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Abstract 10 

Simultaneously controlling COVID-19 epidemics and limiting economic and societal 11 

impacts presents a difficult challenge, especially with limited public health budgets. 12 

Testing, contact tracing, and isolating/quarantining is a key strategy that has been used 13 

to reduce transmission of SARS-CoV-2, the virus that causes COVID-19. However, 14 

manual contact tracing is a time-consuming process and as case numbers increase it 15 

takes longer to reach each cases’ contacts, leading to additional virus spread. Delays 16 

between symptom onset and being tested (and receiving results), and a low fraction of 17 

symptomatic cases being tested and traced can also reduce the impact of contact 18 

tracing on transmission. We examined the relationship between cases and delays and 19 

the pathogen reproductive number Rt, and the implications for infection dynamics using 20 

a stochastic compartment model of SARS-CoV-2. We found that Rt increases 21 

sigmoidally with the number of cases due to decreasing contact tracing efficacy. This 22 

relationship results in accelerating epidemics because Rt increases, rather than 23 

declines, as infections increase. Shifting contact tracers from locations with high and 24 

low case burdens relative to capacity to locations with intermediate case burdens 25 

maximizes their impact in reducing Rt (but minimizing total infections is more 26 

complicated). Contact tracing efficacy also decreased with increasing delays between 27 

symptom onset and tracing and with lower fraction of symptomatic infections being 28 

tested. Finally, testing and tracing reductions in Rt can sometimes greatly delay 29 

epidemics due to the highly heterogeneous transmission dynamics of SARS-CoV-2. 30 

These results demonstrate the importance of having an expandable or mobile team of 31 

contact tracers that can be used to control surges in cases, and the value of easy 32 

access, high testing capacity and rapid turn-around of testing results, as well as 33 

outreach efforts to encourage symptomatic infections to be tested immediately after 34 

symptom onset. 35 
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Author Summary 37 

 A key tool in the control of infectious diseases is contact tracing – the 38 

identification of individuals who have contacted the case and may have been infected 39 

by a newly detected case. However, to successfully contact and quarantine individuals 40 

requires time, and as cases rise, this can result in delays in reaching contacts during 41 

which time they may infect other people. Here we examine the quantitative relationships 42 

between increasing case numbers, contact tracing efficiency, and the pathogen 43 

reproductive number Rt (the number of cases infected by each case) and how these 44 

relationships vary with delays and incomplete participation in the testing and tracing 45 

process. We built  46 

 47 

Introduction 48 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 49 

2019 spread globally in early 2020 and resulted in rapidly growing local epidemics, large 50 

scale mortality, and strains on hospital capacity in many countries (1-4). Initial outbreaks 51 

in most countries and US states were arrested only by severe control measures 52 

including closing all but essential businesses as well as schools, churches, and other 53 

organizations (5), while a few countries were able to limit transmission, at least 54 

temporarily, primarily with public health measures (6-8). Severe disease control 55 

measures have had devastating impacts on economies and societies (5). Most 56 

countries and US states are now attempting to re-open as many business sectors and 57 

activities as possible while avoiding a rapid rise in infections. 58 

 Although self-isolation, social distancing, and mask wearing have reduced the 59 

transmission of SARS-CoV-2, additional interventions, including business closures and 60 

working from home, have often been required to keep the pathogen reproductive 61 

number Rt below 1 (5, 9, 10), especially in the United States. One public health strategy 62 

that has been used effectively to limit transmission in some countries is testing 63 

symptomatic individuals, tracing their contacts to people they may have infected, and 64 

isolating infected individuals and quarantining people that may have become infected 65 

but have yet to show symptoms or test positive for the virus (hereafter abbreviated T-66 
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CT-I/Q) (7, 10, 11). If contacts of cases can be found and quarantined or isolated before 67 

or during their infectious period, this can limit onward spread of the virus. 68 

 Numerous studies have examined the effectiveness and limitations of T-CT-I/Q 69 

on transmission of SARS-CoV-2 (11-18). Many studies have shown that T-CT-I/Q can 70 

substantially reduce the pathogen reproductive ratio, Rt, but its efficacy depends on the 71 

