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Abstract  
 
SARS-CoV-2 has spread across the world, causing high mortality and unprecedented 
restrictions on social and economic activity. Policymakers are assessing how best to 
navigate through the ongoing epidemic, with models being used to predict the spread of 
infection and assess the impact of public health measures. Here, we present 
OpenABM-Covid19: an agent-based simulation of the epidemic including detailed 
age-stratification and realistic social networks. By default the model is parameterised to 
UK demographics and calibrated to the UK epidemic, however, it can easily be 
re-parameterised for other countries. OpenABM-Covid19 can evaluate 
non-pharmaceutical interventions, including both manual and digital contact tracing. It 
can simulate a population of 1 million people in seconds per day allowing parameter 
sweeps and formal statistical model-based inference. The code is open-source and has 
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been developed by teams both inside and outside academia, with an emphasis on 
formal testing, documentation, modularity and transparency. A key feature of 
OpenABM-Covid19 is its Python interface, which has allowed scientists and 
policymakers to simulate dynamic packages of interventions and help compare options 
to suppress the COVID-19 epidemic. 
 
1. Introduction 
 
The novel coronavirus SARS-CoV-2 first appeared in China in late 2019 and spread 
across the globe in early 2020, causing several hundred thousand deaths world-wide in 
the first half of the year and overwhelming health systems ​[1]​. Restrictions on 
movement were imposed in many countries, with severe impacts on social life, 
education, and economies ​[2]​. Mathematical models have long been used to explain 
and forecast the course of epidemics and to predict the effects of public health 
interventions ​[3,4]​. Most governments and policymakers use mathematical models to 
inform their decision-making ​[5]​. The scientific community has responded by adapting 
old models and designing new models to learn more about the COVID-19 epidemic and 
inform public health. 
 
Compared to compartmental models and branching-process models, agent-based 
models of the spread of infection allow for a more complete representation of the social 
contact network in which contagion occurs ​[6]​. Major advantages include the ability to 
model heterogeneity in contact rates and local saturation effects, and the ability to better 
model contact tracing. Alongside other non-pharmaceutical interventions, contact 
tracing is an important intervention to help reduce the spread of COVID-19 ​[7,8]​. In an 
agent-based model, the full history of all contacts can be stored, allowing for the impact 
of contact tracing to be explored in detail. For example, agent-based models can 
include clustering in the contact network, so if incidence is high in a region of the 
contact network, an uninfected person who is contract-traced will be protected from this 
high level of local incidence. A downside of agent-based models is that they are 
comparatively complex to code, are often not very parsimonious, and can be very 
computationally intensive to run, limiting the ability to explore a wide range of parameter 
combinations. Here, we focus on developing OpenABM-Covid19, an agent-based 
simulation which addresses these downsides, by focussing on parsimony, 
computational efficiency, code transparency, and a robust testing framework.  
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A particular focus of our work applying OpenABM-Covid19 has been exploring different 
ways in which contact tracing, and in particular digital contact tracing using mobile 
phone apps that record proximity events, can contribute to epidemic control ​[9]​. Several 
other groups have approached this problem with similar agent based models ​[10,11] ​; 
compared to those, our model places more emphasis on simulating larger populations, 
computational efficiency, and on code generalisability that allows other researchers to 
use and develop the code.  
 
We developed the agent-based model (ABM) ​OpenABM-Covid19​ to simulate an 
outbreak of COVID-19 in an urban environment. The default population is one million 
inhabitants with demographic structure based upon UK-wide census data, and 
household size and age-structure matched to data from the UK 2011 Census​ ​survey 
(for example, older people tend to live together and young children tend to live with 
younger adults). 
 
On a daily basis all individuals in the model move between networks representing 
households and either workplaces, schools, or regular social environments for older 
people. Individuals also interact through random networks representing public transport, 
transient social gatherings etc. Membership of each type of network is determined by 
age, giving rise to age-assortative mixing patterns. Network parameters are chosen 
such that the average number of interactions match age-stratified data reported 
in ​[12][12]​. The number of daily interactions in random networks is drawn from a 
negative binomial distribution, allowing for rare super-spreading events. 
 
Infections are seeded in the population and spread through the networks. Biological and 
epidemiological characteristics of COVID-19 disease have been derived from the 
scientific literature. The model takes into account asymptomatic infections and different 
stages of severity, and includes the simulation of hospitalisations and ICU admissions. 
Since symptoms, disease progression and infectiousness are highly age-dependent, 
disease pathways in the model are age-stratified. 
 
