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Abstract 1 

Background: The interaction between dietary (and supplementary) divalent ions has been a long-2 

standing issue in human nutrition research. Developing optimal calcium and iron supplementation 3 

recommendation needs detailed knowledge of the potential trade-offs between: a) the clinical effects of 4 

concurrent intake on iron absorption and hematological indices, and b) the potentially negative effects of 5 

separated ingestion on adherence to either or both iron and calcium supplements. Human clinical studies 6 

have examined the effects of calcium intake on iron status, but there are no meta-analyses or recent 7 

reviews summarizing the findings.  Objective: We aimed to summarize the literature on the effect of 8 

calcium consumption from meals and supplements on iron indices in humans, and quantify the pooled 9 

effects. Design: Peer-reviewed randomized and case-cross-over studies were included in this review. 10 

Result: The negative effect of calcium intake was statistically significant in short-term iron absorption 11 

studies but the effect magnitude was low (weighted mean difference (WMD) = -5.57%, (95% CI: -7.09, 12 

-4.04)). The effect of calcium on iron status was mixed. There was a quadratic dose-response 13 

relationship between calcium intake and serum ferritin concentration. Higher daily calcium intake was 14 

associated with a modest reduction in serum ferritin concentration. There was, however, no reduction in 15 

hemoglobin concentration (WMD = 1.22g/L, 95% CI: 0.37, 2.07).   Conclusion: The existing body of 16 

studies is insufficient to make recommendations with high confidence due to heterogeneity in design, 17 

limitations of ferritin as an iron biomarker and lack of intake studies in pregnant women. Prescribing 18 

separation of prenatal calcium and iron supplements in free living individuals is unlikely to affect the 19 

anemia burden. There is a need for effectiveness trials comparing the effects of prescribing separated 20 

intake to concurrent intake, with functional end-points as primary outcomes, and adherence to each 21 

supplement as intermediate outcomes. 22 

Key words: Calcium and iron interaction, Calcium and preeclampsia, Maternal nutrition, Maternal 23 

Anemia, Meta-analysis 24 
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 25 

Introduction 26 

The interaction between dietary (and supplementary) divalent ions has been a long-standing issue in 27 

human nutrition research. Multiple studies have demonstrated that calcium inhibits iron absorption in 28 

short-term and single-meal studies (1-3). Studies that have measured the absorption ratio of iron in 29 

meals with different amounts of calcium have shown an inverse relationship(4). Two key mechanisms of 30 

action have been proposed for calcium-iron interaction(5). One potential mechanism is that luminal 31 

calcium leads to internalization of DMT1 receptors, limiting transfer of luminal iron into enterocytes. 32 

The other proposed mechanism is that calcium interferes with the transfer of iron across the enterocyte 33 

basolateral membrane. Recent reviews of inhibition mechanisms have provided some support for the 34 

first theory, but also suggested that homeostatic mechanisms compensate for the calcium-iron 35 

interaction, and the inhibitory effect is transient or at least not as clinically consequential as most short-36 

term absorption studies would suggest(4).  37 

Developing optimal calcium and iron supplementation recommendation requires detailed knowledge of 38 

the potential trade-offs between: a) the clinical effects of concurrent intake on iron absorption and 39 

hematological indices, and b) the potentially negative effects of separated ingestion on adherence to 40 

either or both iron and calcium supplements(6-8). While some studies have provided indication of the 41 

direction of these relationships, results are conflicting. Data from dietary and supplementation studies 42 

have been inconsistent, and it remains unclear whether there is a threshold dosage beyond which 43 

calcium exerts its inhibitory effects, the value of such threshold, and factors that might affect the 44 

threshold(9). Furthermore, longer-term studies that have examined the effect of calcium 45 

supplementation on haematological indices have reported conflicting results (10-14).   46 
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Prior narrative reviews have summarized existing studies of the interaction of dietary (and 47 

supplementary) calcium and iron(4, 15-17). While the narrative reviews were comprehensive, they often 48 

did not involve systematic and reproducible search strategy or meta-analysis. In addition, they did not 49 

include studies that have been published between 2010 and 2019, and we are unaware of any prior meta-50 

analysis summarizing the clinical evidence on either of these issues. The objective of this study is to 51 

summarize human clinical studies that have examined the impact of calcium intake on iron status, 52 

identify factors moderating the effect and quantify the magnitude of the effect.  53 

Methods 54 

We followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 55 

guidelines in the design, analysis, and reporting of this study (Supplement 1)(18). We identified studies 56 

examining the impact of calcium intake on iron outcomes, including iron absorption ratio and 57 

hematological indices. Original peer-reviewed research articles published up to August 2020 in the 58 

following medical literature databases were identified and examined for inclusion in the review: 59 

PUBMED/Medline (U.S. National Library of Medicine) and EMBASE (Elsevier). The databases were 60 

searched using queries composed of MeSH terms (Medical Subject Headings), EmTree terms and 61 

keywords representing iron, calcium and absorption/bioavailability. Hand searching of references was 62 

also done – specifically by examining the references of relevant systematic reviews and included studies 63 

as well as the first 500 hits on Google Scholar. No restrictions by age, year of publication or language 64 

were implemented. The title and abstract of each study were screened and full-texts examined in 65 

duplicate (Figure 1). A third author resolved discrepancies. Studies were excluded if they did not 66 

examine iron absorption or hematologic status, and did not examine calcium and iron intake, whether as 67 

supplements or in diet. If the diet differed by calcium intake and one or more other nutrient(s), the study 68 

was not included(19, 20).  69 
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In terms of population, studies were not required to include only individuals who were healthy at 70 

baseline or to exclude individuals who were anemic or pregnant. Only randomized controlled trials and 71 

crossover studies were included, to facilitate causal interpretation of the effect of the interventions. The 72 

studies had to have compared different doses of calcium intake in supplements or meals or compared 73 

different sequences of calcium intake – keeping total daily intake constant. 74 

Data extraction 75 

Data extraction from full-text articles was done using a comprehensive extraction sheet. Information on 76 

study design, population, intervention, covariates and findings were extracted. The median was extracted 77 

if the mean was missing. Intake of calcium was converted to mg/day. Included studies provided calcium 78 

in the test arm by altering the composition of meals, or providing calcium supplements. In some cases, 79 

numerical values of total daily calcium intake were not provided, and were therefore imputed by 80 

estimating the calcium content of meals provided using USDA reference(21). One study provided 81 

estimates from the same individuals when iron absorption studies were conducted with and without 82 

meals, and the estimates from studies without meal were included(2). If packed cell volume (PCV) was 83 

provided, missing hemoglobin data was estimated by dividing PCV by 3. Only two studies provided iron 84 

absorption estimates adjusted to ferritin 40µg/L, and the adjusted estimates were used (22, 23). 85 

Outcomes 86 

The primary outcomes of interest were the iron absorption ratio (%) – total, heme and non-heme, serum 87 

ferritin (µg/L) and hemoglobin (g/L). While iron absorption ratio reflects short term effects, serum 88 

ferritin and hemoglobin reflect longer term effects. Regardless, all relevant outcomes reported in the 89 

included studies were reviewed. These include anemia (%), mucosal uptake of iron (% or mg), iron 90 

serosal transfer index, iron retention (mg), erythrocyte incorporation of iron (% of absorbed iron), zinc 91 
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protoporphyrin (mmol/L), soluble transferrin receptor (µg/L), mean corpuscular volume (fL) and iron 92 

bioavailability (% of absorbed iron).  93 

Risk of bias assessment 94 

We assessed the risk of bias of individual studies using the Cochrane risk of bias tool(24). For crossover 95 

trials, the Cochrane tool was modified as follows. Bias in randomization was described as high if the 96 

order of intervention was not randomized. In addition, bias due to carryover effects was assessed by the 97 

presence of absence of a washout period or a follow-up period non-interventional period (≥14 d) in the 98 

studies. Two investigators independently assessed the studies and disagreements were resolved by 99 

consensus with a third author. This ranking did not influence decisions concerning exclusion of studies 100 

or analytic approach. 101 

Statistical analysis 102 

Included studies differed in the details of exposure assessment and outcome ascertainment. Random 103 

effects models, which explicitly model the between-study variation, were therefore selected a priori for 104 

the meta-analyses(25). Weighted mean differences for total, heme and non-heme iron absorption (%) 105 

and serum ferritin (µg/L) were obtained from pooled analysis of the highest daily calcium intake 106 

compared to the lowest daily calcium intake. For studies reporting the outcome of interest at multiple 107 

time points, the longest reported follow-up was included in the main analysis.  108 

