Effect of calcium intake on iron absorption and hematologic status: A systematic review and dose-response meta-analysis of randomized trials and case-cross-over studies

Ajibola Ibraheem Abioye¹, Taofik A Okuneye², Abdul-Majeed O Odesanya³, Olufunmilola Adisa⁴, Asanat I Abioye⁵, Ayorinde I Soipe⁶, Kamal A Ismail⁷, JaeWon F Yang⁸, Luther-King Fasehun⁹, Moshood O. Omotayo^{10,11}

¹Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston MA, USA

²Department of Family Medicine, General Hospital, Odan, Lagos, Nigeria

³ St Helen's & Knowsley Teaching Hospitals NHS Trust, UK

⁴Emory University, Atlanta GA, USA

⁵University of Rhode Island, Kingston RI, USA

⁶Department of Emergency Medicine, Rhode Island Hospital, Providence RI, USA

⁷Department of Hematology, Lagos State University College of Medicine, Lagos, Nigeria

⁸Warren Alpert Medical School, Brown University, Providence RI, USA

⁹Wellbeing Foundation Africa, Abuja, Nigeria

¹⁰Centre for Global Health, Massachusetts General Hospital (MGH), Boston MA, USA

¹¹Department of Pediatrics, Harvard Medical School, Boston MA, USA

Correspondence to: Moshood Omotayo, Centre for Global Health, Massachusetts General Hospital (MGH), Boston MA, USA. Phone number: 617260972. Email: momotayo@mgh.harvard.edu Number of words in manuscript, title through references – 5,531 Number of Tables: 5

Running Title: Calcium intake and iron status

Abbreviations used in text:

AIC: Akaike Information Criteria; CI: Confidence Interval; CINAHL: Current Nursing and Allied Health Literature; LMIC: Low- and middle-income countries; MeSH: Medical Subject Headings; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analysis; RCT: Randomized controlled trial; RR: Relative risk; SD: Standard deviation; se: Standard error; WHO: World Health Organization; WMD: Weighted mean differences

Authors' names for Pubmed indexing:

Abioye, Okuneye, Odesanya, Adisa, Abioye, Soipe, Ismail, Yang, Fasehun, Omotayo

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

1 Abstract

Background: The interaction between dietary (and supplementary) divalent ions has been a long-2 standing issue in human nutrition research. Developing optimal calcium and iron supplementation 3 recommendation needs detailed knowledge of the potential trade-offs between: a) the clinical effects of 4 5 concurrent intake on iron absorption and hematological indices, and b) the potentially negative effects of separated ingestion on adherence to either or both iron and calcium supplements. Human clinical studies 6 7 have examined the effects of calcium intake on iron status, but there are no meta-analyses or recent 8 reviews summarizing the findings. **Objective:** We aimed to summarize the literature on the effect of 9 calcium consumption from meals and supplements on iron indices in humans, and quantify the pooled effects. Design: Peer-reviewed randomized and case-cross-over studies were included in this review. 10 11 **Result:** The negative effect of calcium intake was statistically significant in short-term iron absorption 12 studies but the effect magnitude was low (weighted mean difference (WMD) = -5.57%, (95% CI: -7.09, -4.04)). The effect of calcium on iron status was mixed. There was a quadratic dose-response 13 14 relationship between calcium intake and serum ferritin concentration. Higher daily calcium intake was associated with a modest reduction in serum ferritin concentration. There was, however, no reduction in 15 16 hemoglobin concentration (WMD = 1.22g/L, 95% CI: 0.37, 2.07). Conclusion: The existing body of studies is insufficient to make recommendations with high confidence due to heterogeneity in design, 17 limitations of ferritin as an iron biomarker and lack of intake studies in pregnant women. Prescribing 18 19 separation of prenatal calcium and iron supplements in free living individuals is unlikely to affect the 20 anemia burden. There is a need for effectiveness trials comparing the effects of prescribing separated 21 intake to concurrent intake, with functional end-points as primary outcomes, and adherence to each 22 supplement as intermediate outcomes.

Key words: Calcium and iron interaction, Calcium and preeclampsia, Maternal nutrition, Maternal
Anemia, Meta-analysis

25

26 Introduction

The interaction between dietary (and supplementary) divalent ions has been a long-standing issue in 27 28 human nutrition research. Multiple studies have demonstrated that calcium inhibits iron absorption in short-term and single-meal studies (1-3). Studies that have measured the absorption ratio of iron in 29 meals with different amounts of calcium have shown an inverse relationship(4). Two key mechanisms of 30 action have been proposed for calcium-iron interaction(5). One potential mechanism is that luminal 31 32 calcium leads to internalization of DMT1 receptors, limiting transfer of luminal iron into enterocytes. 33 The other proposed mechanism is that calcium interferes with the transfer of iron across the enterocyte 34 basolateral membrane. Recent reviews of inhibition mechanisms have provided some support for the first theory, but also suggested that homeostatic mechanisms compensate for the calcium-iron 35 36 interaction, and the inhibitory effect is transient or at least not as clinically consequential as most short-37 term absorption studies would suggest(4).

Developing optimal calcium and iron supplementation recommendation requires detailed knowledge of 38 39 the potential trade-offs between: a) the clinical effects of concurrent intake on iron absorption and 40 hematological indices, and b) the potentially negative effects of separated ingestion on adherence to either or both iron and calcium supplements(6-8). While some studies have provided indication of the 41 42 direction of these relationships, results are conflicting. Data from dietary and supplementation studies 43 have been inconsistent, and it remains unclear whether there is a threshold dosage beyond which 44 calcium exerts its inhibitory effects, the value of such threshold, and factors that might affect the 45 threshold(9). Furthermore, longer-term studies that have examined the effect of calcium 46 supplementation on haematological indices have reported conflicting results (10-14).

Prior narrative reviews have summarized existing studies of the interaction of dietary (and supplementary) calcium and iron(4, 15-17). While the narrative reviews were comprehensive, they often did not involve systematic and reproducible search strategy or meta-analysis. In addition, they did not include studies that have been published between 2010 and 2019, and we are unaware of any prior metaanalysis summarizing the clinical evidence on either of these issues. The objective of this study is to summarize human clinical studies that have examined the impact of calcium intake on iron status, identify factors moderating the effect and quantify the magnitude of the effect.

54 Methods

55 We followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 56 guidelines in the design, analysis, and reporting of this study (Supplement 1)(18). We identified studies examining the impact of calcium intake on iron outcomes, including iron absorption ratio and 57 58 hematological indices. Original peer-reviewed research articles published up to August 2020 in the 59 following medical literature databases were identified and examined for inclusion in the review: PUBMED/Medline (U.S. National Library of Medicine) and EMBASE (Elsevier). The databases were 60 searched using queries composed of MeSH terms (Medical Subject Headings), EmTree terms and 61 keywords representing iron, calcium and absorption/bioavailability. Hand searching of references was 62 also done – specifically by examining the references of relevant systematic reviews and included studies 63 as well as the first 500 hits on Google Scholar. No restrictions by age, year of publication or language 64 were implemented. The title and abstract of each study were screened and full-texts examined in 65 66 duplicate (Figure 1). A third author resolved discrepancies. Studies were excluded if they did not 67 examine iron absorption or hematologic status, and did not examine calcium and iron intake, whether as 68 supplements or in diet. If the diet differed by calcium intake and one or more other nutrient(s), the study 69 was not included (19, 20).

In terms of population, studies were not required to include only individuals who were healthy at baseline or to exclude individuals who were anemic or pregnant. Only randomized controlled trials and crossover studies were included, to facilitate causal interpretation of the effect of the interventions. The studies had to have compared different doses of calcium intake in supplements or meals or compared different sequences of calcium intake – keeping total daily intake constant.

75 Data extraction

76 Data extraction from full-text articles was done using a comprehensive extraction sheet. Information on study design, population, intervention, covariates and findings were extracted. The median was extracted 77 if the mean was missing. Intake of calcium was converted to mg/day. Included studies provided calcium 78 79 in the test arm by altering the composition of meals, or providing calcium supplements. In some cases, numerical values of total daily calcium intake were not provided, and were therefore imputed by 80 81 estimating the calcium content of meals provided using USDA reference(21). One study provided 82 estimates from the same individuals when iron absorption studies were conducted with and without meals, and the estimates from studies without meal were included(2). If packed cell volume (PCV) was 83 provided, missing hemoglobin data was estimated by dividing PCV by 3. Only two studies provided iron 84 absorption estimates adjusted to ferritin $40 \mu g/L$, and the adjusted estimates were used (22, 23). 85

86 Outcomes

The primary outcomes of interest were the iron absorption ratio (%) – total, heme and non-heme, serum ferritin (μ g/L) and hemoglobin (g/L). While iron absorption ratio reflects short term effects, serum ferritin and hemoglobin reflect longer term effects. Regardless, all relevant outcomes reported in the included studies were reviewed. These include anemia (%), mucosal uptake of iron (% or mg), iron serosal transfer index, iron retention (mg), erythrocyte incorporation of iron (% of absorbed iron), zinc

protoporphyrin (mmol/L), soluble transferrin receptor (µg/L), mean corpuscular volume (fL) and iron
bioavailability (% of absorbed iron).