The ABM was developed to simulate different non-pharmaceutical interventions 
including lockdown, physical distancing, self-isolation on symptoms, testing and contact 
tracing. Modelling contact tracing requires the model to keep a record of previous 
interventions for a set number of days. A variety of contact tracing algorithms are 
included in the ABM, including tracing on symptoms and/or after a positive test, notifying 
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first-degree contacts only or second-degree contacts as well, testing of traced contacts, 
and imperfections in test-trace-isolate programmes such as delays, missed contacts 
and partial compliance. The model reports both aggregated data, such as incidence, 
tests required, individuals quarantined for various reasons etc., and individual data such 
as transmission relationships. 
 
OpenABM-Covid19 is available on Github 
( ​https://github.com/BDI-pathogens/OpenABM-Covid19​), including model 
documentation, dictionaries for input parameters and output files, over 200 tests in a 
consistent testing framework used in model validation, and examples for running the 
model. The core of the model is implemented in the C language for speed; however, the 
model is run via Python using a SWIG-interface. This interface allows for dynamic 
intervention strategies to be modelled, as well as providing full transparency about the 
state of the model. This manuscript was prepared using v0.3 of the model (commit 
number d14351e) and code for reproducing all figures in this manuscript from model 
output are publicly available online 
( ​https://github.com/BDI-pathogens/OpenABM-Covid19-model-paper​).  
 
OpenABM-Covid19 enables simulation of interventions to help policymakers determine 
the best options to suppress the COVID-19 epidemic in various settings. Default 
demographic parameters were chosen to reflect the UK and fit well to the UK epidemic 
after calibration; however, all parameters of the model can be changed by the user. 
 
 
2. Demographics 
 
Within the ABM, individuals are categorised into nine age groups by decade, from “0-9 
year” to “80+ years”. Decades were used because of the strong age-structure of the 
disease progression. By default, the demographics of the ABM are set to UK national 
data for 2018 from the Office of National Statistics (ONS). The proportion of individuals 
in each age group is the same as that specified by the population level statistics in 
Supplementary Table 1. Since we only consider simulating the epidemics up to a year, 
we do not consider changes in the population due to births, deaths due to other causes, 
and migration. 
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3. Interaction network 
 
In each of the interaction networks, individuals are represented as a node. Constant and 
dynamic connections occur between the nodes in the networks, representing 
interactions between individuals. The three networks represent different types of daily 
interactions: household, occupation, and random (Figure 1). The interaction networks 
have two roles in the ABM. First, the infection can be transmitted between two 
individuals on a day that they interact. Second, the interactions for each individual are 
stored and can be used for contact tracing. The membership of different networks leads 
to age-group assortativity in the interactions. A previous study of social contacts for 
infectious disease modelling, based on participants being asked to recall their 
interactions over the past day, has estimated the mean number of interactions that 
individuals have by age group ​[12]​. We estimate mean interactions by age group by 
aggregating data (Supplementary Table 2). Figure 2a depicts the resulting distribution of 
contacts by network and Figure 2b by age. 
 
 

 
Figure 1: Schematic depiction of the interaction networks. The household and 
occupation networks are recurrent whereas the random network is transient and rebuilt 
each day. 
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Figure 2: Distribution of daily simulated interactions: A) stratified by network upon which 
they occur; B) stratified by age group; and stratified by age group of both individuals in 
the C) occupation, D) household, and E) random networks. Interactions are from the 
first day of a single simulation in a population of 1 million individuals with UK-like 
demographics and household structure. Zero counts are shown in white.  
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Every individual is assigned to live in a single household. The household network is 
formed by all members of every household interacting with each other every day. The 
distribution of household sizes is the ONS estimate for the UK in 2018 (Supplementary 
Table 1). In addition to the household size, the mix of ages in households is important 
since multi-generational households provide a path by which the infection can be 
transmitted from young to old. To model this we used a reference panel of 10,000 
households taken by down-sampling the UK-wide household composition data from the 
2011 Census produced by the ONS. The overall household structure was generated by 
sampling from the reference household panel with replacement and using 
rejection-sampling to match the aggregate statistics for the age demographics and 
household size. 
 