Heterogeneity was formally assessed with the I2 statistics, a measure of the total variability that is due to 109 

between-study variation. I2 was regarded as low if <50%, substantial if 50 – 90% and considerable is 110 

>90%, in accordance with the general guidelines for Cochrane reviews, and p-values for Q-statistic 111 

reported(24). Heterogeneity was further assessed using meta-regression approaches and analysis within 112 

subgroups defined by age (<18, 18 – 65 and ≥65 years), sex, nature of intervention (supplement or diet), 113 

and baseline iron status. The impact of an individual study on the WMD meta-analysis was evaluated by 114 
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leaving one study out sequentially and obtaining pooled estimates. Publication bias was evaluated with 115 

funnel plots and Egger’s tests(26, 27).  116 

Dose response meta-analysis of differences in means was conducted following the two-stage approach 117 

proposed by Crippa and Orsini, based on restricted maximum likelihood estimation method(28, 29). 118 

This approach makes no assumptions about the underlying shape of the association. Studies that did not 119 

report more than 2 categories from the same sets of individuals were not included in the dose-response 120 

meta-analysis (11, 23, 30). Included studies measured outcomes on similar, interpretable scales, and 121 

pooled difference estimates were therefore obtained on an absolute scale. Dose-response meta-analyses 122 

were conducted using a variety of regression approaches – restricted cubic splines, fractional polynomial 123 

and quadratic models, and the model with the lowest quantitative value of the Akaike Information 124 

Criteria (AIC) was selected as the final model. In the presence of nonlinearity, the selected model was 125 

presented in graphical form using predicted mean differences. Predicted mean differences for 1000, 126 

1500 and 2000mg/d were obtained, in comparison to 500mg/d. 127 

P-values are two sided and significance set at p<0.05. Statistical analyses were conducted using RStudio 128 

1.0.153(16). Values presented in the text are means (±SD), means (95% CI), and means (±SE). 129 

Results 130 

Description of studies   131 

We identified 30 papers from an initial set of 1287 titles and abstracts (Figure 1) reporting on the 132 

influence of consumption of calcium on iron absorption and hematologic indices. These were 12 133 

randomized controlled trials(1, 10-12, 14, 22, 31-36) and 18 case-crossover studies(2, 23, 30, 36-48), 134 

including 1,623 and 592 participants respectively. The studies were conducted in Africa (14), Asia (10, 135 

31, 36), Europe (1, 11, 12, 22, 23, 43), North America (2, 3, 13, 30, 34, 38, 39, 41, 44, 45, 47-49), and 136 

South America (32, 33, 42). Fourteen of the studies included women only (2, 3, 12-14, 22, 31, 32, 39, 137 
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41, 42, 45, 46, 48, 50, 51). Almost all studies explicitly excluded pregnant or lactating women or both 138 

(11, 12, 14, 22, 32, 33, 36, 42, 48) and none of the studies examined pregnant women alone. One study 139 

did not report the sex of participants (48). The interventions consisted of regular or low-calcium meals 140 

with or without calcium supplements (1-3, 11-14, 23, 30-33, 36, 39, 41, 42, 46, 48, 51), or high-calcium 141 

versus low-calcium meals (10, 22, 34, 38, 43-45, 47, 49, 52). The studies assessed iron absorption using 142 

radiolabeled iron (1, 2, 22, 32, 34, 36, 49) or gastrointestinal lavage and body scintillation procedures 143 

(30). Most of the studies were short-term and intervening over < 3 months (1, 3, 22, 30-32, 36, 38, 39, 144 

41, 42, 44-49, 52), while others were longer-term and lasted 3 – 6 months (11, 33) or 1 – 4 years (12, 14, 145 

51). Of these, two studies evaluated the outcome at multiple time points, allowing their inclusion in both 146 

short term and long-term analyses (11, 14). Table 1 presents the characteristics of included studies.  147 

Most of the included studies were of low risk of bias. The others were of moderate risk of bias (1, 10, 148 

11, 14, 22, 30-33, 36, 42, 48, 51). Studies regarded as having a moderate risk of bias most often did not 149 

report (or perform) allocation concealment or blinding of participants and personnel. 150 

Total iron absorption 151 

We pooled 24 estimates from 7 studies (1, 2, 11, 22, 23, 30, 34, 36, 39, 42, 43, 46-49) to obtain weighted 152 

mean differences comparing the influence of high calcium intake on iron absorption relative to low 153 

calcium intake, and found that calcium intake was associated with lower iron absorption (Figure 2. 154 

WMD = -5.91, 95% CI: -8.38, -3.44; I2=84%, p-heterogeneity<0.0001). Follow-up for the included 155 

studies was from 1 – 18 days. There was no evidence from influence analysis that the pooled estimate 156 

was dominated by any of the individual studies. Neither the funnel plot nor Egger’s mixed effects 157 

regression revealed any evidence of publication bias (p-value = 0.75; Supplementary Figure 1). 158 

Heterogeneity was partly explained by the nature of the intervention (p<0.0001). The total iron 159 

absorption was -1.02 (95% CI: -3.77, 1.73) when intervention was based on meals alone, and differed by 160 
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-7.90 (95% CI: -11.4, -4.3) when intervention was included supplements. Heterogeneity was not 161 

significantly explained by participant’s age (p-heterogeneity = 0.78), sex (p-heterogeneity=0.19), 162 

baseline serum ferritin (p-heterogeneity=0.13), hemoglobin concentration (p-heterogeneity=0.64), 163 

duration of follow-up (p-heterogeneity=0.19) or year of publication (p-heterogeneity=0.43). 164 

We pooled 32 difference measures from 3 absorption studies(1, 2, 36) using quadratic model-based 165 

meta-analysis to evaluate the dose-response relationship of calcium intake and the daily iron absorption 166 

(Figure 3). The dose-response association of calcium intake on total iron absorption was significantly 167 

non-linear – total iron absorption was poorer with higher calcium intake (p-value = 0.026).  168 

Heme iron absorption 169 

We pooled 7 estimates from 4 studies(1, 23, 42, 48) to obtain weighted mean differences comparing the 170 

influence of high calcium intake on heme iron absorption relative to low calcium intake, and found that 171 

calcium intake was associated with a slightly lower heme iron absorption (Figure 4, WMD = -4.84, 95% 172 

CI: -8.59, -1.09; I2=60%, p-heterogeneity=0.021). Follow-up of the included studies was from 1 – 18 173 

days. All included studies had provided a supplement as the intervention. The influence of age, sex and 174 

baseline hematologic status on heterogeneity was not assessed due to missing covariate data. Visual 175 

inspection of the funnel plot suggests possible publication bias (Supplementary figure 2), although 176 

there was no evidence from Egger’s test of small study effects (p-value=0.35). 177 

We pooled 16 difference measures from 3 studies(1, 42, 48) using quadratic model-based meta-analysis 178 

to assess the presence of a non-linear dose response association. There was no evidence that the dose-179 

response association of calcium intake on heme iron absorption was non-linear (p-value = 0.33). 180 

Heterogeneity was, however, substantial (I2=98%).  181 

Non-heme iron absorption 182 
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We pooled 11 estimates from 8 studies(2, 11, 22, 30, 34, 42, 43, 47, 48) to obtain weighted mean 183 

differences comparing the influence of high calcium intake on non-heme iron absorption relative to low 184 

calcium intake, and found that calcium intake was associated with a slightly lower non-heme iron 185 

absorption (Figure 5. WMD = -2.40, 95% CI: -4.98, 0.18; I2=98%, p-heterogeneity<0.0001), although 186 

the confidence limits included the null of 0. Follow-up of the included studies was from 1 – 15 days. 187 