importance of pre-symptomatic and asymptomatic transmission, delays between 72 

symptom onset and being tested, and the fraction of infections that are tested and 73 

traced (11, 15, 18). Previous studies have explored various parameter values for 74 

contact tracing efficacy by varying the fraction isolated, the fraction symptomatic, and 75 

the contribution to transmission of undetected infections (11, 15, 18). A key unexplored 76 

challenge in implementing T-CT-I/Q is that tracing contacts and ensuring they can 77 

safely quarantine or isolate is a time-consuming process which results in delays 78 

between detecting a case and successfully quarantining their contacts. This delay 79 

reduces the effectiveness of contact tracing as cases increase. Previous studies have 80 

assumed fixed values for contact tracing parameters and thus have not addressed this 81 

issue. 82 

 Our aim was to examine the relationship between increasing cases, contact 83 

tracing efficacy, and the pathogen reproductive ratio, Rt, and to examine the potential 84 

outcomes for disease dynamics. We built a compartment model of SARS-CoV-2 85 

transmission, parameterized it with data from the literature, and examined how Rt varied 86 

with number cases traced, delays between symptom onset and the start of contact 87 

tracing, the numbers of contacts per case, and different fractions of symptomatic cases 88 

being tested and traced. We also simulated a stochastic version of the model with and 89 

without contact tracing to examine how reductions in Rt affected variation in the timing 90 

of epidemics. 91 

 92 

Methods 93 

We built a susceptible-exposed-infected-recovered (SEIR) compartment model of 94 

SARS-CoV-2 that included four compartments for infected individuals that reflect 95 

symptom severity (asymptomatic, Ia, pre-symptomatic, Ips, mildly symptomatic, Ims, and 96 

severely symptomatic, Iss) (Fig S1). The equations of the model are: 97 
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 98 

dS/dt = -S/N(aIa + psIps + msIms+ ssIss) 99 

dE/dt = S/N(aIa + psIps + msIms+ ssIss) - ( + qE→ps + qE→a) E 100 

dIps/dt = qE→psE - ( + qps→ms) Ips 101 

dIa/dt = qE→aE- ( + a) Ia 102 

dIms/dt = qps→msIps - ( + ms + qms→ss + ms) Ims      [eq. 1] 103 

dIss/dt = qms→ss Ims - ( + ss +  + ss) Iss 104 

dQ/dt = Ia + Ips + ( + ms) Ims + ( + ss) Iss - QQ 105 

dR/dt = aIa + msIms + ssIss + QQ 106 

 107 

where  is a social distancing factor between 0 and 1 that scales the contact rate ,  108 

are relative infectiousness values for each of the I classes, q are transition rates 109 

between classes given by the subscripts separated by the arrow (qE→ps is the transition 110 

rate between the E and Ips classes),  is the rate of removal by contact tracing from the 111 

E or I classes to the quarantined class Q,  are the removal rate by testing of mildly 112 

symptomatic or severely symptomatic infected individuals,  is the disease-caused 113 

death rate, and  are the recovery rates to the R class. 114 

 The contact tracing removal rate  is given by:  115 

𝜀 =
𝑓𝑆𝐶𝑇𝑞𝐸→𝑝𝑠

𝑞𝐸→𝑝𝑠+𝑞𝐸→𝑎
 

1

1/𝜏𝑚𝑠+0.5
𝐼𝑝𝑠𝑞𝑝𝑠→𝑚𝑠𝑁𝑐𝑝𝑐

𝑁𝐶𝑇𝑁𝐶𝐶𝑇𝐷

        [eq. 2] 116 

The first term is the fraction of infections traced; fSCT is the fraction of symptomatic 117 

infections that are traced of those detected with test removal rate ms before they 118 

recover or progress to severe symptoms; fSCT is equal to ftmstr*ms/(ms+qms→ss+ms); fSCT 119 

is multiplied by the ratio of transition rates [qE→ps/( qE→ps+qE→a)] which is the fraction of 120 

infections that are symptomatic; ftmstr is the fraction of mildly symptomatic cases 121 

detected by testing that were traced. We didn’t include tracing from severely 122 

symptomatic cases because, by the time an infection progresses to severe symptoms 123 