Each individual is also a member of a recurring occupation network to model school, 
workplace or social networks. The occupation networks are modelled as small-world 
networks ​[13]​. The network has a fixed set of connections between individuals, and 
each day a random subset (50%) of these connections are chosen as the interactions 
between individuals. When constructing the occupation networks, the ABM ensures the 
absence of overlaps between the household interactions and the local interactions on 
the small-world network. For children, there are separate occupation networks for the 
0-9 year age group (i.e. nursery/primary school) and the 10-19 year age group (i.e 
secondary school). On each of these networks we introduce a small number of adults (1 
adult per 5 children) to represent teaching and other school staff. Similarly for the 70-79 
year age group and the 80+ year age group we created separate networks representing 
daytime social activities among elderly people (again with 1 younger adult per 5 elderly 
people to represent some mixing between the age groups). All remaining adults (the 
vast majority) are part of the 20-69 network. Due to the difference in total number of 
daily interactions, each age group has a different number of interactions in their 
occupation network. Parameters and values corresponding to the occupation network 
are shown in Supplementary Table 3.  
 
In addition to the recurring structured networks of households and occupations, we 
include random interactions. These are drawn randomly each day, independent of 
previous connections. The number of random connections an individual makes is the 
same each day (in the absence of interventions), drawn at the start of the simulation 
from an over-dispersed negative-binomial distribution. This variation in the number of 
interactions introduces some “super-spreaders” into the network who have many more 
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interactions than average. The mean numbers of connections were chosen so that the 
total number of daily interactions matched that from a previous study of social 
interaction ​[12]​. The number of random interactions was chosen to be lower in children 
in comparison to other age groups. Interactions in the random network are listed in 
Supplementary Table 4. 
 
 
4. Infection Dynamics 
 
The infection is spread by interactions between infected (source) and susceptible 
(recipient) individuals. The rate of transmission is determined by three factors: the 
infectiousness of the source, the age-dependent susceptibility of the recipient, and the 
type of interaction, i.e. on which network it occurred.  
 
Infectiousness varies over the natural course of an infection, i.e. as a function of the 
amount of time the source has been infected, 𝜏. Infectiousness starts at zero at the point 
of infection (𝜏 = 0), increases to a peak at an intermediate time, and decreases to zero a 
long time after infection (large 𝜏). Following ​[7]​, we took the functional form of 
infectiousness to be a scaled gamma distribution. We chose the mean and standard 
deviation as intermediate values between different studies ​[7,14,15] ​. Once infected, we 
split individuals into three groups based upon the eventual severity of the disease: 
asymptomatic, mild symptomatic and moderate-severe symptomatics. The level of 
infectiousness depends upon the eventual severity of the disease, i.e. pre-symptomatic 
individuals who go on to develop moderate-severe symptoms are more infectious than 
those who go on to develop mild symptoms. By default, the overall infectiousness of 
asymptomatic individuals and individuals with mild symptoms, is 0.33 and 0.72 times 
that of individuals with moderate-severe symptoms respectively ​[16]​.  
 
An example of how transmissions can be stratified by the infection status of the source 
and the age of both source and recipient is depicted in Figure 3. In this simulation of an 
uncontrolled epidemic, most transmissions occur from pre-symptomatic individuals with 
mild disease who are more numerous than individuals who go on to develop severe 
disease, followed by symptomatic individuals with mild disease. Interventions that 
reduce the rate of growth of transmission will change the relative contributions of 
different symptomatic stages. 
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Figure 3: Summary of transmission events from a single simulated uncontrolled 
epidemic stratified by age of both source and recipient and by infectious status of the 
source. 
 
 
 
 
The susceptibility of the recipient to infection is modelled with a scale factor dependent 
on the recipient’s age. To calibrate these factors, we identified studies of whether or not 
transmission occurred from index cases to monitored close contacts ​[17–24] ​. Lower 
probability of infection in children was reported in almost all studies, including that of 
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Zhang et al ​[17]​ which observed more infections than the rest of the studies combined, 
with consistent adjustment for other covariates of transmission risk. We used the 
susceptibility by age of Zhang et al., interpolated to match our ten-year age categories. 
The merged data and fit are shown in Supplementary Table 5. 
 