94 Risk of bias assessment

We assessed the risk of bias of individual studies using the Cochrane risk of bias tool(24). For crossover trials, the Cochrane tool was modified as follows. Bias in randomization was described as high if the order of intervention was not randomized. In addition, bias due to carryover effects was assessed by the presence of absence of a washout period or a follow-up period non-interventional period (\geq 14 d) in the studies. Two investigators independently assessed the studies and disagreements were resolved by consensus with a third author. This ranking did not influence decisions concerning exclusion of studies or analytic approach.

102 Statistical analysis

Included studies differed in the details of exposure assessment and outcome ascertainment. Random effects models, which explicitly model the between-study variation, were therefore selected *a priori* for the meta-analyses(25). Weighted mean differences for total, heme and non-heme iron absorption (%) and serum ferritin (μ g/L) were obtained from pooled analysis of the highest daily calcium intake compared to the lowest daily calcium intake. For studies reporting the outcome of interest at multiple time points, the longest reported follow-up was included in the main analysis.

Heterogeneity was formally assessed with the I² statistics, a measure of the total variability that is due to between-study variation. I² was regarded as low if <50%, substantial if 50 – 90% and considerable is >90%, in accordance with the general guidelines for Cochrane reviews, and p-values for Q-statistic reported(24). Heterogeneity was further assessed using meta-regression approaches and analysis within subgroups defined by age (<18, 18 – 65 and \geq 65 years), sex, nature of intervention (supplement or diet), and baseline iron status. The impact of an individual study on the WMD meta-analysis was evaluated by

leaving one study out sequentially and obtaining pooled estimates. Publication bias was evaluated withfunnel plots and Egger's tests(26, 27).

117 Dose response meta-analysis of differences in means was conducted following the two-stage approach 118 proposed by Crippa and Orsini, based on restricted maximum likelihood estimation method(28, 29). This approach makes no assumptions about the underlying shape of the association. Studies that did not 119 120 report more than 2 categories from the same sets of individuals were not included in the dose-response 121 meta-analysis (11, 23, 30). Included studies measured outcomes on similar, interpretable scales, and pooled difference estimates were therefore obtained on an absolute scale. Dose-response meta-analyses 122 123 were conducted using a variety of regression approaches – restricted cubic splines, fractional polynomial 124 and quadratic models, and the model with the lowest quantitative value of the Akaike Information 125 Criteria (AIC) was selected as the final model. In the presence of nonlinearity, the selected model was 126 presented in graphical form using predicted mean differences. Predicted mean differences for 1000, 1500 and 2000mg/d were obtained, in comparison to 500mg/d. 127

- 128 *P*-values are two sided and significance set at p < 0.05. Statistical analyses were conducted using RStudio
- 129 1.0.153(16). Values presented in the text are means (\pm SD), means (95% CI), and means (\pm SE).

130 **Results**

131 Description of studies

We identified 30 papers from an initial set of 1287 titles and abstracts (**Figure 1**) reporting on the influence of consumption of calcium on iron absorption and hematologic indices. These were 12 randomized controlled trials(1, 10-12, 14, 22, 31-36) and 18 case-crossover studies(2, 23, 30, 36-48), including 1,623 and 592 participants respectively. The studies were conducted in Africa (14), Asia (10, 31, 36), Europe (1, 11, 12, 22, 23, 43), North America (2, 3, 13, 30, 34, 38, 39, 41, 44, 45, 47-49), and

137 South America (32, 33, 42). Fourteen of the studies included women only (2, 3, 12-14, 22, 31, 32, 39,

41, 42, 45, 46, 48, 50, 51). Almost all studies explicitly excluded pregnant or lactating women or both

139	(11, 12, 14, 22, 32, 33, 36, 42, 48) and none of the studies examined pregnant women alone. One study
140	did not report the sex of participants (48). The interventions consisted of regular or low-calcium meals
141	with or without calcium supplements (1-3, 11-14, 23, 30-33, 36, 39, 41, 42, 46, 48, 51), or high-calcium
142	versus low-calcium meals (10, 22, 34, 38, 43-45, 47, 49, 52). The studies assessed iron absorption using
143	radiolabeled iron (1, 2, 22, 32, 34, 36, 49) or gastrointestinal lavage and body scintillation procedures
144	(30). Most of the studies were short-term and intervening over < 3 months (1, 3, 22, 30-32, 36, 38, 39,
145	41, 42, 44-49, 52), while others were longer-term and lasted $3 - 6$ months (11, 33) or $1 - 4$ years (12, 14, 14, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
146	51). Of these, two studies evaluated the outcome at multiple time points, allowing their inclusion in both
147	short term and long-term analyses (11, 14). Table 1 presents the characteristics of included studies.
148	Most of the included studies were of low risk of bias. The others were of moderate risk of bias (1, 10,

11, 14, 22, 30-33, 36, 42, 48, 51). Studies regarded as having a moderate risk of bias most often did not
report (or perform) allocation concealment or blinding of participants and personnel.

151 Total iron absorption

138

We pooled 24 estimates from 7 studies (1, 2, 11, 22, 23, 30, 34, 36, 39, 42, 43, 46-49) to obtain weighted mean differences comparing the influence of high calcium intake on iron absorption relative to low calcium intake, and found that calcium intake was associated with lower iron absorption (**Figure 2**. WMD = -5.91, 95% CI: -8.38, -3.44; I²=84%, *p*-heterogeneity<0.0001). Follow-up for the included studies was from 1 – 18 days. There was no evidence from influence analysis that the pooled estimate was dominated by any of the individual studies. Neither the funnel plot nor Egger's mixed effects regression revealed any evidence of publication bias (p-value = 0.75; **Supplementary Figure 1**).

Heterogeneity was partly explained by the nature of the intervention (p<0.0001). The total iron absorption was -1.02 (95% CI: -3.77, 1.73) when intervention was based on meals alone, and differed by

-7.90 (95% CI: -11.4, -4.3) when intervention was included supplements. Heterogeneity was not
significantly explained by participant's age (p-heterogeneity = 0.78), sex (p-heterogeneity=0.19),
baseline serum ferritin (p-heterogeneity=0.13), hemoglobin concentration (p-heterogeneity=0.64),
duration of follow-up (p-heterogeneity=0.19) or year of publication (p-heterogeneity=0.43).

We pooled 32 difference measures from 3 absorption studies(1, 2, 36) using quadratic model-based meta-analysis to evaluate the dose-response relationship of calcium intake and the daily iron absorption (**Figure 3**). The dose-response association of calcium intake on total iron absorption was significantly non-linear – total iron absorption was poorer with higher calcium intake (p-value = 0.026).

169 Heme iron absorption

We pooled 7 estimates from 4 studies(1, 23, 42, 48) to obtain weighted mean differences comparing the 170 171 influence of high calcium intake on heme iron absorption relative to low calcium intake, and found that 172 calcium intake was associated with a slightly lower heme iron absorption (Figure 4, WMD = -4.84, 95% CI: -8.59, -1.09; $I^2=60\%$, *p*-heterogeneity=0.021). Follow-up of the included studies was from 1 – 18 173 days. All included studies had provided a supplement as the intervention. The influence of age, sex and 174 175 baseline hematologic status on heterogeneity was not assessed due to missing covariate data. Visual 176 inspection of the funnel plot suggests possible publication bias (Supplementary figure 2), although 177 there was no evidence from Egger's test of small study effects (p-value=0.35).

We pooled 16 difference measures from 3 studies(1, 42, 48) using quadratic model-based meta-analysis to assess the presence of a non-linear dose response association. There was no evidence that the doseresponse association of calcium intake on heme iron absorption was non-linear (*p*-value = 0.33). Heterogeneity was, however, substantial (I^2 =98%).

182 Non-heme iron absorption

We pooled 11 estimates from 8 studies(2, 11, 22, 30, 34, 42, 43, 47, 48) to obtain weighted mean 183 184 differences comparing the influence of high calcium intake on non-heme iron absorption relative to low calcium intake, and found that calcium intake was associated with a slightly lower non-heme iron 185 absorption (Figure 5. WMD = -2.40, 95% CI: -4.98, 0.18; I^2 =98%, *p*-heterogeneity<0.0001), although 186 the confidence limits included the null of 0. Follow-up of the included studies was from 1 - 15 days. 187 Heterogeneity was not significantly explained by participant's age (p-heterogeneity = 0.90), sex (p-188 189 heterogeneity=0.76), baseline serum ferritin (p-heterogeneity=0.73), nature of intervention (pheterogeneity=0.43) or year of publication (p-heterogeneity=0.31). Visual inspection of the funnel plot 190 191 suggested possible publication bias, though there was no evidence from Egger's test of small study effects (Supplementary Figure 4, p-value=0.29). 192

We pooled 44 difference measures from 5 studies(22, 34, 42, 47, 48) using quadratic model-based metaanalysis. There was no evidence that the dose-response association of calcium intake on heme iron absorption was non-linear (*p*-value = 0.13). Heterogeneity was, however, substantial (I^2 =96%).