Heterogeneity was not significantly explained by participant’s age (p-heterogeneity = 0.90), sex (p-188 

heterogeneity=0.76), baseline serum ferritin (p-heterogeneity=0.73), nature of intervention (p-189 

heterogeneity=0.43) or year of publication (p-heterogeneity=0.31). Visual inspection of the funnel plot 190 

suggested possible publication bias, though there was no evidence from Egger’s test of small study 191 

effects (Supplementary Figure 4, p-value=0.29).  192 

We pooled 44 difference measures from 5 studies(22, 34, 42, 47, 48) using quadratic model-based meta-193 

analysis. There was no evidence that the dose-response association of calcium intake on heme iron 194 

absorption was non-linear (p-value = 0.13). Heterogeneity was, however, substantial (I2=96%).  195 

Serum Ferritin  196 

We pooled 13 estimates from 13 studies (10-14, 30-34, 50-52) to obtain weighted mean differences 197 

comparing the influence of high calcium intake and low calcium intake on serum ferritin concentration, 198 

and found no significant association of calcium intake and ferritin concentration (Figure 6. WMD = -199 

1.21µg/L, 95% CI: -5.47, 3.05). There was significant heterogeneity (I2=97%, p-heterogeneity<0.001).  200 

Heterogeneity was partly explained by whether the intervention included a calcium supplement or not 201 

(p-heterogeneity=0.005). Use of supplements was associated with 11.5 µg/L lower total iron absorption 202 

(95% CI: -19.5, -3.53) compared to calcium from diet alone. Heterogeneity was not significantly 203 

explained by participant’s age (p-heterogeneity=0.23), sex (p-heterogeneity=0.11), baseline serum 204 

ferritin (p-heterogeneity=0.26), hemoglobin concentration (p-heterogeneity=0.64), duration (p-205 
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heterogeneity=0.61) or year of study publication (p-heterogeneity=0.19). The duration of the 206 

interventions ranged from 2 – 52 weeks. Heterogeneity was not significantly explained by duration of 207 

follow-up (p-heterogeneity=0.19). There was no evidence from influence analysis that the pooled 208 

estimate was dominated by any of the individual studies. There was also no evidence of publication bias 209 

from visual inspection of funnel plots (Supplementary Figure 5) as well as Egger’s test for small study 210 

effects (p-value=0.92). 211 

We pooled 32 difference measures from 3 short-term studies (12, 31, 47) using a quadratic model-based 212 

meta-analysis to explore dose-response relationship of calcium intake and iron absorption (Figure 7). 213 

The dose of calcium in the included studies ranged from 22 – 1,250mg. The dose-response association 214 

of calcium intake with serum ferritin concentration was significant (p-value = 0.0004). Calcium intake 215 

was associated with reduced serum ferritin concentration as the dose increased. There was no 216 

meaningful heterogeneity (I2=0%).  217 

Hemoglobin concentration 218 

We pooled 8 estimates from 6 studies (10, 12, 32, 33, 50, 51) to obtain weighted mean differences 219 

comparing the influence of high calcium intake on hemoglobin concentration relative to low calcium 220 

intake, and found that calcium intake no association with hemoglobin concentration (Figure 8. WMD = 221 

0.44g/L, 95% CI: -0.90, 1.78). There was substantial heterogeneity (I2=77%, p-heterogeneity=0.001). 222 

The duration of intervention for the studies was 5 – 26wks, with one study that lasted 4 years. When we 223 

excluded the long-term study in sensitivity analysis, the WMD was 1.22 (95% CI: 0.37, 2.07). 224 

Neither the funnel plot nor Egger’s test for small study effects (p=0.17) suggested possible publication 225 

bias (Supplementary figure 6). There were too few studies reporting multiple dose categories (n>2) 226 

and dose response analysis was not done. 227 
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Sequencing of calcium intake 228 

One study evaluated the extent to which the sequencing of calcium intake may influence iron 229 

absorption(45). Keeping daily dietary calcium intake constant, the investigators compared the iron 230 

absorption in 21 women who had dietary calcium at every meal to those who had no dietary calcium at 231 

lunch and dinner. They found that total, non-heme and heme iron absorption were greater in those who 232 

had no dietary calcium at lunch and dinner. 233 

Other outcomes 234 

Iron retention 235 

Three studies(3, 38, 41) examined the effect of calcium intake on iron retention. Among 11 boys and 236 

girls in Texas, USA who participated in a case-crossover study(38), there was no significant difference 237 

in the incorporation of iron into red blood cells between times when they were randomly assigned to 238 

high calcium diets compared to low calcium diets (mean difference: 1.0%, 95% CI: -6.2% to 4.2%). 239 

Two crossover studies in Boston, USA studied the effect of calcium intake on iron absorption among 240 

postmenopausal women and found significantly lower retention of iron with intake of calcium from 241 

different sources. Among 13 women(3), intake of either calcium carbonate (percent reduction: 43.3% 242 

±8.8, p=0.002) or hydroxyapatite (percent reduction: 45.9% ±10, p=0.003) led to significantly lower 243 

retention of iron, compared to placebo. Among 19 women(41), intake of milk (mean ±SD: 3.4 ±3.4) and 244 

calcium citrate-malate salt (mean ±SD: 6.0 ±4.2)  led to significantly lower retention of iron (p <0.05), 245 

compared to placebo (mean ±SD: 8.3 ±4.6). 246 

Discussion 247 

In this systematic review and meta-analysis, we summarized the human clinical studies that have 248 

examined the impact of calcium intake on iron status. We found that calcium intake was associated with 249 

overall reduced iron absorption and iron status in a dose dependent manner, but no impact on 250 

hemoglobin concentration in the long term. The effect estimates were small and unlikely to be 251 
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biologically significant. Overall, the inverse relationship between calcium intake and iron status is 252 

unlikely to be clinically significant in free-living populations. 253 

To the best of our knowledge, this is the first meta-analysis of the effect of calcium intake on iron status. 254 

The issue of calcium-iron interaction has assumed renewed significance in recent years, particularly in 255 

the context of low- and middle-income countries, due to recent WHO recommendations that calcium 256 

supplementation be included in routine ante-natal care for prevention of preeclampsia. The WHO 257 

currently recommends 1.5-2g of calcium supplements for pregnant women in communities with 258 

inadequate habitual calcium intake(53). The concern about the potential for a co-administered calcium 259 

and iron supplementation regimen to worsen the burden of anemia in pregnancy is also one of the 260 

justifications for calling for a lower dose for calcium supplementation(8, 54, 55), besides the issues of 261 

cost, logistical complexity and side effects.  262 

Overall, our findings suggest that the magnitude of inhibition is unlikely to be clinically significant over 263 

time even if separated intake is not prescribed, but these findings should be interpreted and applied in 264 

the context of the weaknesses of the relevant body of work. We had set out to examine the impact of 265 

combined intake on hematological indices that have been robustly linked to functional consequences 266 

such as hemoglobin indices, over time periods that take iron homeostatic mechanisms into 267 

consideration. Unfortunately, the only study that compared combined intake to separated intake was a 268 

short-term study with iron absorption outcomes(45). There is a dearth of studies that have specifically 269 

examined the effects of concurrent ingestion of iron and calcium supplements compared to delayed 270 

intake of one or the other on biomarkers with well-established functional implications over extended 271 

periods.  272 

This study has other notable limitations. The evidence base is mostly informed by studies that have 273 

examined the effect of different daily doses from meals and supplements on iron status over time, 274 
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without indication of whether they were concurrently ingested or separated. In addition, the studies 275 

reviewed included subjects from a broader population and not pregnant women in low and middle-276 

income countries only. In fact, most primary studies specifically excluded pregnant women; however the 277 

key population motivating the renewed debate about calcium-iron interaction is pregnant women. 278 

Moreover, the baseline iron status of the participants was not reported in many of the studies. It is well 279 

known that extant iron status is an important determinant of iron metabolism. Given the location of most 280 

of the studies in high income countries, it is plausible that the baseline iron status of participants might 281 

be higher than that of pregnant women in most communities in low- and middle-income countries. 282 

