include WBC indices, RBC indices, and platelet indices. All the 464 

haematological parameters were significantly different between the nMI, UM, and SM (P<0.001) except the WBC counts, neutrophil counts, percent 465 

neutrophils and mean corpuscular hemoglobin.  466 

   P-value – Kruskal Wallis test with Dunn’s post hoc tests467 

 
 Non-Malaria 

Infections (a) 
N=978 

 Uncomplicated 
Malaria (b) 

N=703 

  
Severe Malaria (c) 

N=526 
   

  
a vs b 

 
b vs c a vs c a vs b vs c 

Parameters  Media
n IQR  Median IQR P-value  Median IQR P-value P-value 

P-value 

WBC Indices  
            

WBC Count (103/μL)  9.3 7.0-12.8  8.3 6.3-10.8 < .001  11.6 8.3-16.6 < .001 < .001 <.001 
Lymphocytes Count (103/μL)  3.0 2.0-4.5  1.9 1.3-3.0 < .001  3.8 2.4-6.0 < .001 < .001 <.001 
Mixed Cell Count (103/μL)  0.8 0.5-1.1  0.5 0.3-0.8 < .001  0.9 0.5-1.4 < .001 0.004 <.001 
Neutrophils Count (103/μL)  4.8 3.3-7.6  5.4 3.7-7.6 0.115  6.5 4.4-9.4 < .001 < .001 <.001 
Lymphocytes Percent (%)  35.8 22.6-47.8  24.7 16.8-36.8 < .001  33.9 26.5-44.4 < .001 0.964 <.001 
Mixed Cells Percent (%)  8.6 6.7-11.0  6.9 5.0-9.2 < .001  8.2 5.5-11.3 < .001 0.012 <.001 
Neutrophils Percent (%)  54.4 41.7-69.0  67.8 53.7-77.1 < .001  55.8 46.6-66.2 < .001 0.568 <.001 
RBC Indices  

            
RBC Count (106/μL)  4.5 4.2-5.0  4.1 3.6-4.5 < .001  2.4 1.7-3.2 < .001 < .001 <.001 
Hb Level (g/dL)  11.0 10.1-11.8  10.1 8.8-11.2 < .001  5.6 4.1-7.4 < .001 < .001 <.001 
Hematocrit (%)  34.5 32-37.1  31.1 27.2-34.8 < .001  16.7 12.0-21.1 < .001 < .001 <.001 
RBC Distribution Width (%)  15.1 14.0-16.6  15.7 14.7-17.1 < .001  18.1 16.2-20.1 < .001 < .001 <.001 
Mean Cell Volume (fL)  76.0 71.2-80.3  76.0 72.0-81.0  0.510  70.0 64.7-75.4 < .001 < .001 <.001 
Mean Corpuscular Hb (pg)  23.7 21.8-25.6  24.9 23.0-26.4 < .001  23.8 21.5-26.7 0.001 0.006 <.001 
Mean Cell Hb Concentration (g/dL)  31.6 29.6-32.5  32.3 31.5-33.3 < .001  35.1 31.2-37.4 < .001 < .001 <.001 
Platelet Indices  

             
Platelet Count (103/μL)  292.0 226.0-360.0  140.0 92.0-216.0 < .001  98.0 61.0-156.0 < .001 < .001 <.001 
Mean Platelet Volume (fL)  8.2 7.6-8.9  8.1 7.5-8.9 0.186  6.9 6.4-7.8 < .001 < .001 <.001 
Platelet Distribution Width (fL)  15.0 13.9-15.4  14.5 12.4-15.6 0.005  15 12.0-17.3 < .001 0.121 <.001 
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Table 3 Performance of classification models for identifying parameters that can be classified with 468 

clinical malaria. Training and cross-validation accuracy as well as testing accuracy, area under the ROC 469 

curve (AUC), Precision, Recall and F1-score. Multiclass analysis among all three-disease conditions, 470 

training accuracy was 0.862 with 0.828 validation accuracy. The model classified the three classes with 471 

0.853 test accuracy. The ANN (UM vs nMI) had accuracy of ≥ 0.801 for training, validation and testing 472 

accuracy. The ANN (SM vs nMI) had the highest classification accuracy of ≥ 0.960.  473 