Finally, we model the type of interaction, i.e. on which network the interaction took 
place. Whilst we do not have data on the length of interactions, interactions which take 
place within a person’s home are likely to be closer than other types of interactions 
leading to higher rates of transmission. This is modelled using a scale factor, which is 2 
by default. Combining all effects, we model the hazard rate per interaction at which the 
virus is transmitted by 
 

 
where ​t​ is the time since the source was infected; ​d​ indicates the disease severity of the 
source (asymptomatic, mild, moderate/severe); ​a ​ is the age of the recipient; ​n​ is the 
type of network where the interaction occurred; ​I​ is the mean number of daily 
interactions; ​ f​Γ​( ​u; μ, σ​2​) ​ is the probability density function of a gamma distribution;​ ​μ ​i​ ​and 
σ​i​ ​are the mean and width of the infectiousness curve; ​R​ scales the overall infection 
rate; ​S ​a​ ​is the relative susceptibility of the recipient based on age; ​A​d ​is the relative 
infectiousness of the source based on disease severity; ​B ​n​ is the scale factor for the 
network on which the interaction occurred. ​Supplementary Table 6 contains the values 
of the parameters used in simulations. The transmission hazard rate 𝜆 is converted to a 
probability of transmission via  The epidemic is seeded by randomly.P = 1 − e−λ  
infecting individuals on the day before the simulation starts. 
 
5. Natural History of Infection 
 
Upon infection, an individual enters a disease progression cascade where the outcome 
and rates of progression depend on the age of the infected person. The disease state 
transitions are shown in Figure 4 and the model parameters in Supplementary Tables 7 
and 8.  
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Figure 4: The disease status of an individual, and the probability and time distribution of 
transitions. The Φ ​xxx​(age) variables are the probability of transition to a particular state 
when there is a choice, where the probability depends upon the age of the individual. 
The τ​xxx​ are the gamma distributed variables of the time taken to make the transition. 
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A fraction Φ​asym​(age) of individuals are asymptomatic and do not develop symptoms, a 
fraction Φ​mild​(age) will eventually develop mild symptoms, and the remainder develop 
moderate/severe symptoms. Each of these proportions depend on the age of the 
infected individual (Supplementary Table 7). Those who are asymptomatic are 
infectious at a lower level (see Infection Dynamics section) and will move to a recovered 
state after a time τ​a,rec​ drawn from a gamma distribution.  
 
Once an individual is recovered the model allows immunity to wane through time using 
two parameters: a fixed period for which every individual must wait, τ​waning-shift​, and then a 
geometric distribution of waiting times until individuals become susceptible, 
parameterised by its mean τ​waning-mean​. By default, the model assumes τ ​waning-shift​ to be 
10,000 days (essentially no waning immunity). During this waiting period, infection is 
assumed to be completely immunising (recovered individuals cannot be reinfected). 
 
Individuals who will develop symptoms start by being in a pre-symptomatic state, in 
which they are infectious but have no symptoms. The pre-symptomatic state is 
important for modelling interventions because individuals in this state do not realise they 
are infectious and therefore will not self-isolate based on symptoms to prevent infecting 
others. Individuals who develop mild symptoms do so after time τ​sym​ and then recover 
after time τ​rec​ (both drawn from gamma ​ ​distributions). The remaining individuals 
develop moderate/severe symptoms after a time τ​sym​ drawn from the gamma 
distribution. 
 
Whilst most individuals recover without requiring hospitalisation, a fraction Φ​hosp​(age) of 
those with moderate/severe symptoms will require hospitalisation. This fraction is 
age-dependent. Those who do not require hospitalisation recover after a time τ​rec​ drawn 
from a gamma distribution, whilst those who require hospitalisation are admitted to 
hospital after a time τ ​hosp​, which is drawn from a shifted Bernoulli distribution. Among all 
hospitalised individuals, a fraction Φ​crit​(age) develop critical symptoms and require 
intensive care treatment, with the remainder recovering after a time τ​hosp​,​rec​ drawn from a 
gamma distribution. The time from hospitalisation to developing critical symptoms, τ​crit​, is 
drawn from a shifted Bernoulli distribution. Of those who develop critical symptoms, a 
fraction Φ​ICU​(age) will receive intensive care treatment. For patients receiving intensive 
care treatment, a fraction Φ​death​(age) die after a time τ ​death​ drawn from a gamma 
distribution, with the remainder leaving intensive care after a time τ​crit,surv​. Patients who 
require critical care and do not receive intensive care treatment are assumed to die 
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upon developing critical symptoms. Patients who survive critical symptoms remain in 
hospital for τ ​hosp,rec​ before recovering. The age-dependent infection fatality ratio (IFR) is 
depicted in Figure 5; other age-dependent outcomes in Supplementary Figure 1. 
Supplementary Figure 2 shows the corresponding waiting time distributions. 
 