Furthermore, we examined hematologic status using serum ferritin and hemoglobin concentration. Too 283 

few studies have examined the effects of calcium intake on transferrin and other hematological markers 284 

and indices with important physiological and functional implications(12). The significant limitations of 285 

ferritin as a marker of iron status across populations is well known. 286 

In conclusion, in the present systematic review and meta-analysis, we found statistically significant 287 

negative effect of calcium intake on iron status in the short term (≤ 90 days), but the magnitude of the 288 

effect was low and unlikely to be biologically significant, and longer-term studies consistently failed to 289 

find this effect. In fact, despite the negative effect of calcium intake on iron absorption, hemoglobin 290 

concentration was increased in this analysis. Our findings suggest that lowering the dose of calcium and 291 

iron supplement intake among pregnant women is unlikely to affect the anemia burden in the long-term. 292 

These findings should be interpreted with caution because of the significant heterogeneity and 293 

limitations of the underlying studies. There is a need for effectiveness trials comparing the effects of 294 

recommending separated supplement intake to combined intake among pregnant women in low and 295 

middle-income countries, with blood pressure and iron status as primary outcomes, and adherence to 296 

each supplement as intermediate outcomes. 297 
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Figure 5. Forest plot for the relationship of calcium intake and non-heme iron absorption (highest vs least calcium 

intake) 

Figure 6. Forest plot for the relationship of calcium intake and serum ferritin (highest vs least calcium intake) 

Figure 7. Dose-response relationship of calcium intake and serum ferritin concentration 

Figure 8. Forest plot for the relationship of calcium intake and hemoglobin concentration 
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least calcium intake) 
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Table 1. Characteristics of Included Studies 441 

Author  
(year) 

City, 
Country 

Design; 
Sample 
size (N) 

Age; 
%Female 

Baseline 
hematologic 

status 

Duration of 
intervention1 

Outcomes Description of 
intervention (categories) 

Findings2 Risk of 
bias 

Abrams 
(2001) 

Houston, 
USA 

Case 
crossover 
(N=27) 

7.8 y; 
48% 

NR Intervention: 14 d 
Follow-up: 14 d 

Total iron absorption, %  
Test: Fortified cereal with 

calcium 925mg/d 
Ctrl: Low cereal with 

calcium 702mg/d 

Mean ±SD 
4.2 ±3.5 

 
3.9 ±3.1 

Moderate 

          
Agustina 
(2013) 

East Jakarta, 
Indonesia 

RCT 
(N=494) 

5 y; 46% 21% anemic; 
31% iron 
deficient 

Intervention: 168 d Change in serum ferritin, 
µg/L 

Test: Regular calcium 
milk twice daily 

(440mg/d); 
Ctrl: Low calcium milk 

twice daily (50mg/d) 

Med (IQR) 
-4.4 (-15.7, 1.6) 

 
 -4.0 (-11.1, 1.0) 

Moderate 

          
      Change in hemoglobin, 

g/L 
 

Test 
Ctrl 

Mean ±SD 
Test: -1.5 ±8.8 
Ctrl: -1.9 ±7.7 

 

          
Ames  
(1999)  

Texas,  
USA 

Case 
crossover 
(N=11) 

4.3 y;  
45% 

NR Intervention: 35 d 
Washout: 15 d 

Iron incorporation into 
red blood cells, % 

Test: High calcium diet 
with calcium 1180 mg/d; 
Ctrl: Low calcium diet 
with calcium 502 mg/d 

Mean ±SD 
Test: 7.9 ±5.5 
Ctrl: 6.9 ±4.2 

Moderate 

          
Benkhedda  
(2010) 
 

Ontario, 
Canada 

Case 
crossover  
(N=13) 

30.9 y; 
100% 

Mean 
hemoglobin: 

133g/L; 
Mean ferritin: 

17.8 µg/L 

Intervention: 1 d 
Follow-up: 14 d 

Total iron absorption, % Test: Calcium carbonate 
(500mg) with meal; 

Ctrl: Meal only 

Mean (-SD, +SD) 
Test: 4.8 (1.8, 13.0) 
Ctrl: 10.2 (5.3, 19.7) 

Low 

Cook   
(1991) 
 

Kansas, 
USA 

Case 
crossover 
(N=61) 

21 y; 
100% 

Mean 
hematocrit: 

41%,  
Mean ferritin: 

21µg/L 

Intervention: 2 d 
Follow-up: 16 d 

Iron absorption, % Test: Calcium carbonate 
(300mg) with meal; 

Ctrl: Meal only 

Mean (-SE, +SE) 
Test: 1.6 (1.3, 2.0) 
Ctrl: 2.1 (1.7, 2.7) 

 

Low 

      Iron absorption, % Test: Calcium carbonate 
(300mg) with water; 

Ctrl: Water only 

Mean (-SE, +SE) 
Test: 6.5 (5.6, 7.5) 
Ctrl: 7.7 (6.6, 9.0) 

 

 

   23 y; 89% Mean 
hematocrit: 

40%; 
Mean ferritin: 

24µg/L 

 Iron absorption, % Test: Calcium carbonate 
(600mg) with meal; 

Ctrl: Meal only 

Mean (-SE, +SE) 
Test: 7.3 (5.6, 9.4) 

Ctrl: 13.0 (9.7, 17.3) 

 

      Iron absorption, % Test: Calcium carbonate 
(600mg) with water; 

Ctrl: Water only 

Mean (-SE, +SE) 
Test: 21.5 (16.7, 

27.6) 
Ctrl: 18.0 (14.1, 23.0) 

 

 

   23 y; 
100% 

Mean 
hematocrit: 

46%; 
Mean ferritin: 

 Iron absorption, % Test: Calcium carbonate 
(600mg) with meal; 

Ctrl: Meal only 

Mean (-SE, +SE) 
Test: 3.3 (2.4, 4.5) 
Ctrl: 3.9 (2,8, 5.3) 
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Author  
(year) 

City, 
Country 

Design; 
Sample 
size (N) 

Age; 
%Female 

Baseline 
hematologic 

status 

Duration of 
intervention1 

Outcomes Description of 
intervention (categories) 

Findings2 Risk of 
bias 

74µg/L 
      Iron absorption, % Test: Calcium carbonate 

(600mg) with water; 
Ctrl: Water only 

Mean (-SE, +SE) 
Test: 9.4 (8.1, 10.9) 
Ctrl: 10.3 (8.5, 12.3) 

 

 

   23 y; 29% Mean 
hematocrit: 

43%; 
Mean ferritin: 

54µg/L 

 Iron absorption, % Test: Calcium citrate 
(600mg) with meal; 

Ctrl: Meal only 

Mean (-SE, +SE) 
Test: 6.1 (4.5, 8.2) 

Ctrl: 10.1 (7.6, 13.5) 

 

      Iron absorption, % Test: Calcium citrate 
(600mg) with water; 

Ctrl: Water only 

Mean (-SE, +SE) 
Test: 6.6 (5.2, 8.5) 

Ctrl: 12.9 (10.9, 15.2) 
 

 

   23 y; 14% Mean 
hematocrit: 

44%; 
Mean ferritin: 

75µg/L 

 Iron absorption, % Test: Calcium phosphate 
(600mg) with water; 

Ctrl: Water only 

Mean (-SE, +SE) 
Test: 3.2 (2.3, 4.3) 
Ctrl: 7.3 (5.8, 9.2) 

 

      Iron absorption, % Test: Calcium phosphate 
(600mg) with water; 

Ctrl: Water only 

Mean (-SE, +SE) 
Test: 6.0 (4.7, 7.6) 

Ctrl: 16.0 (12.5, 20.5) 
 

 

   23 y; 50% Mean 
hematocrit: 

42%; 
Mean ferritin: 

42µg/L 

 Iron absorption, % Enhancing meal with: 
Ctrl: water only 

 
Test1: Calcium carbonate 

 
Test2: Calcium citrate 

 
Test3: Calcium phosphate 

 