ANN UM vs SM vs nMI UM vs nMI SM vs nMI 

Model type Multi-classification model Binary model Binary model 

Data splitting  

Total data (100%) n=2207 n=1681 n=1504 

Training & validation data (80%)  n=1766 n=1345 n=1204 

Testing data (20%)  n=441 n=336  n=300 

Training performance 

Training accuracy 0.862 0.856 0.985 

Training Loss 0.396 0.425 0.062 

Validation accuracy  0.828 0.842 0.978 

Validation loss 0.432 0.434 0.102 

Testing performance 

Testing accuracy 0.853 0.801 0.960 

Kappa 0.768 0.583 0.913 

ROC_AUC NAa 0.866 0.983 

Precision 0.855 0.780 0.971 

Recall 0.856 0.717 0.918 

F1- Score 0.856 0.747 0.944 
a  We did not generate ROC-AUC for multiclassification models 474 

 475 
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 476 

Figure 1. Study population and data splitting for building the ANN for clinical malaria. Samples were 477 

collected from two high transmission areas; Kintampo (n=726) and Navrongo (n=624), and one low 478 

transmission area (Accra, n = 857). The nMI (n = 978) were collected from Kintampo and Accra, UM (n = 479 

703) were collected from all three areas, while the SM (n= 526) samples were collected from Navrongo.  A 480 

multi-classification ANN model was developed for nMI, UM and SM, which was further evaluated by 481 

binary ANN models (1) ANN (UM vs nMI) and (2) ANN (SM vs nMI). For each model, data splitting was 482 

achieved by splitting data in 80:20% ratio into training (Train) and testing (Test). The 80% training data 483 

was further split into 70:30% ratio for training (Train) and cross-validation (xVal-set). 484 
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Figure 2. Clinical manifestations using laboratory diagnosis compared to various suspected infections 487 

by clinicians. Blood, urine and stool samples were collected from majority of the individuals who were 488 

categorized as nMI. Cultures of either blood, urine or stool were performed, depending on the 489 

clinicians/Doctor’s request and the suspected illness. The suspected organisms include bacteria, viruses and 490 

protozoan. Laboratory results confirmed only 4% of the cases with the majority being undetermined/not 491 

available/not known (96 %, 937/978). The major organisms determined to be present include: Dengue virus, 492 

Staphylococcus aureus, Salmonella typhi, Streptococcus pneumonia, and Coxiella burnetii. 493 
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Figure 3: Density estimates of the haematological parameters between nMI, UM and SM cases. A 497 

kernel density-plots indicates the distribution of haematological data across each parameter. The plot uses 498 

kernel density estimate to plot allowing for smoother distributions by smoothing out the noise. The peaks 499 

of each density plot are displaying the help display where values are concentrated over the interval. Each 500 

plot is labelled under it the parameter it’s estimating.  501 
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 502 

 503 

Figure 4 Non-symmetrical predictive values of clinical diagnosis using median cut-off (high vs Low) 504 

of the haematological parameters. A “median split” was used to divide each quantitative parameter into 505 

categorical variables by the median value (calculated as a mean of nMI and UM or SM median value shown 506 

in Table 2). The predictive values are calculated from contingency tables (Supplementary Table 2). (A) 507 

Shows the percentages of predicting nMI from low levels, (B) percentages of predicting SM or UM using 508 

the low levels, (C) percentages of predicting nMI using high levels and (D) predictive values of UM or SM 509 

using high levels. 510 
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 512 

 513 

Figure 5 ROC curve for classification of SM was near perfect. The ROC curves plots sensitivity versus 514 

specificity for all possible cut offs.  Each point on the curve represents a different cut-off value, which are 515 

connected to form a curve. The diagonal line is a reference line for the ROC curve. A) ROC for the ANN 516 

(UM vs nMI) with an area under the curve (AUC) of 0.866 which is basically an average of true positive 517 

rate across all possible false positive rates. B) ROC for the ANN (SM vs nMI) is right angled which means 518 

its near perfect with an AUC of 0.983. The levels of AUC indicate a good performance of the models in 519 

classifying UM and SM.  520 

 521 

 522 

 523 
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 524 

Figure 6 Platelet and RBC counts classified as classifiers of both UM and SM. The Keras model was 525 

explained using local interpretable model-agonistic explanations (LIME Package in R-software). The 526 

explainer results of the test data, which are represented as feature weights, were extracted from the 527 

explainer and used to plot the heatmaps to show a consolidated effect of the parameters. The weights that 528 

are < - 0.1 indicate that they are low during UM or SM. Left heatmap shows that platelet, RBC, and 529 

lymphocytes percentages/counts, can classify UM. Right heatmap shows the haematological parameters 530 

that can classify SM, and they include RBC counts, mean platelet volume, platelet counts and MCV.  531 