 
Figure 5: Age-stratified infection fatality ratio (IFR) as output from a single simulation in 
a population of 1 million with UK-like demography and with a lockdown when 
prevalence reached 2%. Grey numbers on each bar show the IFR within each age 
group.  
 
 
 
Main outputs of the model include the number of infected individuals, hospitalisations, 
ICU admissions and deaths (Figure 6). Additional outputs are the number of people in 
quarantine and the number of tests required, which is of particular interest when 
comparing different interventions. Transmissions can be depicted according to their type 
(pre-symptomatic, symptomatic and asymptomatic). The model provides a good fit to 
UK data (Figure 6).  
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Figure 6: Example of model outputs from a single simulation in a population of 65 million 
individuals with UK-like demographics and control interventions.  Day 0 is the beginning 
of lockdown (23rd March).  Overlaid data are provisional counts of the number of deaths 
involving the coronavirus (COVID-19) registered in England and Wales (accessed on 
5th June 2020), and people in hospital (UK) from UK government press conference 5th 
June 2020.  Simulations are not calibrated to hospitalisation data, only shown for 
completeness.  
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6. Non-Pharmaceutical Interventions  
 
OpenABM-Covid19 can model a range of non-pharmaceutical interventions (NPIs). 
Given the many types of intervention and interest in introducing them at different times, 
the interventions are controlled in the simulation dynamically through the Python 
interface. This allows for policy interventions to be applied in response to change in the 
growth of the epidemic (e.g. stricter policies such as lockdown can be applied when 
prevalence is above a threshold). Below we give brief descriptions of the interventions 
and sample Python code is given in the Supplementary Materials with links to Jupyter 
Notebooks. All model parameters involved with NPIs are given in Supplementary Tables 
10 and 11. 
 

1. Self-isolation upon symptoms​: a proportion of individuals self-isolate upon 
developing symptoms. Self-isolation is modelled by stopping interactions on the 
individual’s occupation network and greatly reducing their number of interactions 
on the random network. The default time for self-isolation is 7 days with a daily 
dropout. The ABM contains the option to quarantine everybody within the 
household of the symptomatic individual. The ABM also considers individuals 
without COVID-19 who develop flu-like symptoms. Supplementary Figure 4a is a 
Jupyter Notebook demonstrating how self-isolation upon symptoms reduces the 
rate of spread of the infection. 

2. Hospitalisation:​ once admitted to hospitals, a patient immediately stops 
interacting with the household, occupation and random networks. We do not 
model interactions within hospitals, but will add this in future work. 

3. Lockdown​: is modelled by reducing the number of interactions that people have 
on their occupation and random networks (by default by 71%). Additionally, given 
that during lockdown people stay at home, the transmission rate for interactions 
on the household network is increased by a factor of 1.5. Supplementary Figure 
4b is a Jupyter Notebook demonstrating the rapid reduction in new infections 
when a lockdown is imposed. The impact of lockdown on the reproduction 
number, R, is given in Supplementary Figure 5 and an animation showing the 
age-stratified detail breakouts is in Supplementary Figure 6.  

4. Shielding​: contact reductions can be applied to certain age groups only. For 
example, given that fatality ratio is highly skewed towards the over 70s, we have 
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the option of applying a reduction in contacts to this demographic group only. 
Supplementary Figure 4c is a Jupyter Notebook demonstrating how new 
infections can be kept low in a shielded group. 

5. Physical distancing​: measures such as physical distancing and mask wearing 
will reduce the probability of transmission in certain types of interactions (i.e. 
random interactions but not household interactions). The ABM allows for this to 
be modelled by allowing for the network-specific transmission multipliers to be 
adjusted during a simulation. Supplementary Figure 4d is a Jupyter Notebook 
demonstrating how new infections can be kept low after a lockdown with 
(extreme) social distancing measures. 