196 Serum Ferritin

We pooled 13 estimates from 13 studies (10-14, 30-34, 50-52) to obtain weighted mean differences comparing the influence of high calcium intake and low calcium intake on serum ferritin concentration, and found no significant association of calcium intake and ferritin concentration (**Figure 6**. WMD = - $1.21\mu g/L$, 95% CI: -5.47, 3.05). There was significant heterogeneity (I²=97%, *p*-heterogeneity<0.001).

Heterogeneity was partly explained by whether the intervention included a calcium supplement or not (p-heterogeneity=0.005). Use of supplements was associated with 11.5 μ g/L lower total iron absorption (95% CI: -19.5, -3.53) compared to calcium from diet alone. Heterogeneity was not significantly explained by participant's age (p-heterogeneity=0.23), sex (p-heterogeneity=0.11), baseline serum ferritin (p-heterogeneity=0.26), hemoglobin concentration (p-heterogeneity=0.64), duration (pheterogeneity=0.61) or year of study publication (p-heterogeneity=0.19). The duration of the interventions ranged from 2 - 52 weeks. Heterogeneity was not significantly explained by duration of follow-up (p-heterogeneity=0.19). There was no evidence from influence analysis that the pooled estimate was dominated by any of the individual studies. There was also no evidence of publication bias from visual inspection of funnel plots (**Supplementary Figure 5**) as well as Egger's test for small study effects (p-value=0.92).

We pooled 32 difference measures from 3 short-term studies (12, 31, 47) using a quadratic model-based meta-analysis to explore dose-response relationship of calcium intake and iron absorption (**Figure 7**). The dose of calcium in the included studies ranged from 22 - 1,250mg. The dose-response association of calcium intake with serum ferritin concentration was significant (*p*-value = 0.0004). Calcium intake was associated with reduced serum ferritin concentration as the dose increased. There was no meaningful heterogeneity ($I^2=0\%$).

218 Hemoglobin concentration

We pooled 8 estimates from 6 studies (10, 12, 32, 33, 50, 51) to obtain weighted mean differences comparing the influence of high calcium intake on hemoglobin concentration relative to low calcium intake, and found that calcium intake no association with hemoglobin concentration (**Figure 8**. WMD = 0.44g/L, 95% CI: -0.90, 1.78). There was substantial heterogeneity (I²=77%, *p*-heterogeneity=0.001). The duration of intervention for the studies was 5 – 26wks, with one study that lasted 4 years. When we

excluded the long-term study in sensitivity analysis, the WMD was 1.22 (95% CI: 0.37, 2.07).

225 Neither the funnel plot nor Egger's test for small study effects (p=0.17) suggested possible publication

bias (**Supplementary figure 6**). There were too few studies reporting multiple dose categories (n>2)

227 and dose response analysis was not done.

228 Sequencing of calcium intake

One study evaluated the extent to which the sequencing of calcium intake may influence iron absorption(45). Keeping daily dietary calcium intake constant, the investigators compared the iron absorption in 21 women who had dietary calcium at every meal to those who had no dietary calcium at lunch and dinner. They found that total, non-heme and heme iron absorption were greater in those who had no dietary calcium at lunch and dinner.

234 **Other outcomes**

235 Iron retention

Three studies(3, 38, 41) examined the effect of calcium intake on iron retention. Among 11 boys and

237 girls in Texas, USA who participated in a case-crossover study(38), there was no significant difference

in the incorporation of iron into red blood cells between times when they were randomly assigned to

high calcium diets compared to low calcium diets (mean difference: 1.0%, 95% CI: -6.2% to 4.2%).

240 Two crossover studies in Boston, USA studied the effect of calcium intake on iron absorption among

241 postmenopausal women and found significantly lower retention of iron with intake of calcium from

different sources. Among 13 women(3), intake of either calcium carbonate (percent reduction: 43.3%

 ± 8.8 , p=0.002) or hydroxyapatite (percent reduction: 45.9% ± 10 , p=0.003) led to significantly lower

retention of iron, compared to placebo. Among 19 women(41), intake of milk (mean \pm SD: 3.4 \pm 3.4) and

calcium citrate-malate salt (mean \pm SD: 6.0 \pm 4.2) led to significantly lower retention of iron (p <0.05),

compared to placebo (mean \pm SD: 8.3 \pm 4.6).

247 Discussion

In this systematic review and meta-analysis, we summarized the human clinical studies that have examined the impact of calcium intake on iron status. We found that calcium intake was associated with overall reduced iron absorption and iron status in a dose dependent manner, but no impact on hemoglobin concentration in the long term. The effect estimates were small and unlikely to be

biologically significant. Overall, the inverse relationship between calcium intake and iron status isunlikely to be clinically significant in free-living populations.

254 To the best of our knowledge, this is the first meta-analysis of the effect of calcium intake on iron status. 255 The issue of calcium-iron interaction has assumed renewed significance in recent years, particularly in 256 the context of low- and middle-income countries, due to recent WHO recommendations that calcium 257 supplementation be included in routine ante-natal care for prevention of preeclampsia. The WHO 258 currently recommends 1.5-2g of calcium supplements for pregnant women in communities with 259 inadequate habitual calcium intake(53). The concern about the potential for a co-administered calcium 260 and iron supplementation regimen to worsen the burden of anemia in pregnancy is also one of the 261 justifications for calling for a lower dose for calcium supplementation(8, 54, 55), besides the issues of 262 cost, logistical complexity and side effects.

Overall, our findings suggest that the magnitude of inhibition is unlikely to be clinically significant over 263 time even if separated intake is not prescribed, but these findings should be interpreted and applied in 264 265 the context of the weaknesses of the relevant body of work. We had set out to examine the impact of combined intake on hematological indices that have been robustly linked to functional consequences 266 267 such as hemoglobin indices, over time periods that take iron homeostatic mechanisms into 268 consideration. Unfortunately, the only study that compared combined intake to separated intake was a short-term study with iron absorption outcomes(45). There is a dearth of studies that have specifically 269 270 examined the effects of concurrent ingestion of iron and calcium supplements compared to delayed 271 intake of one or the other on biomarkers with well-established functional implications over extended periods. 272

This study has other notable limitations. The evidence base is mostly informed by studies that have examined the effect of different daily doses from meals and supplements on iron status over time,

275 without indication of whether they were concurrently ingested or separated. In addition, the studies 276 reviewed included subjects from a broader population and not pregnant women in low and middle-277 income countries only. In fact, most primary studies specifically excluded pregnant women; however the 278 key population motivating the renewed debate about calcium-iron interaction is pregnant women. 279 Moreover, the baseline iron status of the participants was not reported in many of the studies. It is well known that extant iron status is an important determinant of iron metabolism. Given the location of most 280 281 of the studies in high income countries, it is plausible that the baseline iron status of participants might 282 be higher than that of pregnant women in most communities in low- and middle-income countries. 283 Furthermore, we examined hematologic status using serum ferritin and hemoglobin concentration. Too few studies have examined the effects of calcium intake on transferrin and other hematological markers 284 and indices with important physiological and functional implications(12). The significant limitations of 285 286 ferritin as a marker of iron status across populations is well known.

287 In conclusion, in the present systematic review and meta-analysis, we found statistically significant 288 negative effect of calcium intake on iron status in the short term (≤ 90 days), but the magnitude of the 289 effect was low and unlikely to be biologically significant, and longer-term studies consistently failed to 290 find this effect. In fact, despite the negative effect of calcium intake on iron absorption, hemoglobin concentration was increased in this analysis. Our findings suggest that lowering the dose of calcium and 291 292 iron supplement intake among pregnant women is unlikely to affect the anemia burden in the long-term. These findings should be interpreted with caution because of the significant heterogeneity and 293 294 limitations of the underlying studies. There is a need for effectiveness trials comparing the effects of 295 recommending separated supplement intake to combined intake among pregnant women in low and 296 middle-income countries, with blood pressure and iron status as primary outcomes, and adherence to 297 each supplement as intermediate outcomes.

298 Acknowledgment

- The authors are grateful to Dr Alessio Crippa of Karolinska Institutet for help with the R code for the dose-response analysis.
- 301 AIA and MOO designed research; All authors extracted data from primary studies; AIA and MOO
- analyzed data; AIA and MOO wrote the paper; MOO had primary responsibility for final content. All
- 303 authors read and approved the final manuscript.

304

305 Literature Cited

Hallberg L, Rossander-Hulthen L, Brune M, Gleerup A. Inhibition of haem-iron absorption in man by
 calcium. The British journal of nutrition. 1993;69(2):533-40.
 Cook JD, Dassenko SA, Whittaker P. Calcium supplementation: effect on iron absorption. The American

journal of clinical nutrition. 1991;53(1):106-11.
Dawson-Hughes B, Seligson FH, Hughes VA. Effects of calcium carbonate and hydroxyapatite on zinc and

iron retention in postmenopausal women. The American journal of clinical nutrition. 1986;44(1):83-8.

3124.Lönnerdal B. Calcium and iron absorption—mechanisms and public health relevance. International313Journal for Vitamin and Nutrition Research. 2010;80(4):293.