 532 
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 533 

Figure 7 Classification of haematological parameters using random forest shows that patient age and 534 

sampling location do not affect the ML models. Three models were generated; (A) a model for all the 535 

UM and nMI cases (n=1,681), (B) a model for UM and nMI from Kintampo cases only (n=735), and (C) a 536 

model for only Kintampo cases and ages >4 years, whereby there was no significant difference between the 537 

nMI and UM (n=414). The samples for each model were split 80% training and 20% for testing. The 538 

accuracy of the models was 0.806, 0.767 and 0.768 respectively. The most important feature across the 539 

three models was Platelet and RBC counts.  540 
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Supplementary Tables 542 

Supplementary Table 1 The list of haematological parameters adopted from laboratory procedure 543 

manual by the CDC [52]. The table outlines the description of the parameters, abbreviation, mode of 544 

measurement, pulse size, and the units of reporting.  545 

Cell Parameter Measured Pulse Size Reported 
Units 

WBC White Blood Cell Count  
This is the number of leukocytes measured directly, 
multiplied by the calibration constant, and 
expressed as n x 103 cells/µL 

WBC bath 
 

≥35 fL 
 

n x 103 
cells/µL 
 

RBC 
 

Red Blood Cell Count  
This is the number of erythrocytes measured 
directly, multiplied by the calibration constant, and 
expressed as n x 106 cells/µL 

RBC bath  
 

36 to 360 fL n x 106 
cells/µL 

Hb 
 

Hemoglobin Concentration  
Weight (mass) of hemoglobin determined from the 
degree of absorbance found through photocurrent 
transmittance is: Hb (g/dL) = Constant x 
log10(Reference % T / Sample % T) 

WBC bath 525 nm g/dL 

Hct 
 

Hematocrit  
This is the relative volume of packed erythrocytes 
to whole blood, computed as: Hct (%) = RBC × 
MCV/10 

Computed 
 

RBC x MCV/10 
 

% Percent 
 

MCV 
 

Mean Cell Volume 
This is the average volume of individual 
erythrocytes derived from the RBC histogram. 

Derived 
from RBC 
histogram 

# x size of RBC/ 
Total RBC 

fL 
 

MCH 
 

Mean Cell Hemoglobin  
This is the weight of hemoglobin in the average 
erythrocyte count, computed as: Hb / RBC x 10 

Computed 
 

Hb/RBC x 10 
 

pg 
 

MCHC 
 

Mean Cell Hemoglobin Concentration 
This is the average weight of hemoglobin in a 
measured dilution, computed as: Hb / Hct x 100 

Computed 
 

Hb/Hct x 100 
 

g/dL 
 

RDW 
 

Red Cell Distribution Width  
RDW represents the size distribution spread of the 
erythrocyte population derived from the RBC 
histogram. It is the coefficient of variation (CV), 
expressed in percent, of the RBC size distribution. 

Derived 
from RBC 
histogram 
 

CV expressed in 
% of the RBC size 
distribution 

% Percent 
 

Plt 
 

Platelet Count  
This is the number of thrombocytes derived from 
the Plt histogram and multiplied by a calibration 
constant. This number is expressed as: n x 103 
cells/µL 

RBC bath 
 

2 to 20 fL 
 

n x 103 
cells/µL 
 

MPV 
 

Mean Platelet Volume  
MPV is the average volume of individual platelets 
derived from the Plt histogram. It represents the 
mean volume of the Plt population under the fitted 

Derived 
from Plt 
histogram 
 

Mean volume of 
Plt population 
under the fitted 
curve x constant 

fL 
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Plt curve multiplied by a calibration constant, and 
expressed in femtoliters. 

NE% 
 

Neutrophil Percent  
The percentages of leukocytes from each category 
are derived from the scatterplot. 

Derived 
from 
scatterplot 

# cells inside NE 
area/# cells inside 
total cell area x 
100 

% Percent 
 

NE # 
 

Neutrophil Number  
The absolute numbers of leukocytes in each 
category are computed from the WBC count and the 
differential percentage parameters. 

Absolute 
number 
 

NE%/100 x WBC 
Count 
 

103 
cells/µL 
 

LY% 
 

Lymphocyte Percent  
The percentages of leukocytes from each category 
are derived from the scatterplot. 

Derived 
from 
scatterplot 

# cells inside LY 
area/# cells inside 
total cell area x 
100 

% Percent 
 

LY# 
 

Lymphocyte Number  
The absolute numbers of leukocytes in each 
category are computed from the WBC count and the 
differential percentage parameters. 