5-8 days after symptom onset (19, 20), their contacts will already have finished most of 124 

their infectious period, and quarantining their contacts will have little effect.  125 

The second term is the inverse of the time between symptom onset of the 126 
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symptomatic infection and being removed by contact tracing which is the sum of the 127 

delay between symptom onset and receiving a test result, 1/ms, and the average time 128 

needed to reach the contacts of the newly detected cases (which is half the total time to 129 

call all contacts). qps→msIps is the rate of new symptomatic infections that need to be 130 

traced, Ncpc is the average number of contacts per case, NCT is the number of contact 131 

tracers, and NCCTD is the number of calls each contact tracer can make each day. 132 

We parameterized the model with data from the literature, with all rates in days-1 133 

(Table 1) and used the baseline contact tracing capacity standards suggested by the 134 

US National Association of County and City Health Officials (15 contact tracers per 135 

100,000 people; https://www.naccho.org/uploads/full-width-images/Contact-Tracing-136 

Statement-4-16-2020.pdf). We note that while notifying individuals that they have had 137 

contact with a case can be done quickly (especially with using a cell-phone tracing app; 138 

(18)), successfully ensuring a contact has their needs met (including food, medicine, 139 

clothing) to quarantine in a safe space where they won’t infect their household members 140 

requires substantially more time (https://www.cdc.gov/coronavirus/2019-141 

ncov/php/notification-of-exposure.html). We assumed the approximate duration required 142 

for a successful contact tracing call was 40 min, resulting in NCCTD = 12 143 

We used the next generation matrix technique to derive an expression for the 144 

pathogen reproductive ratio Rt (21): 145 

 146 

Rt = S/N[] *  147 

  [[(qE→a)(a) / ( + a)] +[(qE→ps)(ps) / ( + qps→ms)] +     [eq. 3] 148 

  [(qE→ps)(qps→ms)(ms) / (( + qps→ms)( + ms + qms→ss + ms)) ] +  149 

  [(qE→ps)(qps→ms)(qms→ss)(ss) /  150 

  (( + qps→ms)( + ms + qms→ss + ms)( + ss +  + ss)) ] ] / ( + qE→a + qE→ps) 151 

 152 

This expression can be understood as the fraction of the population that is susceptible, 153 

S/N multiplied by the contact rate  (which is scaled by the social distancing factor ), 154 

multiplied by the sum of four terms: one for each infected class. Each of the four terms 155 

includes the product of the transition rates q to reach that class from the E class 156 

multiplied by the infectiousness of that class, , divided by the recovery, testing and 157 
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tracing rates leaving that I class and the I classes before it. Finally, all four terms are 158 

divided by the rates hosts leave the E class which normalizes the rates moving along 159 

each infection pathway. 160 

We examined how Rt and R0 (Rt = R0 at beginning of epidemic when S  N) 161 

varied with different numbers of new symptomatic cases detected (a fraction of the 162 

newly symptomatic infection, Ips qps→ms in eq. 2), delays between symptom onset and the 163 

start of contact tracing (1/ms in eq. 2), and numbers of contacts per case (Ncpc in eq. 2). 164 

Note that because these three quantities occur as a ratio (with the number of contact 165 

tracers) in equation (2), any combination of values that produce the same number of 166 

case-contacts per contact tracer calls per day will produce the same value of Rt. We 167 

illustrated the effect of decreasing contact tracing efficiency as infections increased on 168 

disease dynamics and Rt by simulating a deterministic version of the model in eq. 1 and 169 

plotted Rt in real time as an epidemic swept through a population over one year. We 170 

also performed a simple sensitivity analysis by determining how much Rt varied with a 171 

ten percent increase or decrease in each model parameter (Fig S2). 172 

Finally, we explored the implications of stochastic variability and contact tracing 173 

on infection dynamics in a scenario roughly based on a moderate size city with partly 174 

effective social distancing. We simulated a stochastic version of the model given by eq 175 