Mean (-SE, +SE) 
Ctrl: 13.4 (10.0, 18.1) 

 
Test 1: 9.1 (6.5, 12.8) 

 
Test 2: 11.9 (9.2, 

15.5) 
 

Test 3: 8.2 (6.1, 11.1) 

 

   23 y; 50% Mean 
hematocrit: 

42%; 
Mean ferritin: 

42µg/L 

 Non-heme iron 
absorption, % 

Enhancing meal with: 
Ctrl: water only 

 
Test1: Calcium carbonate 

 
Test2: Calcium citrate 

 
Test3: Calcium phosphate 

 

Mean (-SE, +SE) 
Ctrl: 13.4 (10.0, 18.1) 

 
Test 1: 9.1 (6.5, 12.8) 

 
Test 2: 11.9 (9.2, 

15.5) 
 

Test 3: 8.2 (6.1, 11.1) 

 

   25 y; 67% Mean 
hematocrit: 

43%; 
Mean ferritin: 

66µg/L 

 Non-heme iron 
absorption, % 

Inhibiting meal with: 
Ctrl: water only 

 
Test1: Calcium carbonate 

 
Test2: Calcium citrate 

 
Test3: Calcium phosphate 

 

Mean (-SE, +SE) 
Ctrl: 1.2 (0.8, 1.7) 

 
Test 1: 0.7 (0.4, 1.1) 

 
Test 2: 0.5 (0.4, 0.7) 

 
Test 3: 0.4 (0.3, 0.6) 
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Author  
(year) 

City, 
Country 

Design; 
Sample 
size (N) 

Age; 
%Female 

Baseline 
hematologic 

status 

Duration of 
intervention1 

Outcomes Description of 
intervention (categories) 

Findings2 Risk of 
bias 

Dawson-
Hughes 
(1986) 
 

Boston,  
USA 

Case-
crossover 
(N=13) 

65 y; 
100% 

NR Intervention: 1 d; 
Follow-up: 14 d 

Iron retention  
Ctrl: Meal with Placebo 

Test 1: Meal with Calcium 
carbonate 

Test 2: Meal with 
Hydroxyapatite 

Mean ±SD 
Ctrl: 6.3 ±7.2 

Test 1: 3.2 ±4.4 
Test 2: 1.7 ±1.4 

Low 

Deehr  
(1990) 
 

Boston,  
USA 

Case-
crossover 
(N=19) 

63 y; 
100% 

Mean 
hematocrit: 

42%; 
Mean ferritin: 

111 µg/L 

Intervention: 1 d; 
Follow-up: 14 d 

Iron retention  
Ctrl: Meal with Placebo 

Test 1: Meal with Calcium 
citrate malate (CCM) 

Test 2: Meal with CCM 
and orange juice 

Test 3: Milk 

Mean ±SD 
Ctrl: 8.3 ±4.6 

Test 1: 6.0 ±4.2 
Test 2: 7.4 ±7.4 
Test 3: 3.4 ±3.4  

Low 

          
Faghih 
(2012) 

Tehran, 
Iran 

RCT 
(N=64) 

37 y; 
100% 

Mean ferritin: 
59µg/L ±47 

Intervention: 2 d; 
Follow-up: 56 d 

Serum ferritin, µg/L Ctrl: Meal (500mg/d) 
Before 
After 

 
Test 1: Meal with  calcium 

carbonate tablets 
(800mg/d); 

 
 
 
 

Test 2: Milk diet (1200 – 
1300mg/d) 

Mean ±SD 
60.9 ±46.8 
60.7 ±38.6 

 
Test 2: 

Before: 59.1 ±47.3 
After: 58.6 ±71.4 

 
Test 2: 

Before: 57.7 ±43.5 
After: 48.9 ±38.2 

Moderate 

          
Gaitan 
(2011) 

Chile Case-
crossover 
(N=54) 

NR; 
100% 

Mean 
hemoglobin 

Intervention: 
Multiple, 1 day 

each; 
Follow-up: 1 day 

Non-heme iron  
absorption, % 

 
Different doses of calcium 

chloride 

Geometric 
mean (-SD, +SD) 

Moderate 

    133g/L ±8   Grp A (N=15): 
0 mg 

200 mg 
400mg 
800mg 

 
17.9 (7.0, 45.6) 
15.9 (7.6, 33.6) 
15.3 (5.8, 40..2) 
11.9 (4.7, 30.5) 

 

    133g/L ±8  Non-heme iron 
absorption, % 

 
Grp B (N=13): 

0 mg 
1000 mg 
1250mg 
1500mg 

 
 

21.3 (10.1, 40.5) 
10.7 (5.3, 21.8) 
12.7 (6.2, 26.0) 
13.3 (6.6, 26.7) 

 

    131g/L ±8  Heme iron absorption, %  
Grp C (N=15): 

0 mg 
200 mg 
400mg 
800mg 

 
 

13.9 (8.7, 22.1) 
11.5 (6.9, 19.1) 
11.6 (6.8, 19.9) 
8.6 (4.2, 17.4) 

 

    131g/L ±8  Heme iron absorption, %  
Grp D (N=11): 
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Author  
(year) 

City, 
Country 

Design; 
Sample 
size (N) 

Age; 
%Female 

Baseline 
hematologic 

status 

Duration of 
intervention1 

Outcomes Description of 
intervention (categories) 

Findings2 Risk of 
bias 

0 mg 
500 mg 
600mg 
700mg 

11.1 (6.2, 19.8) 
9.0 (4.7, 17.0) 
9.6 (5.3, 17.5) 
10.1 (5.8,17.5) 

          
Galan 
(1991) 

Paris,  
France 

Case-
crossover 
(N=13) 

32 y;  
0% 

Mean 
hemoglobin: 

153 g/L:  
Mean ferritin: 

128 µg/L 

Intervention: 1 d 
Follow-up: 14 d 

Non-heme iron 
absorption, % 

 
Ctrl: Meal alone 

Test1: Meal + yoghurt 
Test2: Meal + skimmed 

milk 

Mean ±SD 
2.2 ±4.9 
2.0 ±13.7  
2.1 ±6.3 

Moderate 

          
Gleerup 
(1993) 

Goteborg, 
Sweden 

Case-
crossover 
(N=21) 

38 y; 
67% 

Mean ferritin: 
50 µg/L 

Intervention: 1 d 
Follow-up: 1 d 

Total iron absorption, %  
Ctrl: Meal alone 

Test: Meal with milk and 
cheese 

Mean ±SEM 
13.8 ±3.6 
13.1 ±3.5 

High 

          
      Total iron absorption, %  

Ctrl: Meal alone 
Test: Meal with milk and 

cheese 

Mean ±SEM 
16.3 ±2.5 
16.5 ±2.5 

 

          
Gleerup 
(1995) 

Sweden Case-
crossover 
(N=21) 

29 y;  
100% 

NR Intervention: 10 d 
Follow-up: 4 w 

Non-heme iron 
absorption, % 

 
Test: Calcium at all meals 

(937mg/d) 
Ctrl: No calcium at lunch 

& dinner 

Mean ±SEM 
12.1 ±4.76 
15.9 ±2.2 

Moderate 

          

      Heme iron absorption, % Test: Calcium at all meals 
(937mg/d) 

Ctrl: No calcium at lunch 
& dinner 

0.25 ±0.02 
0.33 ±0.02 

 

          
Grinder-
Pederson 
(2004) 

Denmark RCT 
(N=14) 

24 y; 
100% 

Non-anemic; no 
excess iron 

Intervention: 4 d; 
Follow-up: 18 d 

Non-heme iron 
absorption, %, adjusted 

to ferritin of 40µg/L 

Diet (varying calcium/d): 
Basic (224 mg/d) 
Milk (826 mg/d) 

Calcium lactate (802 
mg/d) 

Milk mineral (801 mg/d) 
 

Geom mean (95% 
CI): 

2.6 (1.5, 4.4) 
1.9 (1.1, 3.4) 
2.3 (1.6, 3.3) 
2.1 (1.4, 3.3) 