Shawki A, Mackenzie B. Interaction of calcium with the human divalent metal-ion transporter-1.
 Biochemical and biophysical research communications. 2010;393(3):471-5.

Omotayo M. Integrating Strategies For Prevention Of Pre-Eclampsia And Anemia In Pregnancy Into
 Primary Healthcare Delivery In Kenya. 2016.

Omotayo MO, Dickin KL, O'Brien KO, Neufeld LM, De Regil LM, Stoltzfus RJ. Calcium supplementation to
 prevent preeclampsia: translating guidelines into practice in low-income countries. Advances in Nutrition.
 2016;7(2):275-8.

Omotayo MO, Dickin KL, Pelletier DL, Mwanga EO, Kung'u JK, Stoltzfus RJ. A simplified regimen
 compared with WHO guidelines decreases antenatal calcium supplement intake for prevention of preeclampsia
 in a cluster-randomized noninferiority trial in rural Kenya. The Journal of nutrition. 2017;147(10):1986-91.

Omotayo M, Dickin K, Stolzfus R. Perinatal mortality due to pre-eclampsia in Africa: a comprehensive
 and integrated approach is needed. Global Health: Science and Practice; 2016.

Agustina R, Bovee-Oudenhoven IMJ, Lukito W, Fahmida U, Van De Rest O, Zimmermann MB, et al.
 Lactobacillus reuteri DSM 17938 and lactobacillus casei CRL 431 modestly increase growth, not iron and zinc
 status, among indonesian children. Annals of Nutrition and Metabolism. 2013;63:212-3.

Minihane AM, Fairweather-Tait SJ. Effect of calcium supplementation on daily nonheme-iron absorption
 and long-term iron status. American Journal of Clinical Nutrition. 1998;68(1):96-102.

Mølgaard C, Kæstel P, Michaelsen KF. Long-term calcium supplementation does not affect the iron
 status of 12-14-y-old girls. American Journal of Clinical Nutrition. 2005;82(1):98-102.

333 13. Sokoll LJ, Dawson-Hughes B. Calcium supplementation and plasma ferritin concentrations in
 334 premenopausal women. Am J Clin Nutr. 1992;56(6):1045-8.

Yan L, Prentice A, Dibba B, Jarjou LM, Stirling DM, Fairweather-Tait S. The effect of long-term calcium
 supplementation on indices of iron, zinc and magnesium status in lactating Gambian women. The British journal
 of nutrition. 1996;76(6):821-31.

Whiting SJ, Wood RJ. Adverse effects of high-calcium diets in humans. Nutrition reviews. 1997;55(1):1-9.
Whiting SJ. The inhibitory effect of dietary calcium on iron bioavailability: a cause for concern? Nutrition
reviews. 1995;53(3):77-80.

17. Lynch SR. The effect of calcium on iron absorption. Nutrition research reviews. 2000;13(2):141-58.

18. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for
 reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation
 and elaboration. PLoS medicine. 2009;6(7):e1000100.

Hennigar SR, Gaffney-Stomberg E, Lutz LJ, Cable SJ, Pasiakos SM, Young AJ, et al. Consumption of a
 calcium and vitamin D-fortified food product does not affect iron status during initial military training: a
 randomised, double-blind, placebo-controlled trial. British Journal of Nutrition. 2016;115(4):637-43.

Toxqui L, Pérez-Granados AM, Blanco-Rojo R, Wright I, González-Vizcayno C, Vaquero MP. Intake of an
iron or iron and vitamin dfortified skimmed milk and iron metabolism in women. Annals of Nutrition and
Metabolism. 2013;63:1609.

351 21. National Nutrient Database for Standard Reference [Internet]. National Agricultural Library. 2018 [cited
352 23 June 2019]. Available from: <u>https://ndb.nal.usda.gov/ndb/</u>.

353 22. Grinder-Pedersen L, Bukkave K, Jensen M, Højgaard L, Hansen M. Calcium from milk or calcium-fortified
 354 foods does not inhibit nonheme-iron absorption from a whole diet consumed over a 4-d period. American
 355 Journal of Clinical Nutrition. 2004;80(2):404-9.

Hallberg L, Brune M, Erlandsson M, Sandberg A-S, Rossander-Hulten L. Calcium: effect of different
amounts on nonheme-and heme-iron absorption in humans. The American journal of clinical nutrition.
1991;53(1):112-9.

Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's
tool for assessing risk of bias in randomised trials. Bmj. 2011;343:d5928.

25. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical trials. 1986;7(3):177-88.
26. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for

363 publication bias in meta-analysis. Biometrics. 2000;56(2):455-63.

Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test.
 Bmj. 1997;315(7109):629-34.

28. Crippa A, Orsini N. Dose-response meta-analysis of differences in means. BMC medical research
 methodology. 2016;16(1):91.

368 29. Crippa A, Crippa MA. Package 'dosresmeta'. 2017.

30. Roughead ZK, Zito CA, Hunt JR. Initial uptake and absorption of nonheme iron and absorption of heme
iron in humans are unaffected by the addition of calcium as cheese to a meal with high iron bioavailability. Am J
Clin Nutr. 2002;76(2):419-25.

372 31. Faghih S, Abadi AR, Hedayati M, Kimiagar M. The effect of the combination of restricted energy diet and
373 low fat milk or calcium supplement on iron status of premenopausal overweight or obese women. Clinical
374 Nutrition, Supplement. 2012;7(1):238-9.

375 32. Ríos-Castillo I, Olivares M, Brito A, López de Romaña D, Pizarro F. One-month of calcium
 376 supplementation does not affect iron bioavailability: A randomized controlled trial. Nutrition. 2014;30(1):44-8.

377 33. Miranda M, Olivares M, Brito A, Pizarro F. Reducing iron deficiency anemia in Bolivian school children:
 378 calcium and iron combined versus iron supplementation alone. Nutrition. 2014;30(7-8):771-5.

379 34. Reddy MB, Hurrell RF, Cook JD. Estimation of nonheme-iron bioavailability from meal composition.
380 American Journal of Clinical Nutrition. 2000;71(4):937-43.

35. Sokoll LJ, Dawson-Hughes B. Calcium supplementation and plasma ferritin concentrations in
 premenopausal women. The American journal of clinical nutrition. 1992;56(6):1045-8.

36. Walczyk T, Muthayya S, Wegmuller R, Thankachan P, Sierksma A, Frenken LG, et al. Inhibition of iron
absorption by calcium is modest in an iron-fortified, casein- and whey-based drink in Indian children and is easily
compensated for by addition of ascorbic acid. The Journal of nutrition. 2014;144(11):1703-9.

386 37. Abrams SA, Griffin IJ, Davila P, Liang L. Calcium fortification of breakfast cereal enhances calcium
 387 absorption in children without affecting iron absorption. The Journal of pediatrics. 2001;139(4):522-6.

388 38. Ames SK, Gorham BM, Abrams SA. Effects of high compared with low calcium intake on calcium
 389 absorption and incorporation of iron by red blood cells in small children. The American journal of clinical
 390 nutrition. 1999;70(1):44-8.

39. Benkhedda K, L'Abbé MR, Cockell KA. Effect of calcium on iron absorption in women with marginal iron
392 status. British journal of nutrition. 2010;103(5):742-8.

39340.Dawson-Hughes B, Seligson F, Hughes V. Effects of calcium carbonate and hydroxyapatite on zinc and394iron retention in postmenopausal women. The American journal of clinical nutrition. 1986;44(1):83-8.

395 Deehr MS, Dallal GE, Smith KT, Taulbee JD, Dawson-Hughes B. Effects of different calcium sources on 41. 396 iron absorption in postmenopausal women. The American journal of clinical nutrition. 1990;51(1):95-9.

397 Gaitan D, Flores S, Saavedra P, Miranda C, Olivares M, Arredondo M, et al. Calcium does not inhibit the 42. 398 absorption of 5 milligrams of nonheme or heme iron at doses less than 800 milligrams in nonpregnant women. 399 The Journal of nutrition. 2011;141(9):1652-6.

400 43. Galan P, Cherouvrier F, Preziosi P, Hercberg S. Effects of the increasing consumption of dairy products 401 upon iron absorption. European journal of clinical nutrition. 1991;45(11):553-9.

402 Gleerup A, Rossander-Hulten L, Hallberg L. Duration of the inhibitory effect of calcium on non-haem iron 44. 403 absorption in man. European journal of clinical nutrition. 1993;47(12):875-9.

404 Gleerup A, Rossander-Hulthen L, Gramatkovski E, Hallberg L. Iron absorption from the whole diet: 45. 405 comparison of the effect of two different distributions of daily calcium intake. The American journal of clinical 406 nutrition. 1995;61(1):97-104.

407 Monsen ER, Cook J. Food iron absorption in human subjects IV. The effects of calcium and phosphate 46. 408 salts on the absorption of nonheme iron. The American Journal of Clinical Nutrition. 1976;29(10):1142-8.

409 Reddy MB, Cook JD. Effect of calcium intake on nonheme-iron absorption from a complete diet. 47. 410 American Journal of Clinical Nutrition. 1997;65(6):1820-5.