1 where the number of new infections was drawn from a negative binomial distribution 176 

with mean equal to Rt and dispersion parameter 0.16 which is intermediate between 177 

available estimates for COVID-19 (22-24). We modeled a scenario of a population of 178 

100,000 people where non-pharmaceutical interventions reduced contact rates by 30% 179 

(=0.7) resulting in R0 with/without contact tracing of 1.32/1.67, testing and contact 180 

tracing took place after an average of 1/ms = 5 days after symptom onset, and half of 181 

symptomatic cases detected by testing being traced (ftmstr = 0.5). We examined different 182 

initial numbers of latently infected individuals, E, at the start of the epidemic to 183 

understand how stochastic variation could impact the timing of epidemics when initial 184 

infections were low. 185 

R code to reproduce the results is available from: 186 

https://github.com/marmkilpatrick/Contact-Tracing-Efficiency 187 

 188 
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 189 

Results 190 

 The effectiveness of contact tracing in reducing the pathogen reproductive 191 

number, Rt, was highly dependent on three factors: the number of cases being traced 192 

(given a fixed number of contact tracers), the delay between symptom onset and the 193 

start of tracing, 1/ms, (including getting tested and receiving result), and the fraction of 194 

symptomatic cases that get traced (Figs 1-3). 195 

 196 

197 

Figure 1. Pathogen reproductive ratio Rt plotted against the number of new cases 198 

per contact tracer calls per day for 1-5 day delays (1/ms) between symptom onset 199 

and the start of contact tracing (including getting tested and receiving result), 10 200 

contacts per case (so the average number of contacts each tracer has to reach 201 

each day is 10x the x-axis values). With no contact tracing Rt increases from 2.03 202 

to 2.37 as the delay 1/ms increases from 1 to 5 days, which is evident in the y-axis 203 

difference between curves in the upper right of the graph where new case 204 

burdens are so high contact tracing is ineffective. Delays are indicated by the 205 

small numbers on each curve in the left of the plot. 206 
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 207 

First, the relationship between R0 and the number of cases per contact tracer 208 

calls per day was sigmoid (Figs 1-3); at both high and low numbers adding or removing 209 

contact tracers had smaller effects whereas at intermediate case numbers relative to 210 

capacity shifting contact tracers would have a larger impact. When the number of new 211 

daily cases per contact tracer call per day was high (i.e. >1 or 10 contacts per contact 212 

tracer calls per day), contact tracing had relatively little effect in reducing R0 no matter 213 

how long the delay was between symptom onset and the start of tracing, 1/ms (right 214 

side of Figs 1; also evident in Figs 2, 3). This is because contact tracing calls took too 215 

long, on average (>10 days), to reduce the infectious period of contacts. Note that for 216 

the parameter estimates used (Table 1), an average case becomes infectious starting 217 

3.2 days after infection, and is highly or moderately infectious for an average of 7.3 218 

more days (ps and ms; Table 1). The exponentially distributed durations for the latent 219 

and infectious periods implied by standard compartmental models result in only 37% of 220 

individuals leaving each class after the average duration, which results in a relatively 221 

smaller benefit of contact tracing beyond this case burden, and resultant delay in 222 

reaching contacts of cases. 223 

 224 
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 225 

Figure 2. Pathogen reproductive ratio Rt plotted against the number of Cases per 226 

contact tracer calls per day for four different number of contacts per case (5, 10, 227 

20, 30; indicated by the small numbers on each curve in the middle of the plot), 228 

and an average delay 1/ms of 5 days between symptom onset and contact tracing 229 

(including getting tested and receiving result). With no contact tracing Rt = 2.39. 230 

 231 

Contact tracers in regions with very high new case numbers relative to contact 232 

tracing capacity (>1 on Fig. 1) would have a larger reduction on Rt if they were tracing 233 

calls with intermediate numbers of cases (0.02 to 1 cases/contact tracer calls per day). 234 

However, it is worth noting that reducing Rt is not the same as preventing new cases 235 