Moderate 

      Non-heme iron 
absorption, %, 

unadjusted 

Diet (varying calcium/d): 
Basic (224 mg/d) 
Milk (826 mg/d) 

Calcium lactate (802 
mg/d) 

Milk mineral (801 mg/d) 

Geom mean (95% 
CI): 

7.4 (5.3, 10.5) 
5.2 (3.5, 7.9) 
6.7 (5.0, 8.9) 
5.1 (3.2, 7.9) 

 

          
Hallberg 
(1991) 

Gothenburg, 
Sweden 

Case-
crossover  
(N=126) 

NR; 36% NR Intervention: 4 d; 
Follow-up: 18 d 

Heme iron absorption Calcium added to wheat 
flour 

Mean ±SE Moderate 

       Series 1: 
0 mg 

 
22.0 ±3.6 
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Author  
(year) 

City, 
Country 

Design; 
Sample 
size (N) 

Age; 
%Female 

Baseline 
hematologic 

status 

Duration of 
intervention1 

Outcomes Description of 
intervention (categories) 

Findings2 Risk of 
bias 

40mg 
 

12.8 ±1.6 

       Series 2: 
0 mg 
75mg 

 

 
20.0 ±3.6 
11.2 ±2.0 

 

       Series 3: 
0 mg 

165 mg 
 

 
20.8 ±2.8 
8.8 ±1.2 

 

       Series 4: 
0 mg 

300 mg 
 

 
19.2 ±3.6 
6.4 ±2.8 

 

       Series 5: 
0 mg 

600 mg 

 
18.0 ±2.4 
3.6 ±0.4 

 

          
       Calcium added before 

serving 
  

       Series 6: 
0 mg 
40 mg 

 

 
21.6 ±2.8 
22.4 ±2.8 

 

       Series 7: 
0 mg 
75 mg 

 

 
23.6 ±3.6 
19.6 ±3.2 

 

       Series 8: 
0 mg 

165 mg 
 

 
23.2 ±3.2 
14.0 ±0.8 

 

       Series 9: 
0 mg 

300 mg 
 

 
26.0 ±2.8 
12.0 ±2.0 

 

       Series 10: 
0 mg 

600 mg 
 

 
26.8 ±5.2 
13.2 ±4.4 

 

          
       Series 11: 

Wheat 
Wheat + 150 mL milk 

 

 
18.8 ±1.6 
7.2 ±1.2 

 

       Series 12: 
Wheat 

Wheat + 20g cheese 
 

 
24.0 ±2.8 
13.6 ±2.4 

 

       Series 13 
Hamburger + Wheat 

 
15.6 ±2.4 
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Author  
(year) 

City, 
Country 

Design; 
Sample 
size (N) 

Age; 
%Female 

Baseline 
hematologic 

status 

Duration of 
intervention1 

Outcomes Description of 
intervention (categories) 

Findings2 Risk of 
bias 

Hamburger + Wheat + 
165mg Ca 

11.6 ±2.0 

          
Hallberg 
(1993) 

Goteborg, 
Sweden 

RCT 
(N=28) 

NR: 57% NR Intervention: 1 d 
Follow-up: 1 d 

Heme iron absorption, % Test: Meat-containing 
meal with 165mg calcium 

chloride; 
Ctrl: Meat containing meal 

alone 
 

Mean ±SE 
Test: 12.1 ±1.5 
Ctrl: 22.7 ±3.9 

High 

       Test: Non-meat-containing 
meal with 165mg calcium 

chloride; 
Ctrl: Meat containing meal 

alone 

Mean ±SE 
Test: 11.2±1.7 

 
Ctrl: 20.3 ±2.3 

 

          
Ilich-Ernst 
(1998) 

Cincinnati, 
USA 

RCT; 
(N=354) 

10.8 y; 
100% 

Mean ferritin: 
29.2 µg/L 

Intervention: 4 y 
Follow-up: 4 y 

Hemoglobin, g/L, year 4 Test: Calcium citrate 
malate, 1000mg/d 

Ctrl: Placebo 

Mean ±SD 
Test: 132 ±9 
Ctrl: 134 ±8 

Moderate  

          
      Serum ferritin, µg/L, in 

lactating women (N=76) 
Baseline –  Mean ±SD 

Test:  
Baseline – 29.1 ±1.3 
Year 1 – 31.1 ±1.5 
Year 2 – 31.1 ±1.6 
Year 3 – 30.6 ±2.0 
Year 4 – 29.5 ±1.9 

 
Ctrl:  

Baseline – 29.3 ±1.4 
Year 1 – 33.8 ±1.7 
Year 2 – 32.3 ±1.4 
Year 3 – 30.9 ±1.5 
Year 4 – 29.5 ±1.6 

 

 

          
Kalkwarf 
(1998) 

Cincinnati, 
USA 

RCT: 
(N=158) 

31 y; 
100% 

Mean 
hemoglobin: 

133 g/L 

Intervention: 26 wk 
Follow-up: 26 wk 

Serum ferritin, µg/L, in 
lactating women (N=76) 

Test: Calcium 
supplements 500mg twice 

daily 
Ctrl: None 

Geom Mean (-SD, 
+SD) 
Test: 

28.4 (12.3, 51.0) 
Ctrl: 

27.5 (9.3, 55.)) 

Low 

       
Hemoglobin, g/L, in 

lactating women (N=76) 

  
Mean ±SD 

Test: 133 ±7 
Ctrl: 130 ±6 

 

       
Hemoglobin, g/L, in non-
lactating women (N=82) 

  
Test: 129 ±7 
Ctrl: 130 ±8 

 

       
MCV, g/L, in lactating 

women (N=76) 

  
Test: 90 ±4 
Ctrl: 88 ±4 
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Author  
(year) 

City, 
Country 

Design; 
Sample 
size (N) 

Age; 
%Female 

Baseline 
hematologic 

status 

Duration of 
intervention1 

Outcomes Description of 
intervention (categories) 

Findings2 Risk of 
bias 

       
MCV, g/L, in non-

lactating women (N=82) 

  
Test: 88 ±4 
Ctrl: 88 ±4 

 

          
Minihane 
(1998) 

Norwich, 
UK 

RCT 
(N=24) 

44 y; 71% Non-anemic; 
Mean ferritin: 

44µg/l 

Intervention: 183 d Hemoglobin, g/L Test: Calcium carbonate 
(1200mg) supplements; 

Ctrl: None 

Mean (SE) 
Test: 136 (4) 
Ctrl: 139 (4) 

Moderate 

      Serum ferritin, µg/L   
Test: 50 (7) 
Ctrl: 38 (7) 

 

      Zinc protoporphyrin 
(ZPP), µg/L 

  
Test: 226 (18) 
Ctrl: 277 (19) 

 

      Non-heme iron 
absorption, % 

 Test: 4.7 (1.4) 
Ctrl: 15.8 (2.1) 

 

          
Miranda 
(2014) 

Sucre, 
Bolivia 

RCT 
(N=179) 

8.3 y; 
44% 

Hemoglobin 
>83g/L 

Intervention: 90 d Hemoglobin, g/L Test: 700mg Calcium with 
iron; 

Ctrl: Iron only 

Mean ±SD 
Test: 148 ±7 
Ctrl: 147 ±8 

Moderate 

      Serum ferritin, µg/L   
Mean (-SD, +SD) 
Test: 35 (24-52) 
Ctrl: 38 (25-57) 

 

          
Mølgaard 
(2005) 

Frederiksberg 
& 

Copenhagen, 
Denmark 

RCT 
(N=113) 

13 y; 
100% 

Non-anemic; 
Mean ferritin: 

27µg/l 

Intervention: 52 wk Hemoglobin, g/L in low 
dietary Ca group 

Test: Calcium 
supplements - 500mg/d; 

Ctrl: Placebo 

Mean (95% CI) 
Test:135 (132, 138) 
Ctrl: 134 (131, 137) 

Low 

       
Hemoglobin, g/L in 

medium dietary Ca group 

  
Test: 137 (134, 139) 
Ctrl: 135 (132, 137) 

 