Absolute 
number 
 

Ly%/100 x WBC 
Count 
 

103 
cells/µL 
 

MO% 
 

Monocyte Percent  
The percentages of leukocytes from each category 
are derived from the scatterplot. 

Derived 
from 
scatterplot 

# cells inside MO 
area/# cells inside 
total cell area x 
100 

% Percent 
 

MO# 
 

Monocyte Number  
The absolute numbers of leukocytes in each 
category are computed from the WBC count and the 
differential percentage parameters. 

Absolute 
number 
 

MO%/100 x WBC 
Count 
 

103 
cells/µL 
 

*PDW - Platelet Distribution Width and Pct - Plateletcrit are NOT for diagnostic use and do not print. Coulter uses the value for 546 

PDW is an internal check on the reported platelet parameters 547 
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Supplementary Table 2 The odds ratio of median categories providing the odd of being diagnosed with 549 

either nMI, UM, and SM. The median categories were; low and high levels.  550 

Predict clinical diagnosis of UM Estimate S.E  OR 2.5% 97.5% Pr(>Chi) 
(Intercept) 1.73 0.45 5.62 2.34 13.49 

 

WBC count  - High Levels -0.1 0.2 0.90 0.60 1.34 *** 
RBC count  - High Levels -0.1 0.17 0.91 0.65 1.27 *** 
Hb level  - High Levels -0.43 0.23 0.65 0.42 1.03 *** 
Hematocrit  - High Levels -0.71 0.22 0.49 0.32 0.76 *** 
Platelet count  - High Levels -2.26 0.14 0.10 0.08 0.14 *** 
Mean cell volume  - High Levels -0.21 0.2 0.81 0.55 1.20 

 

Lymphocytes count  - High Levels -0.77 0.19 0.46 0.32 0.67 *** 
Mixed cells %  - High Levels -0.26 0.17 0.77 0.55 1.08 *** 
Neutrophils %  - High Levels 0.3 0.36 1.35 0.68 2.74 *** 
Mean cell hb conc  - High Levels 0.23 0.16 1.26 0.93 1.71 ** 
Mean corp hb  - High Levels 0.58 0.21 1.79 1.18 2.73 ** 
RBC Dist width %  - High Levels 0.7 0.16 2.02 1.48 2.76 *** 
Mean platelet vl  - High Levels -0.32 0.15 0.72 0.54 0.96 ** 
Platelet distr width  - High Levels -0.4 0.14 0.67 0.50 0.88 ** 
Lymphocytes %  - High Levels -0.29 0.35 0.74 0.38 1.49 

 

Mixed cells count  - High Levels -0.23 0.19 0.80 0.55 1.16 
 

Neutrophils count  - High Levels 0.34 0.2 1.40 0.94 2.09 . 
              
Predict clinical diagnosis of SM Estimate S.E  OR 2.5% 97.5% Pr(>Chi) 
(Intercept) 3.87 1.03 47.79 6.75 390.36 

 

WBC count  - High Levels -0.46 0.59 0.63 0.20 2.00 *** 
RBC count  - High Levels -2.06 0.57 0.13 0.04 0.40 *** 
Hb level  - High Levels -2.25 0.69 0.11 0.03 0.40 *** 
Hematocrit  - High Levels -1.31 0.73 0.27 0.06 1.10 *** 
Platelet count  - High Levels -3.24 0.42 0.04 0.02 0.09 *** 
Mean cell volume  - High Levels -1.33 0.5 0.26 0.10 0.68 *** 
Lymphocytes count  - High Levels 1.57 0.57 4.83 1.64 15.33 

 

Mixed cells %  - High Levels -0.42 0.45 0.66 0.27 1.59 ** 
Neutrophils %  - High Levels 0.73 0.84 2.08 0.41 10.74 ** 
Mean cell hb conc  - High Levels 3.97 0.54 52.89 19.25 161.79 *** 
Mean corp hb  - High Levels -0.69 0.55 0.50 0.17 1.46 . 
RBC Dist width %  - High Levels 1.55 0.43 4.72 2.07 11.10 *** 
Mean platelet vl  - High Levels -4.52 0.52 0.01 0.00 0.03 *** 
Platelet distr width  - High Levels 3.27 0.47 26.33 10.89 70.04 *** 
Lymphocytes %  - High Levels -0.94 0.77 0.39 0.08 1.71 

 