(see Discussion below). Nonetheless, if the goal is to reduce Rt<1 to stop the growth in 236 

cases, the analyses in Figs 1-3 suggest that when new case burdens are high relative 237 

to capacity, population-wide interventions (e.g. social distancing or different levels of 238 

shelter-in-place orders which reduce contact rates,  or , and shift the entire curves in 239 

Fig 1-3 downward proportionately; Fig. S2), or orders of magnitude increases in contact 240 

tracing capacity will be needed until Rt can be effectively reduced by contact tracing. 241 

When there are few (<~0.02) cases per contact tracer call per day, contact 242 
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tracing was as effective as it could be but excess capacity had little impact, especially 243 

for realistic delays, 1/ms, between symptom onset and the start of tracing (e.g. 3-5 244 

days). Shifting contact tracers to other areas with more cases per contact tracer (0.02 to 245 

0.2) would have minimal impact in increasing Rt but could help substantially reduce Rt in 246 

those places with higher new case burdens relative to capacity. 247 

Second, increasing delays, 1/ms, between symptom onset and the start of 248 

tracing greatly influenced the efficacy of contact tracing (Fig. 1). With a 5 day delay, 249 

contact tracing could only reduce R0 by 33% from 2.6 to 1.6 regardless of contact 250 

tracing capacity per case. In contrast, if all symptomatic people sought care and got 251 

tested within 1 day of after symptom onset and results were returned within the next 24 252 

hours (1/ms = 2 days), contact tracing could reduce R0 by 73% from 2.2 to 0.6. Note 253 

that the effect of delays in increasing R0 due to delayed removal by testing alone (ms) is 254 

small compared to the effect of delays in reducing contact tracing efficiency (Fig 1: 255 

compare differences among curves in upper right of graph where contact tracing is 256 

having little effect to differences among curves in lower left of graph where it has 257 

maximal effect). The number of contacts per case obviously also influences the time 258 

required to trace these contacts (Fig. 2). If allowable (or illegal) gathering sizes 259 

increase, this leads to more contacts per case and a faster decrease in contact tracing 260 

efficacy. 261 

Thirdly, if contacts for a substantial fraction of all symptomatic cases do not get 262 

traced and quarantined, T-CT-I/Q is far less effective. Figures 1 and 2 showed an 263 

optimistic scenario where the fraction of symptomatic infections that are tested and 264 

traced is determined only by the delay between symptom onset and testing results 265 

being returned (1/ms) (i.e. all symptomatic infections could be tested and traced). With a 266 

5 day delay (1/ms=5) (Fig. 2), this results in 38% of infections being detected by testing 267 

in the mildly symptomatic state (Ims) which is much higher than estimates of case under-268 

ascertainment based on seroprevalence studies (25). If only half of these cases are 269 

contact traced (ftmstr = 0.5) the maximum impact of contact tracing is smaller: a 21% 270 

reduction in R0 from 2.39 to 1.89 (Fig 3) rather than a 35% decrease from 2.38 to 1.54 271 

(Fig 2). 272 
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 273 

Figure 3. Pathogen reproductive ratio Rt plotted against the number of Cases per 274 

contact tracer calls per day for four different number of contacts per case (5, 10, 275 

20, 30; indicated by the small numbers on each curve in the middle of the plot), 12 276 

calls per contact tracer per day, an average delay 1/ms of 5 days between 277 

symptom onset and contact tracing (including getting tested and receiving 278 

result). This Figure is the same Figure 2, except only half as many contacts are 279 

traced (ftmstr = 0.5). With no contact tracing, Rt = 2.39. 280 

 281 

Reduced contact tracing efficiency with increasing cases can result in a transient 282 

accelerating epidemic where Rt increases over time (Fig 4). If contact tracing capacity is 283 

insufficient to quickly trace contacts, then a decrease in contact tracing efficiency can 284 

initially outweigh the depletion of susceptible individuals and lead to an increase in Rt 285 

over time until depletion of susceptibles overwhelms this effect (Fig 4: compare 286 

rightmost panels with limited contact tracing to leftmost panels where social distancing 287 

reduces Rt to the same initial value as contact tracing). With unlimited contact tracing 288 

this phenomenon does not arise (Fig 4: compare middle panels with unlimited contact 289 

tracing to leftmost panels). 290 
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 291 