Roughead ZK, Zito CA, Hunt JR. Inhibitory effects of dietary calcium on the initial uptake and subsequent 411 48. 412 retention of heme and nonheme iron in humans: comparisons using an intestinal lavage method. American 413 Journal of Clinical Nutrition. 2005;82(3):589-97.

414 Abrams SA, Griffin IJ, Davila P, Liang L. Calcium fortification of breakfast cereal enhances calcium 49. 415 absorption in children without affecting iron absorption. Journal of Pediatrics. 2001;139(4):522-6.

416 Kalkwarf H, Harrast SD. Effects of calcium supplementation and lactation on iron status. American 50. 417 Journal of Clinical Nutrition. 1998;67(6):1244-9.

418 llich-Ernst JZ, McKenna AA, Badenhop NE, Clairmont AC, Andon MB, Nahhas RW, et al. Iron status, 51. 419 menarche, and calcium supplementation in adolescent girls. The American journal of clinical nutrition. 420 1998;68(4):880-7.

421 Snedeker SM, Smith SA, Greger J. Effect of dietary calcium and phosphorus levels on the utilization of 52. 422 iron, copper, and zinc by adult males. The Journal of nutrition. 1982;112(1):136-43.

423 53. Organization WH. Guideline: Calcium supplementation in pregnant women: World Health Organization; 424 2013.

425 54. Hofmeyr G, Belizán J, Von Dadelszen P, Calcium, Group PeS. Low-dose calcium supplementation for 426 preventing pre-eclampsia: a systematic review and commentary. BJOG: An International Journal of Obstetrics & 427 Gynaecology. 2014;121(8):951-7.

428 Omotayo MO, Dickin KL, Pelletier DL, Martin SL, Kung'u JK, Stoltzfus RJ. Feasibility of integrating calcium 55.

429 and iron-folate supplementation to prevent preeclampsia and anemia in pregnancy in primary healthcare 430 facilities in Kenya. Maternal & child nutrition. 2018;14:e12437.

- 431
- 432
- 433
- 434
- 435
- 436
- 437

438

439

440 Figures and Tables

Figure 1. Flowchart of included studies

Figure 2. Forest plot for the relationship of calcium intake and total iron absorption (highest vs least calcium intake)

Figure 3. Dose-response relationship of calcium intake and total iron absorption

Figure 4. Forest plot for the relationship of calcium intake and heme iron absorption (highest vs least calcium intake)

Figure 5. Forest plot for the relationship of calcium intake and non-heme iron absorption (highest vs least calcium intake)

Figure 6. Forest plot for the relationship of calcium intake and serum ferritin (highest vs least calcium intake)

Figure 7. Dose-response relationship of calcium intake and serum ferritin concentration

Figure 8. Forest plot for the relationship of calcium intake and hemoglobin concentration

Supplementary figures

Supplementary figure 1 – Funnel plot for the relationship of calcium intake and total iron absorption (highest vs least calcium intake)

Supplementary figure 2 – Funnel plot for the relationship of calcium intake and heme iron absorption (highest vs least calcium intake)

Supplementary figure 3 – Funnel plot for the relationship of calcium intake and non-heme iron absorption (highest vs least calcium intake)

Supplementary figure 4 – Funnel plot for the relationship of calcium intake and serum ferritin (highest vs least calcium intake)

Supplementary figure 5 – Funnel plot for the relationship of calcium intake and hemoglobin concentration

Author (year)	City, Country	Design; Sample size (N)	Age; %Female	Baseline hematologic status	Duration of intervention ¹	Outcomes	Description of intervention (categories)	Findings ²	Risk of bias
Abrams (2001)	Houston, USA	Case crossover (N=27)	7.8 y; 48%	NR	Intervention: 14 d Follow-up: 14 d	Total iron absorption, %	Test: Fortified cereal with calcium 925mg/d Ctrl: Low cereal with calcium 702mg/d	Mean ±SD 4.2 ±3.5 3.9 ±3.1	Moderate
Agustina (2013)	East Jakarta, Indonesia	RCT (N=494)	5 y; 46%	21% anemic; 31% iron deficient	Intervention: 168 d	Change in serum ferritin, µg/L	Test: Regular calcium milk twice daily (440mg/d); Ctrl: Low calcium milk twice daily (50mg/d)	Med (IQR) -4.4 (-15.7, 1.6) -4.0 (-11.1, 1.0)	Moderate
						Change in hemoglobin, g/L	Test Ctrl	Mean ±SD Test: -1.5 ±8.8 Ctrl: -1.9 ±7.7	
Ames (1999)	Texas, USA	Case crossover (N=11)	4.3 y; 45%	NR	Intervention: 35 d Washout: 15 d	Iron incorporation into red blood cells, %	Test: High calcium diet with calcium 1180 mg/d; Ctrl: Low calcium diet with calcium 502 mg/d	Mean ±SD Test: 7.9 ±5.5 Ctrl: 6.9 ±4.2	Moderate
Benkhedda (2010)	Ontario, Canada	Case crossover (N=13)	30.9 y; 100%	Mean hemoglobin: 133g/L; Mean ferritin: 17.8 ug/L	Intervention: 1 d Follow-up: 14 d	Total iron absorption, %	Test: Calcium carbonate (500mg) with meal; Ctrl: Meal only	Mean (-SD, +SD) Test: 4.8 (1.8, 13.0) Ctrl: 10.2 (5.3, 19.7)	Low
Cook (1991)	Kansas, USA	Case crossover (N=61)	21 y; 100%	Mean hematocrit: 41%, Mean ferritin: 21ug/L	Intervention: 2 d Follow-up: 16 d	Iron absorption, %	Test: Calcium carbonate (300mg) with meal; Ctrl: Meal only	Mean (-SE, +SE) Test: 1.6 (1.3, 2.0) Ctrl: 2.1 (1.7, 2.7)	Low
				21µg/1		Iron absorption, %	Test: Calcium carbonate (300mg) with water; Ctrl: Water only	Mean (-SE, +SE) Test: 6.5 (5.6, 7.5) Ctrl: 7.7 (6.6, 9.0)	
			23 y; 89%	Mean hematocrit: 40%; Mean ferritin: 24ug/I		Iron absorption, %	Test: Calcium carbonate (600mg) with meal; Ctrl: Meal only	Mean (-SE, +SE) Test: 7.3 (5.6, 9.4) Ctrl: 13.0 (9.7, 17.3)	
				2-τμg/Τ		Iron absorption, %	Test: Calcium carbonate (600mg) with water; Ctrl: Water only	Mean (-SE, +SE) Test: 21.5 (16.7, 27.6) Ctrl: 18.0 (14.1, 23.0)	
			23 y; 100%	Mean hematocrit: 46%; Mean ferritin:		Iron absorption, %	Test: Calcium carbonate (600mg) with meal; Ctrl: Meal only	Mean (-SE, +SE) Test: 3.3 (2.4, 4.5) Ctrl: 3.9 (2,8, 5.3)	

441 Table 1. Characteristics of Included Studies

Author (year)	City, Country	Design; Sample size (N)	Age; %Female	Baseline hematologic status	Duration of intervention ¹	Outcomes	Description of intervention (categories)	Findings ²	Risk of bias
				74µg/L		Iron absorption, %	Test: Calcium carbonate (600mg) with water; Ctrl: Water only	Mean (-SE, +SE) Test: 9.4 (8.1, 10.9) Ctrl: 10.3 (8.5, 12.3)	
			23 y; 29%	Mean hematocrit: 43%; Mean ferritin: 54us/L		Iron absorption, %	Test: Calcium citrate (600mg) with meal; Ctrl: Meal only	Mean (-SE, +SE) Test: 6.1 (4.5, 8.2) Ctrl: 10.1 (7.6, 13.5)	
				5148/2		Iron absorption, %	Test: Calcium citrate (600mg) with water; Ctrl: Water only	Mean (-SE, +SE) Test: 6.6 (5.2, 8.5) Ctrl: 12.9 (10.9, 15.2)	
			23 y; 14%	Mean hematocrit: 44%; Mean ferritin: 75ug/L		Iron absorption, %	Test: Calcium phosphate (600mg) with water; Ctrl: Water only	Mean (-SE, +SE) Test: 3.2 (2.3, 4.3) Ctrl: 7.3 (5.8, 9.2)	
				,5µ8/2		Iron absorption, %	Test: Calcium phosphate (600mg) with water; Ctrl: Water only	Mean (-SE, +SE) Test: 6.0 (4.7, 7.6) Ctrl: 16.0 (12.5, 20.5)	
			23 y; 50%	Mean hematocrit: 42%;		Iron absorption, %	Enhancing meal with: Ctrl: water only	Mean (-SE, +SE) Ctrl: 13.4 (10.0, 18.1)	
				Mean ferritin: 42µg/L			Test1: Calcium carbonate	Test 1: 9.1 (6.5, 12.8)	
							Test2: Calcium citrate	Test 2: 11.9 (9.2, 15.5)	
							Test3: Calcium phosphate	Test 3: 8.2 (6.1, 11.1)	
			23 y; 50%	Mean hematocrit:		Non-heme iron absorption, %	Enhancing meal with: Ctrl: water only	Mean (-SE, +SE) Ctrl: 13.4 (10.0, 18.1)	
				42%; Mean ferritin: 42ug/I			Test1: Calcium carbonate	Test 1: 9.1 (6.5, 12.8)	
				+2μg/L			Test2: Calcium citrate	Test 2: 11.9 (9.2, 15.5)	
							Test3: Calcium phosphate	$T_{out} 2 \cdot 9 \cdot 2 \cdot (6 \cdot 1 \cdot 1 \cdot 1 \cdot 1)$	
			25 y; 67%	Mean hematocrit: 43%		Non-heme iron absorption, %	Inhibiting meal with: Ctrl: water only	Mean (-SE, +SE) Ctrl: 1.2 (0.8, 1.7)	
				Mean ferritin:			Test1: Calcium carbonate	Test 1: 0.7 (0.4, 1.1)	
				ουμε/ Ε			Test2: Calcium citrate	Test 2: 0.5 (0.4, 0.7)	
							Test3: Calcium phosphate	Test 3: 0.4 (0.3, 0.6)	