 
 
7. Testing and Contact Tracing 
 
OpenABM-Covid19 is able to model contact tracing (both manual and digital) and how it 
operates with or without an integrated testing system. The model contains many of the 
real-world imperfections which affect test and contact tracing programmes, such as test 
sensitivity and specificity, delays in testing and contact tracing, incomplete coverage, 
failure to recall contacts, contact tracer resource limitations and impartial adherence to 
quarantine requests. It also has the ability to model recursive contact tracing with and 
without testing. Below we give descriptions of the test and contact tracing features, with 
sample code given in the Supplementary Materials along with links to Jupyter 
Notebooks. 
 

1. Testing for SARS-CoV-2 infection​: Testing can occur in both the community 
and hospital (where an immediate clinical diagnosis is allowed). Tests are 
assumed to be sensitive from 3 days post-infection to 14 days post-infection with 
a sensitivity of 80% and specificity of 99%. For community testing, delays can be 
introduced for ordering a test and for receiving the test result. Testing of an 
individual in the community is triggered by reporting symptoms and can also be 
triggered by being contact traced. Supplementary Figure 4e demonstrates the 
importance in quick testing if self-isolation only occurs after a positive test (as 
opposed to on symptoms). 
 

2. Digital Contact Tracing:​ Contact tracing is vital to control epidemics with a high 
level of pre-symptomatic transmission. A variable fraction of individuals in each 
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group can be assigned to have the app. Ownership of smartphones is based on 
age-stratified OFCOM data (Supplementary Figure 3 and ​Supplementary Table 
9 ​). Digital contact tracing can only occur between two app users. Digital proximity 
sensing is likely to miss some interactions, so when contact tracing a number of 
interactions are randomly dropped. For contact tracing, the model takes into 
account all interactions the individual has had with other app-users for the past 
seven days which have not been dropped. The model can simulate different 
app-based contact tracing algorithms. The app can send out notifications with the 
request to quarantine based on symptoms, or based on a positive test result of 
the index case. It can ask the household members of the index case and/or 
household members of the contacts to quarantine and also send out notifications 
deeper into the network if desired. It can request tests for contacts of index cases 
if desired. Supplementary Figure 4f demonstrates how digital contact tracing 
following rapid testing can prevent a second wave even when the average 
uptake is at only 50% of the total population. 
 

3. Manual Contact Tracing​: Manual contact tracing works in a similar way to digital 
contact tracing with a few key differences. First, since it does not rely on an 
individual being a smartphone user, it can originate from anybody who tests 
positive (particularly important in the elderly where smartphone usage is lower). 
However, since the identification of interactions relies on the index case recalling 
them, only a fraction of actual interactions are traced. In particular, the fraction of 
interactions recalled depends on the type of interaction (i.e. occupation based 
interactions are more likely to be recalled than random interactions). Manual 
contact tracing only occurs after a delay following a positive test, to account for 
contact tracers contacting both the index and traced individuals. Finally, during a 
peak in the epidemic the amount of contact tracing required increases and risks 
overwhelming a manual contact tracing service. Therefore the model contains 
constraints on the total number of interviews that contact tracers can perform on 
a single day. Supplementary Figure 4g demonstrates how a well-staffed manual 
contact tracing following rapid testing can lessen a second wave. 
 

4. Quarantine​: Contact traced individuals can be asked to quarantine (default 14 
days) either because they are directly traced or because they are a household 
member of somebody who has been traced. Like self-isolation, quarantine is 
modelled by stopping interactions on the workplace network and greatly reducing 
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the number of interactions on the random network. The model includes a daily 
dropout rate to simulate imperfect adherence. Quarantine can be ended if the 
index case later tests negative (after tracing based upon their symptoms), or if 
the quarantined individual tests negative. 

 
8. Implementation details 
 
The core of OpenABM-Covid19 is coded in C using an object-oriented coding style. The 
code is written in a modular manner to ease readability and encourage extension of the 
code base. It is open source and is being actively developed by multiple teams. The 
model uses the GNU Scientific Library (GSL) for mathematical functions, statistical 
distributions, and random number generation ​[25]​ and so any distribution or function 
available within the GSL can be easily incorporated into the model (for instance in 
modelling waiting-time distributions). Memory is pre-allocated at the start of the 
simulation for efficiency. 
 