Mixed cells count  - High Levels -0.17 0.55 0.84 0.28 2.49 
 

Neutrophils count  - High Levels 0.38 0.54 1.46 0.51 4.20 
 

OR-odds ratio, S.E – Standard Error, Pr (>Chi) –statistical estimate 551 
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Supplementary table 3 Performance evaluation of six machine learning models to classify clinical 552 
malaria outcomes 553 
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 ANN UM vs nMI SM vs nMI 
 Model type Binary model Binary model 
Data splitting 
 Total data (100%) n=1681 n=1504 
 Training & validation data (80%)  n=1345 n=1204 
 Testing data (20%) n=336 n=300 
 Training performance   

Training accuracy 0.856 0.985 
ANN 

 
Testing performance   
Testing accuracy 0.801 0.960 
Kappa 0.583 0.913 
Precision 0.780 0.971 
Recall 0.717 0.918 
F1- Score 0.747 0.944 

Logistic Regression 

Training performance   
Training accuracy 0.817 0.962 
Testing performance   
Testing accuracy 0.815 0.947 
Kappa 0.615 0.884 
Precision 0.803 0.934 
Recall 0.734 0.917 
F1- Score 0.767 0.925 

Multivariate Adaptive 
Regression Splines 

Training performance   
Training accuracy 0.820 0.980 
Testing performance   
Testing accuracy 0.786 0.973 
Kappa 0.542 0.942 
Precision 0.742 0.972 
Recall 0.685 0.954 
F1- Score 0.712 0.963 

Decision Trees 

Training performance   
Training accuracy 0.794 0.937 
Testing performance   
Testing accuracy 0.777 0.930 
Kappa 0.533 0.848 
Precision 0.704 0.899 
Recall 0.731 0.907 
F1- Score 0.717 0.903 

Random Forest 

Training performance   
Training accuracy 0.817 0.982 
Testing performance   
Testing accuracy 0.815 0.960 
Kappa 0.614 0.914 
Precision 0.808 0.936 
Recall 0.723 0.954 
F1- Score 0.765 0.945 

SVM 
Training performance   
Training accuracy 0.822 0.981 
Testing performance   
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 554 

  555 

Testing accuracy 0.827 0.97 
Kappa 0.650 0.936 
Precision 0.849 0.955 
Recall 0.761 0.996 
F1- Score 0.803 0.959 
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 556 

Supplementary figure 1 Word cloud of clinical manifestations using clinicians/doctors notes or 557 
suspected infections. Top 150 infections that were reported; with majority of the people having upper 558 
respiratory tract infections (URTI), followed by Malaria, Gastroenteritis, Sepsis, Otitis media, and Fever. 559 
The rest of the diagnosis had a frequency less than 2.   560 
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 561 

 562 

Supplementary figure 2 Artificial Neural Network Schematic. Keras Model that is composed of a linear 563 

stack of input layers, three hidden layers and one output layer. The input layer composed of an input shape 564 

of 15 haematological parameters (RBC parameters, WBC parameters, and Platelet indices). The hidden 565 

layers are each composed of a represetative16-stacked unit with ReLU as the activation function. The output 566 

layer had sigmoid function as the activation function and uniform initialization. Interpretations of the model 567 

classifications were made using local interpretable model-agonistic explanations (LIME Package in R) [41]. 568 
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570 

Supplementary figure 3 Plot for the training and validation history of the ANN. The figure indicates 571 

training and validation history of the model, which shows how accuracy and loss are leveling off, as well 572 

as the divergence between training and validation accuracy and training and validation loss. (A and B) 573 

Multi-classification of (SM vs. UM vs. nMI) accuracy and loss respectively. (C and D) Accuracy and loss 574 

respectively for ANN (UM vs. nMI) binary classifier. (E and F) Accuracy and loss respectively for the 575 

ANN (SM vs. nMI) binary classifier. The plots show a minimal model gap between training and validation.  576 

 577 

 578 
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 579 

 580 

Supplementary figure 4 Case by case analysis of the classification capability of the ML models. 581 

Samples of four cases in the test dataset were selected to indicate the predictions for each case. Case 1 and 582 

4 are nMI patients, while case 2 and 3 are UM patients. The bars indicate the feature weights for each 583 

haematological parameter and whether it is predictive of malaria (supports) or not (contradicts). This figure 584 

highlights how the parameters can be used for precision medicine.  585 

 586 

 587 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.23.20200220doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.23.20200220


 

 

43 

 

 588 

Supplementary figure 5 Density estimates of the haematological parameters between nMI and UM cases 589 

for sub-sampled data from Kintampo only.  590 

  591 
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 592 

 593 

 594 

Supplementary figure 6 Density estimates of the haematological parameters between nMI, and UM 595 

cases for sub-sampled data from Kintampo only, as well limit of children under 4 years of age.   596 
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