 292 

Figure 4. Impact of reduced contact tracing efficiency with increasing cases. Left 293 

panels show (A) the number of susceptible, exposed, infected, and recovered 294 

individuals and (B) reproductive number, Rt, over time with no contact tracing but 295 

social distancing ( = 0.65) set to give same initial R0 (1.55) as with contact 296 

tracing. Middle panels (C, D) show the same variables with unlimited contact 297 

tracing (1500 contact tracers making 12 calls/day; 15 contacts per case; 1/ms = 298 

5d; ftmstr = 1) but no social distancing ( = 1). Right panels (E, F) show the same 299 

variables and parameters as (C, D) but with limited contact tracing (5 contact 300 

tracers). 301 

 302 

The impact of contact tracing in reducing the pathogen reproductive number Rt 303 

has two consequences on the temporal timing and establishment of epidemics. First, as 304 

is well known, reducing Rt delays and reduces the peak of the epidemic (Fig 5 top vs 305 

bottom panels). Second, and less appreciated, stochastic variation in Rt can lead to very 306 

different timing of epidemics if the initial number of infected individuals is low (Fig 5 left 307 

panels), and variation is larger if Rt is lower (Fig 5A vs Fig 5C). Finally, heterogeneity in 308 

individual transmission can result in local fadeout of the pathogen and this is more if 309 

contact tracing reduces Rt so that it is closer to 1, and if the number of infected 310 
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individuals is lower. 311 

 312 

 313 

Figure 5. Variability in the timing and outcome of epidemics due to stochastic 314 

variation in individual Rt. Lines show number of latently infected individuals (in 315 

the E class) over time for 1 year with moderate social distancing that reduces 316 

contact rates by 30% ( = 0.7). Grey lines show a single stochastic simulation and 317 

the black line shows the deterministic outcome. Frac. est. is the fraction of 318 

epidemics that establish (i.e. the maximum number of infected at any time 319 

exceeds the starting number infected). Four scenarios include different starting 320 

numbers of latently infected individuals on day 0, E0 (A, C: 5; B, D: 50), and with 321 

(A, B) or without (C, D) contact tracing (CT) which lowered R0 from 1.67 to 1.32. 322 

The delay from symptom onset to testing and tracing was 5d, but only half of 323 

cases were traced (ftmstr = 0.5), as in Fig 3. The modeled population of 100,000 324 

people had 15 tracers making 12 calls/day, and each case had an average of 15 325 

contacts which is intermediate between pre-lockdown and lockdown conditions. 326 

  327 

 328 

Discussion 329 

 The two main strategies that have been used to control COVID-19 are T-CT-I/Q 330 
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and society-wide social distancing interventions (including closing businesses, banning 331 

gatherings, wearing masks, etc.) (9). Closing businesses has had devastating impacts 332 

on employment and economies, as well as cascading impacts on society. T-CT-I/Q has 333 

far smaller economic and societal costs, but its efficacy in controlling epidemics is not 334 

fully understood, and some studies suggest that it is insufficient to keep Rt below 1 in 335 

many settings, especially without digital contact tracing (10, 11, 18). We examined how 336 

the efficacy of contact tracing decreases with increasing case burden. At high case 337 

burdens relative to contact tracing capacity, contact tracing reached most contacts too 338 

late and had little effect on Rt. Conversely when case numbers were very low relative to 339 

contact tracing capacity, there was excess capacity and, all else being equal, contact 340 

tracers could be used more effectively in higher case burden settings with very small 341 

impacts on local transmission. We note that the exact number of contact tracers needed 342 

to reduce Rt depends on the number of contacts per case and the number of calls each 343 

tracer can make each day (Fig 2). However, the key quantity appears as a ratio of case-344 

contacts per contact tracer calls per day. Thus, each contact tracing team (e.g. a US 345 

County) can use local estimates of contacts per case and the number of calls each 346 

tracer can make each day to determine where they are on the modelled relationships 347 