Author (year)	City, Country	Design; Sample size (N)	Age; %Female	Baseline hematologic status	Duration of intervention ¹	Outcomes	Description of intervention (categories)	Findings ²	Risk of bias
Dawson- Hughes (1986)	Boston, USA	Case- crossover (N=13)	65 y; 100%	NR	Intervention: 1 d; Follow-up: 14 d	Iron retention	Ctrl: Meal with Placebo Test 1: Meal with Calcium carbonate Test 2: Meal with Hydroxyapatite	Mean ±SD Ctrl: 6.3 ±7.2 Test 1: 3.2 ±4.4 Test 2: 1.7 ±1.4	Low
Deehr (1990)	Boston, USA	Case- crossover (N=19)	63 y; 100%	Mean hematocrit: 42%; Mean ferritin: 111 µg/L	Intervention: 1 d; Follow-up: 14 d	Iron retention	Ctrl: Meal with Placebo Test 1: Meal with Calcium citrate malate (CCM) Test 2: Meal with CCM and orange juice Test 3: Milk	Mean ±SD Ctrl: 8.3 ±4.6 Test 1: 6.0 ±4.2 Test 2: 7.4 ±7.4 Test 3: 3.4 ±3.4	Low
Faghih (2012)	Tehran, Iran	RCT (N=64)	37 y; 100%	Mean ferritin: 59µg/L ±47	Intervention: 2 d; Follow-up: 56 d	Serum ferritin, µg/L	Ctrl: Meal (500mg/d) Before After	Mean ±SD 60.9 ±46.8 60.7 ±38.6	Moderate
							Test 1: Meal with calcium carbonate tablets (800mg/d);	Test 2: Before: 59.1 ±47.3 After: 58.6 ±71.4	
								Test 2: Before: 57.7 ±43.5 After: 48.9 ±38.2	
							Test 2: Milk diet (1200 – 1300mg/d)		
Gaitan (2011)	Chile	Case- crossover (N=54)	NR; 100%	Mean hemoglobin	Intervention: Multiple, 1 day each; Follow-up: 1 day	Non-heme iron absorption, %	Different doses of calcium chloride	Geometric mean (-SD, +SD)	Moderate
				133g/L ±8	i i i j		Grp A (N=15): 0 mg 200 mg 400mg	17.9 (7.0, 45.6) 15.9 (7.6, 33.6) 15.3 (5.8, 40.2)	
				133g/L ±8		Non-heme iron absorption, %	Grp B (N=13): 0 mg 1000 mg 1250mg 1500mg	11.9 (4.7, 30.3) 21.3 (10.1, 40.5) 10.7 (5.3, 21.8) 12.7 (6.2, 26.0) 13.3 (6.6, 26.7)	
				131g/L ±8		Heme iron absorption, %	Grp C (N=15): 0 mg 200 mg 400mg	13.9 (8.7, 22.1) 11.5 (6.9, 19.1) 11.6 (6.8, 19.9)	
				131g/L ±8		Heme iron absorption, %	800mg Grp D (N=11):	8.6 (4.2, 17.4)	

Page 23 of 37

Author (year)	City, Country	Design; Sample size (N)	Age; %Female	Baseline hematologic status	Duration of intervention ¹	Outcomes	Description of intervention (categories)	Findings ²	Risk of bias
							0 mg 500 mg 600mg 700mg	11.1 (6.2, 19.8) 9.0 (4.7, 17.0) 9.6 (5.3, 17.5) 10.1 (5.8,17.5)	
Galan (1991)	Paris, France	Case- crossover (N=13)	32 y; 0%	Mean hemoglobin: 153 g/L: Mean ferritin: 128 µg/L	Intervention: 1 d Follow-up: 14 d	Non-heme iron absorption, %	Ctrl: Meal alone Test1: Meal + yoghurt Test2: Meal + skimmed milk	Mean ±SD 2.2 ±4.9 2.0 ±13.7 2.1 ±6.3	Moderate
Gleerup (1993)	Goteborg, Sweden	Case- crossover (N=21)	38 y; 67%	Mean ferritin: 50 µg/L	Intervention: 1 d Follow-up: 1 d	Total iron absorption, %	Ctrl: Meal alone Test: Meal with milk and cheese	Mean ±SEM 13.8 ±3.6 13.1 ±3.5	High
						Total iron absorption, %	Ctrl: Meal alone Test: Meal with milk and cheese	Mean ±SEM 16.3 ±2.5 16.5 ±2.5	
Gleerup (1995)	Sweden	Case- crossover (N=21)	29 y; 100%	NR	Intervention: 10 d Follow-up: 4 w	Non-heme iron absorption, %	Test: Calcium at all meals (937mg/d) Ctrl: No calcium at lunch & dinner	Mean ±SEM 12.1 ±4.76 15.9 ±2.2	Moderate
						Heme iron absorption, %	Test: Calcium at all meals (937mg/d) Ctrl: No calcium at lunch & dinner	$\begin{array}{c} 0.25 \pm \! 0.02 \\ 0.33 \pm \! 0.02 \end{array}$	
Grinder- Pederson (2004)	Denmark	RCT (N=14)	24 y; 100%	Non-anemic; no excess iron	Intervention: 4 d; Follow-up: 18 d	Non-heme iron absorption, %, adjusted to ferritin of 40µg/L	Diet (varying calcium/d): Basic (224 mg/d) Milk (826 mg/d) Calcium lactate (802 mg/d) Milk mineral (801 mg/d)	Geom mean (95% CI): 2.6 (1.5, 4.4) 1.9 (1.1, 3.4) 2.3 (1.6, 3.3) 2.1 (1.4, 3.3)	Moderate
						Non-heme iron absorption, %, unadjusted	Diet (varying calcium/d): Basic (224 mg/d) Milk (826 mg/d) Calcium lactate (802 mg/d) Milk mineral (801 mg/d)	Geom mean (95% CI): 7.4 (5.3, 10.5) 5.2 (3.5, 7.9) 6.7 (5.0, 8.9) 5.1 (3.2, 7.9)	
Hallberg (1991)	Gothenburg, Sweden	Case- crossover (N=126)	NR; 36%	NR	Intervention: 4 d; Follow-up: 18 d	Heme iron absorption	Calcium added to wheat flour	Mean ±SE	Moderate
							Series 1: 0 mg	22.0 ±3.6	

Author (year)	City, Country	Design; Sample size (N)	Age; %Female	Baseline hematologic status	Duration of intervention ¹	Outcomes	Description of intervention (categories)	Findings ²	Risk of bias
							40mg	12.8 ±1.6	
							Series 2:		
							0 mg	20.0 ± 3.6	
							75mg	11.2 ± 2.0	
							Series 3:		
							0 mg	20.8 ± 2.8	
							165 mg	8.8 ±1.2	
							Series 4:		
							0 mg	19.2 ± 3.6	
							300 mg	6.4 ± 2.8	
							Series 5:		
							0 mg	18.0 ± 2.4	
							600 mg	3.6 ± 0.4	
							Calcium added before		
							serving		
							Series 6:		
							0 mg	21.6 ± 2.8	
							40 mg	22.4 ±2.8	
							Series 7:		
							0 mg	236+36	
							75 mg	19.6 ± 3.2	
							Series 8:		
							0 mg	23.2 + 3.2	
							165 mg	14.0 ±0.8	
							Series 9.		
							0 mg	26.0 +2.8	
							300 mg	12.0 ± 2.0	
							Series 10.		
							0 mg	268+52	
							600 mg	13.2 ± 4.4	
							Series 11:		
							Wheat	18.8 ± 1.6	
							Wheat + 150 mL milk	7.2 ± 1.2	
							Series 12:		
							Wheat	24.0 ± 2.8	
							Wheat + 20g cheese	13.6 ±2.4	
							Series 13		
							Hamburger + Wheat	15.6 ±2.4	
									Page 25 of 37