       
Serum ferritin, µg/L, in 
low dietary Ca group 

  
Test: 24.3 (20.3, 

29.2) 
Ctrl: 26.9 (22.6, 31.9) 

 

       
Serum ferritin, µg/L, in 

medium dietary Ca group 

  
Test: 26.7 (22.3, 

32.1) 
Ctrl: 24.9 (20.9, 29.7) 

 

       
sTfR3, mg/L, in low 

dietary Ca group 

  
Test: 4.0 (3.7, 4.4) 
Ctrl: 4.1 (3.8, 4.5) 

 

       
sTfR3, mg/L, in medium 

dietary Ca group 

  
Test: 4.1 (3.8, 4.5) 
Ctrl: 4.5 (4.2, 4.9) 

 

       
sTfR-ferritin index, in 
low dietary Ca group 

  
Test: 163 (137, 194) 
Ctrl: 145 (123, 171) 

 

       
sTfR-ferritin index, in 

medium dietary Ca group 

  
Test: 156 (127, 192) 
Ctrl: 177 (145, 217) 
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Author  
(year) 

City, 
Country 

Design; 
Sample 
size (N) 

Age; 
%Female 

Baseline 
hematologic 

status 

Duration of 
intervention1 

Outcomes Description of 
intervention (categories) 

Findings2 Risk of 
bias 

          
Monsen 
(1976) 

Washington, 
USA 

Case-
crossover 
(N=21) 

25 y; 
100% 

NR Intervention: 1 d 
Follow-up: 14 d 

Total iron absorption, % Ctrl: Meal alone 
Test: Meal with Calcium 

phosphate salts 

Mean ±SD 
Test: 1.6 ±2.3 
Ctrl: 2.6 ±2.7 

Moderate 

          
      Non-heme iron 

absorption, % 
 Mean ±SD 

Test: 6.8 ±6.5 
Ctrl: 12.1 ±8.3 

 

          
Reddy 
(1997) 

Kansas, 
USA 

Case-
crossover 
(N=14) 

25 y; 57% Mean ferritin: 
50µg/L 

Intervention: 2 d; 
Follow-up: 14 d; 

Washout: 5 d 

Non-heme iron 
absorption, % 

Four diets: 
1. Standard hamburger 

meal 
2. Self –selected 

(685mg/d) 
3. High calcium 

(1281mg/d); 
4. Low calcium (280mg/d) 

Standard: 4.8 (3.7, 
6.2) 

Self: 5.0 (4.1, 6.2) 
High Ca: 4.7 (3.8, 

5.9) 
Low Ca: 5.8 (4.7, 

7.3) 

Moderate 

          
Reddy 
(2000) 

USA RCT 
(N=86) 

26 y; 40% Mean ferritin: 
41µg/L 

Intervention: 2 d; 
Follow-up: 14 d 

Non-heme iron 
absorption, % 

Test: 25 different meals4 
22 mg Ca 
589 mg Ca 

Geom mean (-SE, 
+SE) 

11.5 (9.6, 15.2) 
2.6 (2.0, 3.5) 

Low 

       
Serum ferritin, µg/L 

 
22 mg Ca 
589 mg Ca 

 
28 (22, 36) 
34 (24, 39) 

 

          
Rios-Castillo 
(2014) 

Santiago, 
Chile 

RCT 
(N=26) 

39 y; 
100% 

Non-anemic; 
non-iron 
deficient 

Intervention: 34 d Hemoglobin, g/L Test: Calcium (600mg) 
supplements with iron; 

Ctrl: Iron only 

Mean ±SD 
Test: 141 ±11 
Ctrl: 145 ±11 

Moderate 

      Mean corpuscular 
volume (MCV), fL 

  
Test: 86 ±5 
Ctrl: 86 ±4 

 

      Zinc protoporphyrin, 
µg/dL 

  
Geom mean (-SD, 

+SD) 
Test: 65 (52, 80) 
Ctrl: 60 (47, 78) 

 

      Serum ferritin, µg/L   
Test: 18.5 (7.3, 46.8) 
Ctrl: 24.9 (14, 44.2) 

 

 

      Heme iron 
bioavailability, % of 

absorption 

 Test: 26 (15.5, 43.6) 
Ctrl: 25.1 (16.5, 38.3) 

 

          
Roughead 
(2002) 

USA Case-
crossover 
(N=17) 

34 y; 53% Non-anemic; 
no excess iron 

Intervention: 1 day; 
Follow-up: 15 d; 
Washout: 28 d 

Non-heme iron 
absorption, % 

Test: High iron, low 
calcium meal with 127mg 

calcium supplements; 
Ctrl: Test intervention 

with no calcium 
supplements 

Mean (-SD, +SD) 
Test: 7.4 (3.4, 16.1) 
Ctrl: 6.6 (3.0, 14.4) 

Moderate 
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Author  
(year) 

City, 
Country 

Design; 
Sample 
size (N) 

Age; 
%Female 

Baseline 
hematologic 

status 

Duration of 
intervention1 

Outcomes Description of 
intervention (categories) 

Findings2 Risk of 
bias 

      Heme iron absorption, %   
Test: 16.2 (11.8, 

22.4) 
Ctrl: 14.5 (9.7, 21.7) 

 

      Serum ferritin, µg/L   
Test: 55 (22, 138) 
Ctrl: 54 (21, 143) 

 

          
Roughead 
(2005) 

North Dakota, 
USA 

Case-
crossover 
(N=27) 

38 y; NR Non-anemic; no 
excess iron 

Intervention: 1 day; 
Follow-up 14 d; 
Washout: 42 d 

 
Non-heme iron 
absorption, % 

Experiment A: 
Test: Calcium 

supplements 450mg with 
high iron, moderate 

calcium meal with 360mg 
calcium; Ctrl: Meal only 

Mean (-SE, +SE) 
Test: 0.4 (0.3, 0.5) 
Ctrl: 0.5 (0.4, 0.6) 

Moderate 

      Heme iron absorption, %  Test: 22 (19, 25) 
Ctrl: 30 (27, 32) 

 

 

       
Non-heme iron 
absorption, % 

Experiment B: 
Test: Calcium 

supplements 450mg with 
high iron, low calcium 

meal with 60mg calcium; 
Ctrl: Meal only 

Test: 6 (5,8) 
Ctrl: 8 (7, 11) 

 

      Heme iron absorption, %  Test: 16 (14, 19) 
Ctrl: 22 (20, 25) 

 

 

Snedeker 
(1982) 

Wisconsin, 
USA 

Case-
crossover 

(N=9) 

NR;  
0% 

NR Intervention: 12 d 
Follow-up: 12 d  

Serum ferritin, µg/L in 
adult males receiving 
high phosphate diets 

Test: High calcium 
Ctrl: Moderate calcium 

 

Mean ±SD 
Test: 96 ±41 
Ctrl: 104 ±50 

Low 

          
Sokoll 
(1992) 

Boston, 
USA 

RCT 
(N=109) 

32 y; 
100% 

Hematocrit 
≥32% 

Intervention: 12 wk 
Follow-up: 12 wk 

Change in plasma 
ferritin, µg/L 

Test: Ca supplements, 
250mg twice 
Ctrl: None 

Test: -2.2 ±38.4 
Ctrl: 2.6 ±39.7 

Low 

      Change in hemoglobin, 
g/L 

  
Test: 1.0 ±4.7 
Ctrl: 0.6 ±4.7 

 

          
Walczyk 
(2014) 

Bangalore, 
India 

Case-
crossover 
(N=96) 

Iron-
replete 

subgroup: 
9 y; 40% 

Mean 
hemoglobin: 
126g/L ±4; 

Mean ferritin: 
48µg/L ±20 

Intervention: 1 day; 
Washout: 14 d 

Iron absorption, %, in 
iron-replete children 

 
Ctrl: Drink 

Test 1: Drink with 100mg 
Ca 

 
Ctrl: Drink 

Test 2: Drink with 200mg 
Ca 

Mean (-SD, +SD) 
10.1 (6.1, 16.7) 
7.8 (4.9, 12.5) 