An important feature of the implementation is the Python interface using SWIG. Running 
the model via Python allows for complex dynamic interventions strategies to be easily 
modelled (see examples in Supplementary Figure 4a-h). All states of the model (e.g. 
transmission events, interactions, individual characteristics) are exposed in Python, 
which gives full transparency to the results of the model. For example, Supplementary 
Figure 4h is a Notebook showing how to calculate the relative personal protective effect 
of for app users versus non-app users when digital contact tracing is used. Python is 
also a ubiquitous language amongst data scientists, and the interface allows them to 
fully interact with the model whilst keeping the high speed and memory performance of 
C. 
 
The model codebase includes over 200 tests used to validate the model. Each test 
ensures an expected output from the model is realised for a specified set of input 
parameters. Tests are written in a consistent manner, using the pytest framework. All 
tests are automatically run when new contributions to the codebase are made. Tests 
vary input parameters ensuring that expected behaviour of the model is realised across 
a wide range of input parameter values. Tests cover a range of domains including: 
disease dynamics, infection and transmission dynamics, non-pharmaceutical 
interventions, network construction, the C and Python interface, the waiting time 
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distributions, file concordance across the multiple output files from the model, and 
non-disease related demographics.  
 
Performance. The ABM for 1 million individuals takes approximately 3s per day to run 
and requires 5Gb of memory (reduced to 1.7Gb if contact-tracing is disabled) on a 2015 
MacBook Pro. Both speed and memory are linear in population size (tested from 100k 
to 1m). The majority of the CPU usage is spent on rebuilding the daily interaction 
networks and updating the individual’s interaction diaries.  
 
9. Discussion 
 
We present OpenABM-Covid19, a COVID-19-specific agent-based model suitable for 
simulating the epidemic in different settings and assessing non-pharmaceutical 
interventions, including contact tracing using a mobile phone app. The model is well 
documented with a simple interface, allowing non-experts to easily evaluate complex 
dynamic intervention strategies in a few lines of Python code. OpenABM-Covid19 is an 
open-source project and is easily extensible, with new features already being added by 
multiple external teams. The model is fully documented and is thoroughly tested in a 
formal testing framework. 
 
The model was designed to be as parsimonious as possible, with complexity only added 
when it was essential to model important features of COVID-19 or details of 
non-pharmaceutical interventions, and with parameters being inferred from published 
studies. Due to the substantial pre-symptomatic and asymptomatic transmission of the 
virus, it is necessary to model each individual’s normal daily interactions. Further, on 
developing symptoms or during interventions such as contact tracing, the interaction 
pattern of individuals change to only include those in the household.  We therefore took 
the decision to model interactions using three social networks 
(household/occupational/random) with non-pharmaceutical interventions affecting each 
network differently. Recurring small-world networks were used to model interactions at 
home and at work, whereas a transient random network was used to model other daily 
interactions such as on public transport or in shops. The strong association of 
COVID-19 disease progression with age along with the age assortativity of social 
networks, led us to using a decade age-structure. The model simulated an urban 
population of 1 million rather than the population of a whole country to allow realistic 
estimates for hospitalisation and ICU admission forecasts on a regional level. Large 
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national epidemics will also exhibit meta-population dynamics rather than the spatially 
unstructured mixing modelled here. 
 
One of the key aims of OpenABM-Covid19 was to model non-pharmaceutical 
interventions and, in particular, different forms of contact tracing. The model of digital 
contact-tracing allows for questions such as the role of: testing delays, different 
quarantine requests, compliance rates, recursive testing, and app uptake to be 
investigated. The model of manual contact-tracing allows for questions such as 
resource limitations, partial contact recall and interview delays to be investigated. 
Importantly, due to the simple Python interface, it is possible for non-experts to simulate 
all these features and to investigate the effect of applying multiple intervention policies 
at different stages of the epidemic. 
 
The current version of the model does not currently include events in hospitals, 
care-home settings, non-hospital deaths, gender/sex of individuals, comorbidities, or 
any geographical structure apart from that implicit within the three modelled networks. 
All of these limitations are being currently addressed by collaborators and will become 
available on the Github repository in the near future. 
 
OpenABM-Covid19 is a versatile tool to model the COVID-19 epidemic in different 
settings and simulate different non-pharmaceutical interventions including contact 
tracing. OpenABM-Covid19 is a modular tool that will help scientists and policymakers 
weigh decisions during this epidemic. Our vision is that, with the help of the world-wide 
modelling community, it will develop into a family of models for infectious diseases that 
are at risk of causing pandemics in the future, adding to the international toolkit for 
epidemic preparedness. 
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