(Figs 1-3). 348 

A major caveat must be kept in mind in interpreting these results. A smaller 349 

reduction in Rt (e.g. 10%) in one population can prevent more infections (especially over 350 

multiple generations of transmission) than a larger (e.g. 20%) reduction in Rt in a 351 

second population if Rt in the second location is lower (especially when Rt>1 in the first 352 

population), or when there is a larger number of infected individuals in the first 353 

population. Thus, transferring contact tracers from a region with a high case burden 354 

relative to contact tracing capacity to maximize their efficacy in reducing Rt should only 355 

be done if other measures (e.g. social distancing) will be put into place to reduce Rt 356 

where case numbers are high. More generally, allocation of contact tracers to maximize 357 

the number of cases prevented given an array of tools would require a complex 358 

dynamic analysis beyond that examined here. 359 

 We also found that the efficacy of contact tracing itself, regardless of capacity, 360 

was strongly influenced by delays between the onset of symptoms and the beginning of 361 
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tracing, as well as the fraction of symptomatic infections that were traced. Unless delays 362 

were short and the fraction of symptomatic cases that were traced was high, contact 363 

tracing had limited effects in reducing Rt. This finding parallels results from other studies 364 

demonstrating the large effects of delays in reducing efficacy of isolating infections by 365 

testing alone (26). We note that in the model considered here, only symptomatic 366 

individuals were removed by testing (pre-symptomatic and asymptomatic infections 367 

were not tested) which leads to a much smaller impact of testing on Rt. Our results 368 

emphasize the importance of encouraging people to get tested as soon as possible 369 

after mild symptom onset, and having sufficient testing capacity to return their results 370 

quickly. Similarly, the fraction of symptomatic infections that get tested and traced is 371 

poorly known, but if the ratio of infections to cases from seroprevalence studies in some 372 

locations is approximately correct (e.g. 10:1; (25)), then contact tracing will have very 373 

limited effects in reducing transmission. 374 

 Allocation of contact tracing resources can be most efficiently deployed in two 375 

ways. First, contact tracing is much more effective when infections are detected soon 376 

after symptom onset. One should prioritize these individual cases for tracing since their 377 

contacts are likely to be earlier in their infections and quarantining them will cut off most 378 

or all of their infectious period. If one knows the date of contact between the case and 379 

the contact, one could also prioritize tracing more recent contacts and those that had 380 

contact with the case during the case’s days of peak infectiousness just before and after 381 

symptom onset (27, 28). Second, if one is attempting to limit transmission in multiple 382 

regions (e.g. US counties within a state) one could deploy contact tracers to counties 383 

where they will be able to have the most impact: from places with excess capacity to 384 

those with intermediate numbers of cases per contact tracer calls per day. Conversely, 385 

if contact tracers cannot quarantine the contacts of cases within 10-12 days of the 386 

case’s symptom onset, they will be unlikely to effectively reduce transmission from 387 

those contacts. 388 

 Our results also offer insight on two phenomena observed in COVID-19 389 

epidemics that are not fully understood. First, epidemic dynamics sometimes differ 390 

enormously between places that seem otherwise similar. This may be due to 391 

differences in social behavior or contact patterns, but our results illustrate that 392 
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stochastic chance may also play a role in shifting the timing of epidemics by more than 393 

a month, especially when the initial number of cases is low and Rt is closer to 1 (i.e. 394 

when lockdowns are first lifted) so that populations spend longer periods of time with 395 

few cases where stochastic variation is most important. Second, staged business re-396 

openings have sometimes led to accelerating or runaway epidemics. These may be due 397 

to sudden changes in social behavior, but decreases in contact tracing efficiency may 398 

also contribute to these accelerating epidemics, if contact tracing was playing a 399 

significant role in limiting transmission. Increasing contact tracing capacity could limit 400 

this epidemic acceleration as cases increase, which suggests that training a reserve 401 

capacity of tracers to be used following case surges or being able to deploy a mobile 402 

tracing force could help limit runaway epidemics. 403 

 More broadly, contact tracing could play an important role in limiting transmission 404 

of SARS-CoV-2 and other pathogens. However, we found that its efficacy depends on 405 

participation in seeking testing immediately following symptom onset and quick return of 406 

test results, as well as sufficient contact tracing capacity if case numbers surge. 407 