Author (year)	City, Country	Design; Sample size (N)	Age; %Female	Baseline hematologic status	Duration of intervention ¹	Outcomes	Description of intervention (categories)	Findings ²	Risk of bias
							Hamburger + Wheat + 165mg Ca	11.6 ±2.0	
Hallberg (1993)	Goteborg, Sweden	RCT (N=28)	NR: 57%	NR	Intervention: 1 d Follow-up: 1 d	Heme iron absorption, %	Test: Meat-containing meal with 165mg calcium chloride; Ctrl: Meat containing meal alone	Mean ±SE Test: 12.1 ±1.5 Ctrl: 22.7 ±3.9	High
							Test: Non-meat-containing meal with 165mg calcium chloride;	Mean ±SE Test: 11.2±1.7	
							Ctrl: Meat containing meal alone	Ctrl: 20.3 ±2.3	
Ilich-Ernst (1998)	Cincinnati, USA	RCT; (N=354)	10.8 y; 100%	Mean ferritin: 29.2 µg/L	Intervention: 4 y Follow-up: 4 y	Hemoglobin, g/L, year 4	Test: Calcium citrate malate, 1000mg/d Ctrl: Placebo	Mean ±SD Test: 132 ±9 Ctrl: 134 ±8	Moderate
						Serum ferritin, µg/L, in lactating women (N=76)	Baseline –	$\begin{array}{c} Mean \pm SD \\ Test: \\ Baseline - 29.1 \pm 1.3 \\ Year 1 - 31.1 \pm 1.5 \\ Year 2 - 31.1 \pm 1.6 \\ Year 3 - 30.6 \pm 2.0 \\ Year 4 - 29.5 \pm 1.9 \end{array}$	
								Ctrl: Baseline -29.3 ± 1.4 Year $1 - 33.8 \pm 1.7$ Year $2 - 32.3 \pm 1.4$ Year $3 - 30.9 \pm 1.5$ Year $4 - 29.5 \pm 1.6$	
Kalkwarf (1998)	Cincinnati, USA	RCT: (N=158)	31 y; 100%	Mean hemoglobin: 133 g/L	Intervention: 26 wk Follow-up: 26 wk	Serum ferritin, µg/L, in lactating women (N=76)	Test: Calcium supplements 500mg twice daily Ctrl: None	Geom Mean (-SD, +SD) Test: 28.4 (12.3, 51.0) Ctrl: 27.5 (9.3, 55.))	Low
						Hemoglobin, g/L, in lactating women (N=76)		Mean ±SD Test: 133 ±7	
						5		Ctrl: 130 ±6	
						Hemoglobin, g/L, in non- lactating women (N=82)		Test: 129 ±7 Ctrl: 130 ±8	
						MCV, g/L, in lactating women (N=76)		Test: 90 ±4 Ctrl: 88 ±4	
								Pa	age 26 of 37

Author (year)	City, Country	Design; Sample size (N)	Age; %Female	Baseline hematologic status	Duration of intervention ¹	Outcomes	Description of intervention (categories)	Findings ²	Risk of bias
						MCV, g/L, in non- lactating women (N=82)		Test: 88 ±4 Ctrl: 88 ±4	
Minihane (1998)	Norwich, UK	RCT (N=24)	44 y; 71%	Non-anemic; Mean ferritin: 44ug/l	Intervention: 183 d	Hemoglobin, g/L	Test: Calcium carbonate (1200mg) supplements; Ctrl: None	Mean (SE) Test: 136 (4) Ctrl: 139 (4)	Moderate
						Serum ferritin, $\mu g/L$		Test: 50 (7) Ctrl: 38 (7)	
						Zinc protoporphyrin (ZPP), µg/L		Test: 226 (18) Ctrl: 277 (19)	
						Non-heme iron absorption, %		Test: 4.7 (1.4) Ctrl: 15.8 (2.1)	
Miranda (2014)	Sucre, Bolivia	RCT (N=179)	8.3 y; 44%	Hemoglobin >83g/L	Intervention: 90 d	Hemoglobin, g/L	Test: 700mg Calcium with iron; Ctrl: Iron only	Mean ±SD Test: 148 ±7 Ctrl: 147 ±8	Moderate
						Serum ferritin, µg/L		Mean (-SD, +SD) Test: 35 (24-52) Ctrl: 38 (25-57)	
Mølgaard (2005)	Frederiksberg & Copenhagen, Denmark	RCT (N=113)	13 y; 100%	Non-anemic; Mean ferritin: 27µg/l	Intervention: 52 wk	Hemoglobin, g/L in low dietary Ca group	Test: Calcium supplements - 500mg/d; Ctrl: Placebo	Mean (95% CI) Test:135 (132, 138) Ctrl: 134 (131, 137)	Low
						Hemoglobin, g/L in medium dietary Ca group		Test: 137 (134, 139) Ctrl: 135 (132, 137)	
						Serum ferritin, µg/L, in low dietary Ca group		Test: 24.3 (20.3, 29.2) Ctrl: 26.9 (22.6, 31.9)	
						Serum ferritin, µg/L, in medium dietary Ca group		Test: 26.7 (22.3, 32.1) Ctrl: 24.9 (20.9, 29.7)	
						sTfR ³ , mg/L, in low dietary Ca group		Test: 4.0 (3.7, 4.4) Ctrl: 4.1 (3.8, 4.5)	
						sTfR ³ , mg/L, in medium dietary Ca group		Test: 4.1 (3.8, 4.5) Ctrl: 4.5 (4.2, 4.9)	
						sTfR-ferritin index, in low dietary Ca group		Test: 163 (137, 194) Ctrl: 145 (123, 171)	
						sTfR-ferritin index, in medium dietary Ca group		Test: 156 (127, 192) Ctrl: 177 (145, 217)	a 77 of 27

Author (year)	City, Country	Design; Sample size (N)	Age; %Female	Baseline hematologic status	Duration of intervention ¹	Outcomes	Description of intervention (categories)	Findings ²	Risk of bias
Monsen (1976)	Washington, USA	Case- crossover (N=21)	25 y; 100%	NR	Intervention: 1 d Follow-up: 14 d	Total iron absorption, %	Ctrl: Meal alone Test: Meal with Calcium phosphate salts	Mean ±SD Test: 1.6 ±2.3 Ctrl: 2.6 ±2.7	Moderate
						Non-heme iron absorption, %		Mean ±SD Test: 6.8 ±6.5 Ctrl: 12.1 ±8.3	
Reddy (1997)	Kansas, USA	Case- crossover (N=14)	25 y; 57%	Mean ferritin: 50µg/L	Intervention: 2 d; Follow-up: 14 d; Washout: 5 d	Non-heme iron absorption, %	Four diets: 1. Standard hamburger meal 2. Self –selected (685mg/d) 3. High calcium (1281mg/d); 4. Low calcium (280mg/d)	Standard: 4.8 (3.7, 6.2) Self: 5.0 (4.1, 6.2) High Ca: 4.7 (3.8, 5.9) Low Ca: 5.8 (4.7, 7.3)	Moderate
Reddy (2000)	USA	RCT (N=86)	26 y; 40%	Mean ferritin: 41µg/L	Intervention: 2 d; Follow-up: 14 d	Non-heme iron absorption, %	Test: 25 different meals ⁴ 22 mg Ca 589 mg Ca	Geom mean (-SE, +SE) 11.5 (9.6, 15.2) 2.6 (2.0, 3.5)	Low
						Serum ferritin, µg/L	22 mg Ca 589 mg Ca	28 (22, 36) 34 (24, 39)	
Rios-Castillo (2014)	Santiago, Chile	RCT (N=26)	39 y; 100%	Non-anemic; non-iron deficient	Intervention: 34 d	Hemoglobin, g/L Mean corpuscular	Test: Calcium (600mg) supplements with iron; Ctrl: Iron only	Mean ±SD Test: 141 ±11 Ctrl: 145 ±11	Moderate
						volume (MCV), fL		Test: 86 ±5 Ctrl: 86 ±4	
						Zinc protoporphyrin, µg/dL		Geom mean (-SD, +SD)	
						Serum ferritin, ug/L		Ctrl: 60 (47, 78)	
						, p.o		Test: 18.5 (7.3, 46.8) Ctrl: 24.9 (14, 44.2)	
						Heme iron bioavailability, % of absorption		Test: 26 (15.5, 43.6) Ctrl: 25.1 (16.5, 38.3)	
Roughead (2002)	USA	Case- crossover (N=17)	34 y; 53%	Non-anemic; no excess iron	Intervention: 1 day; Follow-up: 15 d; Washout: 28 d	Non-heme iron absorption, %	Test: High iron, low calcium meal with 127mg calcium supplements; Ctrl: Test intervention with no calcium supplements	Mean (-SD, +SD) Test: 7.4 (3.4, 16.1) Ctrl: 6.6 (3.0, 14.4)	Moderate