 
10.2 (5.6, 18.7) 
6.8 (3.8, 12.3) 

Moderate 

   IDA 
subgroup: 
8y; 83% 

Mean 
hemoglobin: 
100g/L ±11; 

Mean ferritin: 
13µg/L ±6 

 Iron absorption, %, in 
IDA children 

 
Ctrl: Drink 

Test 1: Drink with 100mg 
Ca 

 
Ctrl: Drink 

 
13.0 (7.7, 21.9) 
11.3 (6.9, 18.4) 

 
14.5 (10.7, 19.6) 
10.7 (7.8, 19.6) 
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Author  
(year) 

City, 
Country 

Design; 
Sample 
size (N) 

Age; 
%Female 

Baseline 
hematologic 

status 

Duration of 
intervention1 

Outcomes Description of 
intervention (categories) 

Findings2 Risk of 
bias 

Test 2: Drink with 200mg 
Ca 

          
Yan (1996) Keneba & 

Manduar, 
The Gambia 

RCT 
(N=60 

28 y; 
100% 

Mean ferritin: 
20.4 µg/L 

Intervention: 5 d 
weekly for 52 wk 
Follow-up: 52 wk 

& 78 wk 

Serum ferritin, µg/L Test: Two calcium 
supplements 500mg each 

daily 
Ctrl: Placebo 

Mean ±SD at 52 wk 
Test: 1.2 ±0.4 
Ctrl: 1.1 ±0.4 

 
Mean ±SD at 78 wk 

Test: 1.2 ±0.4 
Ctrl: 1.1 ±0.3 

Moderate 

1Follow-up begins from the first day of the intervention to the day of evaluation. 

2Findings are means ±SD or mean (95% confidence interval) or means (SE). NR – Not reported. NA – Not applicable. 

3Abbreviations: Ca – calcium;  Geom – Geometric; IDA – Iron Deficiency Anemia;  sTfR – soluble transferrin receptor 

4Only the highest and lowest outcome measures shown, but outcome measures not shown were considered for the dose-response analysis.
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Supplement 1. PRISMA Checklist  
 

Section/topic  # Checklist item  
Reported on 

page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   

Structured 

summary  

2 Provide a structured summary including, as applicable: background; objectives; data sources; study 

eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; 

limitations; conclusions and implications of key findings; systematic review registration number.  

2-3 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  5-6 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, 

comparisons, outcomes, and study design (PICOS).  

6 

METHODS   

Protocol and 

registration  

5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if 

available, provide registration information including registration number.  

7 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years 

considered, language, publication status) used as criteria for eligibility, giving rationale.  

8-9 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to 

identify additional studies) in the search and date last searched.  

7 
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Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it 

could be repeated.  

7 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if 

applicable, included in the meta-analysis).  

10 

Data collection 

process  

10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and 

any processes for obtaining and confirming data from investigators.  

11 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any 

assumptions and simplifications made.  

11-12 

Risk of bias in 

individual studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of 

whether this was done at the study or outcome level), and how this information is to be used in any 

data synthesis.  

14 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  12 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of 

consistency (e.g., I2) for each meta-analysis.  

13-14 

Section/topic  # Checklist item  
Reported on 

page #  

Risk of bias across 

studies  

15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, 

selective reporting within studies).  

14 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if 

done, indicating which were pre-specified.  

14 

RESULTS   
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Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for 

exclusions at each stage, ideally with a flow diagram.  

15, 48, SI 

Study 

characteristics  

18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-

up period) and provide the citations.  

41-44 

Risk of bias within 

studies  

19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  15-21 

Results of 

individual studies  

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for 

each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.  

15-21, SI, 

Figures 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  15-21 

Risk of bias across 

studies  

22 Present results of any assessment of risk of bias across studies (see Item 15).  15-21 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see 

Item 16]).  

15-21 

DISCUSSION   

Summary of 

evidence  

24 Summarize the main findings including the strength of evidence for each main outcome; consider their 

relevance to key groups (e.g., healthcare providers, users, and policy makers).  

22-23 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete 

retrieval of identified research, reporting bias).  

24 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for 

future research.  

27-28 

FUNDING   
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Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of 

funders for the systematic review.  

29 
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Supplement 2. Search Strategy  
Database Search query Original search Updated search 

PUBMED ("Iron"[Mesh] AND "Calcium"[Mesh]) 

AND ("gastrointestinal 

absorption"[MeSH Terms] OR "biological 

availability"[Mesh] OR "inhibition"[All 

Fields] OR "interaction"[All Fields] OR 

"Iron-Binding Proteins"[Mesh] OR "Iron-

Regulatory Proteins"[Mesh] OR 

"Hematologic Diseases"[Mesh]) 

505 47 

EMBASE 'iron'/exp AND 'calcium'/exp AND 

('bioavailability'/exp OR 'gastrointestinal 

absorption'/exp OR 'iron regulatory 

factor'/exp OR 'iron binding protein'/exp 

OR 'anemia'/exp) AND [embase]/lim 

NOT [medline]/lim NOT 'review'/it 

549 164 

 

 

 

 

 

 

 

Supplement 3. Risk of Bias Assessment of randomized controlled trials 
Author (year of 

publication) 
Random sequence 

generation 
Blinding of participants and 

personnel 
Incomplete outcome 

data 
Measurement of 

outcome 
Selective 
reporting 

Agustina (2013) Low High High Low Low 

Faghih (2012) Low High High Low Low 
Grinder-Pederson 
(2004) Low High Low Low Low 

Hallberg (1993) Low High High Low Low 
Israel Rios-Castillo 
(2014) Low Low Low Low Low 

Minihane (1998) Low High Low Low Low 

Miranda (2014) Low High Low Low Low 

Reddy (2000) Some concerns High Low Low Low 
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Sokoll (1992) Low Low Low Low Low 

Walczyk (2014) Low High Low Low Low 

Yan (1996) Low High Low Low Low 

Mølgaard (2005) Low Low Low Low Low 

 

Supplement 4. Risk of Bias Assessment for Crossover trials 

Author (year of 
publication) 

Random sequence 
generation1 

Blinding of 
participants and 

personnel 
Incomplete 

outcome data 
Measurement of 

outcome 
Selective 
reporting 

Carryover 
effects 

 

Abrams (2001) Low Low Low Low Low High  

Ames (1999) Low High Low Low Low Low  

Benkedda (2010) Low Some concerns Low Low Low Low  

Cook (1991) Low Some concerns Low Low Low Low  

Dawson-Hughes 
(1986) Low Some concerns Low Low Low Low 

 

Deehr (1990) Low Some concerns Low Low Low Low  

Gaitan (2011) Some concerns High Low Low Low Some concerns  

Galan (1991) Low High Low Low Low Low  

Gleerup (1993) Some concerns High Low Low Low Some concerns  

Gleerup (1995) Some concerns High Low Low Low Low  

Hallberg (1991) Some concerns Some concerns Low Low Low Low  

Monsen (1976) Some concerns Some concerns Low Low Low Low  

Reddy (1997) Low High Low Low Low Low  

Roughead (2002) Low High Low Low Low Low  

Roughead (2005) Low High Low Low Low Low  

Walczyk (2014) Low High Low Low Low Low  
1For crossover studies, studies with “Some concerns”  random sequence generation where those that did not specify whether the order of treatments was 
randomized or not. 
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For more information, visit www.prisma-statement.org. 

 

PRISMA 2009 Diagram 
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Additional records identified 
through other sources 

(n = 22) 

Records after duplicates removed  
(n = 1,209) 

Records screened  
(n = 1,209) 

Records excluded  
(n = 1,090) 

Full-text articles assessed 
for eligibility  

(n = 119) 

Full-text articles excluded, 
with reasons, (n = 89) 

Animal studies only, n=11 
Case report only, n=9 

Systematic review, n=18 
No relevant outcomes, n=21 
No relevant exposure, n=28 

Duplicate studies, n=2 

 
 

Studies included in 
qualitative synthesis  

(n = 30) 

Studies included in 
quantitative synthesis 

(meta-analysis) 
(n = 27) 
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