Shortcomings in each of these factors greatly limit its efficacy, which could lead to 408 

implementation of much more damaging measures to control transmission, including 409 

widespread business and school closures. Investments in public health, including 410 

testing, contact tracing, and public outreach to encourage health seeking when 411 

symptomatic, is likely a much more cost-effective approach to control COVID-19. 412 

 413 
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Tables 500 

Table 1. Parameter values for the model. All rates are in days-1 and many are 501 

based on the inverse of measured durations.  502 

Para-
meter 

Value or 
range 

Description Reference or Derivation 

ms 0.2-1 Testing removal rate 
for Ims (1/delay from 
onset to testing & 
tracing) 

Scenarios explored 

 0.37 Contact rate Set to give plausible pre-

lockdown R0  2-3 (29)  

ftmstr 0.5 or 1 Fraction of mildly 
symptomatic cases 
detected by testing 
whose contacts were 
traced 

Scenarios explored 

 0-1 Social distancing 
factor 

Adjusted to produce Rt  1.2-1.7; 
consistent with data post-
lockdown; (29) 

 0.0025 Disease caused death 
rate 

estimated from IFR* 

(ms+ss+qE→a)/(1-IFR) = using 
infection fatality ratio IFR = 
0.0066; (30, 31) 

qE→a 0.078 Transition rate 
exposed to 
asymptomatically 
infected 

Estimated from qE→a = 

fasymp(qE→ps)/ (1- fasymp) using 
fraction asymptomatic (fasymp = 
0.2); (32) 

qE→ps 1/3.2 1/(duration latent 
period) 

(28) 

qps→ms 1/2.3 1/(duration pre-
symptomatic period) 

(28) 

qms→ss 1/8 1/duration mild 
symptoms 

(19, 20) 

a 1/8 Asymptomatic 
recovery rate 

Based on average ratio of 
shedding durations compared to 
symptomatic cases (33) 

ms 1/5, Mild infection recovery 
rate 

(28) 

ss 1/10.7 Severe symptom 
recovery rate 

(20) 

Q 1/14 Quarantined recover 
rate 

Does not affect dynamics 

a 1 Relative 
infectiousness 

(33) 
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asymptomatic:mildly 
symptomatic 

ps 1.81 Relative 
infectiousness pre-
symptomatic:mildly 
symptomatic 

(28) 

ms 1 Relative 
infectiousness  

(reference level) 

ss 0.008 Relative 
infectiousness severe 
symptoms:mildly 
symptomatic 

(28) 

 503 

  504 
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 505 

 506 

Figure S1. Compartmental model of SARS-CoV-2. See text for equations and 507 

parameter values. Boxes represent Susceptible (S), Exposed (E), Infected (I), 508 

recovered (R), and Quarantined (Q) classes. There are four compartments for 509 

infected individuals that reflect symptom severity (asymptomatic, Ia, pre-510 

symptomatic, Ips, mildly symptomatic, Ia, and severely symptomatic, Iss) .  is a 511 

social distancing factor between 0 and 1 that modifies the contact rate ,  are 512 

infectiousness for each of the I classes, q are transition rates between classes 513 

given by the subscripts separated by the arrow (qE→ps is the transition rate 514 

between the E and Ips classes),  is the rate of removal by contact tracing from the 515 

E or I classes to the quarantined class Q,  are the removal rate by testing of 516 

mildly symptomatic or severely symptomatic infected individuals,  is the 517 

disease-caused death rate, and  are the recovery rates to the R class. The 518 

dashed line and bracket indicate that all 4 classes of infected individuals 519 

contribute to transmission. 520 

 521 

  522 
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 523 

Figure S2. Sensitivity analysis. The plot shows how much R0 changes from a ten 524 

percent increase (red) or ten percent decrease (blue) in that model parameter 525 

relative to values in Table 1 (with ms = 0.2; ftmstr = 1;  = 1). Rt scales linearly with  526 

and , whereas qps→ms, ms, and ps have half as large an effect as  or  and other 527 

parameters are even less influential. 528 

 529 
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