Author (year)	City, Country	Design; Sample size (N)	Age; %Female	Baseline hematologic status	Duration of intervention ¹	Outcomes	Description of intervention (categories)	Findings ²	Risk of bias
				5		Heme iron absorption, %		Test: 16.2 (11.8, 22.4)	
						Serum ferritin, $\mu g/L$		Ctrl: 14.5 (9.7, 21.7) Test: 55 (22, 138) Ctrl: 54 (21, 143)	
Roughead (2005)	North Dakota, USA	Case- crossover (N=27)	38 y; NR	Non-anemic; no excess iron	Intervention: 1 day; Follow-up 14 d; Washout: 42 d	Non-heme iron absorption, %	Experiment A: Test: Calcium supplements 450mg with high iron, moderate calcium meal with 360mg calcium; Ctrl: Meal only	Mean (-SE, +SE) Test: 0.4 (0.3, 0.5) Ctrl: 0.5 (0.4, 0.6)	Moderate
						Heme iron absorption, %		Test: 22 (19, 25) Ctrl: 30 (27, 32)	
						Non-heme iron absorption, %	Experiment B: Test: Calcium supplements 450mg with high iron, low calcium meal with 60mg calcium; Ctrl: Meal only	Test: 6 (5,8) Ctrl: 8 (7, 11)	
						Heme iron absorption, %		Test: 16 (14, 19) Ctrl: 22 (20, 25)	
Snedeker (1982)	Wisconsin, USA	Case- crossover (N=9)	NR; 0%	NR	Intervention: 12 d Follow-up: 12 d	Serum ferritin, µg/L in adult males receiving high phosphate diets	Test: High calcium Ctrl: Moderate calcium	Mean ±SD Test: 96 ±41 Ctrl: 104 ±50	Low
Sokoll (1992)	Boston, USA	RCT (N=109)	32 y; 100%	Hematocrit ≥32%	Intervention: 12 wk Follow-up: 12 wk	Change in plasma ferritin, µg/L	Test: Ca supplements, 250mg twice Ctrl: None	Test: -2.2 ±38.4 Ctrl: 2.6 ±39.7	Low
						Change in hemoglobin, g/L		Test: 1.0 ±4.7 Ctrl: 0.6 ±4.7	
Walczyk (2014)	Bangalore, India	Case- crossover (N=96)	Iron- replete subgroup: 9 y; 40%	Mean hemoglobin: 126g/L ±4; Mean fer 20	Intervention: 1 day; Washout: 14 d	Iron absorption, %, in iron-replete children	Ctrl: Drink Test 1: Drink with 100mg Ca	Mean (-SD, +SD) 10.1 (6.1, 16.7) 7.8 (4.9, 12.5)	Moderate
				48μg/L ±20			Ctrl: Drink Test 2: Drink with 200mg Ca	6.8 (3.8, 12.3)	
			IDA subgroup: 8y; 83%	Mean hemoglobin: 100g/L ±11; Mean ferritin:		Iron absorption, %, in IDA children	Ctrl: Drink Test 1: Drink with 100mg Ca	13.0 (7.7, 21.9) 11.3 (6.9, 18.4)	
				$13\mu g/L \pm 6$			Ctrl: Drink	14.5 (10.7, 19.6) 10.7 (7.8, 19.6)	20 6 27

Page **29** of **37**

Author (year)	City, Country	Design; Sample size (N)	Age; %Female	Baseline hematologic status	Duration of intervention ¹	Outcomes	Description of intervention (categories)	Findings ²	Risk of bias
							Test 2: Drink with 200mg Ca		
Yan (1996)	Keneba & Manduar, The Gambia	RCT (N=60	28 y; 100%	Mean ferritin: 20.4 µg/L	Intervention: 5 d weekly for 52 wk Follow-up: 52 wk & 78 wk	Serum ferritin, μg/L	Test: Two calcium supplements 500mg each daily Ctrl: Placebo	Mean ±SD at 52 wk Test: 1.2 ±0.4 Ctrl: 1.1 ±0.4 Mean ±SD at 78 wk Test: 1.2 ±0.4 Ctrl: 1.1 ±0.3	Moderate

¹Follow-up begins from the first day of the intervention to the day of evaluation.

²Findings are means ±SD or mean (95% confidence interval) or means (SE). NR – Not reported. NA – Not applicable.

³Abbreviations: Ca – calcium; Geom – Geometric; IDA – Iron Deficiency Anemia; sTfR – soluble transferrin receptor

⁴Only the highest and lowest outcome measures shown, but outcome measures not shown were considered for the dose-response analysis.

Supplement 1. PRISMA Checklist

TITLE		·	
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT		·	
Structured	2	Provide a structured summary including, as applicable: background; objectives; data sources; study	2-3
summary		eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results;	
		limitations; conclusions and implications of key findings; systematic review registration number.	
INTRODUCTION		·	
Rationale	3	Describe the rationale for the review in the context of what is already known.	5-6
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions,	6
		comparisons, outcomes, and study design (PICOS).	
METHODS		· · · · · · · · · · · · · · · · · · ·	
Protocol and	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if	7
registration		available, provide registration information including registration number.	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years	8-9
		considered, language, publication status) used as criteria for eligibility, giving rationale.	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to	7
		identify additional studies) in the search and date last searched.	

Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	7
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	10
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	11
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	11-12
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	14
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	12
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	13-14
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	14
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	14
RESULTS			

Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for	15, 48, SI
		exclusions at each stage, ideally with a flow diagram.	
Study	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-	41-44
characteristics		up period) and provide the citations.	
Risk of bias within	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	15-21
studies			
Results of	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for	15-21, SI,
individual studies		each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Figures
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	15-21
Risk of bias across	22	Present results of any assessment of risk of bias across studies (see Item 15).	15-21
studies			
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see	15-21
		Item 16]).	
DISCUSSION			
Summary of	24	Summarize the main findings including the strength of evidence for each main outcome; consider their	22-23
evidence		relevance to key groups (e.g., healthcare providers, users, and policy makers).	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete	24
		retrieval of identified research, reporting bias).	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for	27-28
		future research.	
FUNDING			

Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of	
		funders for the systematic review.	

Database	Search query	Original search	Updated search
PUBMED	("Iron"[Mesh] AND "Calcium"[Mesh])	505	47
	AND ("gastrointestinal		
	absorption"[MeSH Terms] OR "biological		
	availability"[Mesh] OR "inhibition"[All		
	Fields] OR "interaction"[All Fields] OR		
	"Iron-Binding Proteins"[Mesh] OR "Iron-		
	Regulatory Proteins"[Mesh] OR		
	"Hematologic Diseases"[Mesh])		
EMBASE	'iron'/exp AND 'calcium'/exp AND	549	164
	('bioavailability'/exp OR 'gastrointestinal		
	absorption'/exp OR 'iron regulatory		
	factor'/exp OR 'iron binding protein'/exp		
	OR 'anemia'/exp) AND [embase]/lim		
	NOT [medline]/lim NOT 'review'/it		

Supplement 2. Search Strategy

Supplement 3. Risk of Bias Assessment of randomized controlled trials

Author (year of publication)	Random sequence generation	Blinding of participants and personnel	Incomplete outcome data	Measurement of outcome	Selective reporting
Agustina (2013)	Low	High	High	Low	Low
Faghih (2012) Grinder-Pederson	Low	High	High	Low	Low
(2004)	Low	High	Low	Low	Low
Hallberg (1993) Israel Rios-Castillo	Low	High	High	Low	Low
(2014)	Low	Low	Low	Low	Low
Minihane (1998)	Low	High	Low	Low	Low
Miranda (2014)	Low	High	Low	Low	Low
Reddy (2000)	Some concerns	High	Low	Low	Low

Sokoll (1992)	Low	Low	Low	Low	Low
Walczyk (2014)	Low	High	Low	Low	Low
Yan (1996)	Low	High	Low	Low	Low
Mølgaard (2005)	Low	Low	Low	Low	Low

Author (year of publication)	Random sequence generation ¹	Blinding of participants and personnel	Incomplete outcome data	Measurement of outcome	Selective reporting	Carryover effects
Abrams (2001)	Low	Low	Low	Low	Low	High
Ames (1999)	Low	High	Low	Low	Low	Low
Benkedda (2010)	Low	Some concerns	Low	Low	Low	Low
Cook (1991)	Low	Some concerns	Low	Low	Low	Low
Dawson-Hughes (1986)	Low	Some concerns	Low	Low	Low	Low
Deehr (1990)	Low	Some concerns	Low	Low	Low	Low
Gaitan (2011)	Some concerns	High	Low	Low	Low	Some concerns
Galan (1991)	Low	High	Low	Low	Low	Low
Gleerup (1993)	Some concerns	High	Low	Low	Low	Some concerns
Gleerup (1995)	Some concerns	High	Low	Low	Low	Low
Hallberg (1991)	Some concerns	Some concerns	Low	Low	Low	Low
Monsen (1976)	Some concerns	Some concerns	Low	Low	Low	Low
Reddy (1997)	Low	High	Low	Low	Low	Low
Roughead (2002)	Low	High	Low	Low	Low	Low
Roughead (2005)	Low	High	Low	Low	Low	Low
Walczyk (2014)	Low	High	Low	Low	Low	Low

¹For crossover studies, studies with "Some concerns" random sequence generation where those that did not specify whether the order of treatments was randomized or not.

PRISMA 2009 Diagram

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

