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2 

Abstract 16 

Human behavior (movement, social contacts) plays a central role in the spread of pathogens like SARS-

CoV-2. The rapid spread of SARS-CoV-2 was driven by global human movement, and initial lockdown 18 

measures aimed to localize movement and contact in order to slow spread. Thus, movement and contact 

patterns need to be explicitly considered when making reopening decisions, especially regarding return to 20 

work. Here, as a case study, we consider the initial stages of resuming research at a large research 

university, using approaches from movement ecology and contact network epidemiology. First, we 22 

develop a dynamical pathogen model describing movement between home and work; we show that 

limiting social contact, via reduced people or reduced time in the workplace are fairly equivalent 24 

strategies to slow pathogen spread. Second, we develop a model based on spatial contact patterns within a 

specific office and lab building on campus; we show that restricting on-campus activities to labs (rather 26 

than labs and offices) could dramatically alter (modularize) contact network structure and thus, potentially 

reduce pathogen spread by providing a workplace mechanism to reduce contact. Here we argue that 28 

explicitly accounting for human movement and contact behavior in the workplace can provide additional 

strategies to slow pathogen spread that can be used in conjunction with ongoing public health efforts. 30 
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Introduction 36 

The cosmopolitan connectivity of modern society facilitated the rapid spread of SARS-CoV-2 

around the globe in early 2020 [1]. The rate at which any pathogen spreads depends critically on host 38 

movement behavior [2]. Indeed, estimates of key epidemiological parameters like the basic reproduction 

number (R0) are highly variable in part because they are context-specific and are a function of behaviors 40 

like movement and heterogenous contact structure [3,4]. Although most cases of COVID-19 (the disease 

caused by SARS-CoV-2) seem to be mild or even asymptomatic [5,6], the sheer number of cases to date 42 

means that limited personnel, hospital beds, and ICU equipment can be rapidly overwhelmed, increasing 

mortality [7,8]. Thus, continuing normal movement patterns, unmitigated, is not a viable containment 44 

strategy. Without a vaccine or widespread immunity to SARS-CoV-2, our best defense to slow pathogen 

spread has been restricting movement and contacts through physical distancing [9], testing for SARS-46 

CoV-2 when available [10] and contact tracing [11]. Lockdown measures have drastically reduced human 

movement [1,12] and consequently have reduced the effective reproduction number, Re [4,13]. However, 48 

such measures are affecting mental health [14,15] and have had a devastating impact on the economy, so 

individual regions are considering best practices for the reopening of businesses, schools, and other places 50 

where people gather (e.g.,[16–18]). Decisions regarding next steps can be informed by recognizing that 

not all movement patterns nor all contact behaviors are equal in terms of pathogen spread. 52 

Concepts from movement ecology and contact network epidemiology can provide helpful 

frameworks for understanding the nuanced interactions between movement, contacts and infection. 54 

Increased movement does not always mean increased transmission risk [19]; for example, movement that 

either takes individuals away from infected areas or reduces contact with infected conspecifics can reduce 56 

transmission risk (migratory escape; [20,21]). Increased movement can even increase some aspects of 

infection risk while decreasing others, simultaneously [22]. Thus, explicitly considering how movement 58 

relates to transmission can help us understand what effect different movement patterns have on infection 
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dynamics [23,24]. Similarly, from disease ecology and contact network epidemiology, we know that 60 

structured contacts among individuals in a population have different effects on disease spread than 

random contacts. For example, long-range connections in otherwise locally-connected small world 62 

networks can have dramatic effects on disease spread at a population level [25]. 

Individual movement across multiple scales — from occasional global movements to smaller-64 

scale daily patterns — is critical for shaping contact and thus the spread of pathogens. To date, models of 

SARS-CoV-2/COVID-19 spread have focused on comparing patterns of spread across countries, states, 66 

and counties [26,27]. Indeed, a plethora of epidemiological models have proven useful in generating 

recommendations for reducing the virus spread rate, from understanding the role of contact-tracing and 68 

society-wide physical distancing [11,28], to travel restrictions and lockdowns (e.g., [4,29,30]), to mask-

wearing [31]. However, few models offer guidance at scales as fine as individual workplaces, despite the 70 

fact that this local scale is where individual decisions are made and where most transmission occurs. 

Furthermore, apart from time at home, the most predictable component of many people’s days is time 72 

spent in the workplace. Thus, knowledge of work commute patterns, contact networks of individuals in 

the workplace, and related workplace-specific factors could help mitigate pathogen spread during the 74 

period that total population immunity remains low. In many cases, commute trajectories are not random 

but involve regularity in timing, location, and encounters with other individuals along the way (e.g., on 76 

public transport). Here, we consider the implications for mitigating COVID-19 transmission using a case 

study of the initial stages of resuming research at a large research university. 78 

Implicit in this analysis is that COVID-19 is currently spreading in local communities around the 

world, and every individual in a workplace is part of a home community. Even under many weeks of 80 

extreme restrictions with only society’s most essential employees present in workplaces (i.e., Stay at 

Home orders), the number of new cases have continued to rise in most locations. For example, in late 82 

April 2020, even after three weeks of a Stay at Home order and extreme physical distancing in Minnesota, 

a state with moderate spread and commendable compliance with the order, the number of new cases 84 
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confirmed each day had tripled [32]. With community spread of this pathogen, it is unrealistic to expect 

zero workplace infection or widespread virus containment primarily through workplace practices. Any 86 

return-to-work plan, therefore, must include the explicit expectation that new infections may arise while 

concurrently prioritizing worker safety and optimizing the work that can be done. Thus, reopening 88 

businesses requires an evidence-based plan to reduce contacts through time to minimize new infections at 

the workplace, when an infected individual, presumably pre-symptomatic [33], brings the virus to a 90 

workplace.  

Here we develop a pair of models to understand how movement and contact structure shape 92 

infection spread. As a case study, we consider the context of moving from full-time work at home to part-

time resumption of research at a university; however, results from this model are general to many other 94 

settings as well. We take a dual modeling approach by developing a general movement model and a 

network case study of one academic laboratory and office building. We explore tradeoffs between 96 

limiting contact, people, or time on campus. We find that moving back to work on campus does not 

necessarily speed up infection spread, and depends particularly on the infection risk associated with 98 

commutes and how well physical distancing can be maintained on campus. Thus our findings allow us to 

set evidence-based expectations and generate specific behavioral recommendations for a safer return to 100 

work. 

 102 

Materials and Methods 

We develop two models: a movement model to explore movement between home and work 104 

environments, and a network model to explore contact patterns within the work environment. Both 

models are SEIR, tracking susceptible (S), exposed (E), infected (I), and removed (recovered and 106 

immune, or deceased; R) individuals. We assume there is no loss of immunity (removed individuals never 

move back to the susceptible class) over the short time scales we consider, and we assume a closed 108 
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population (no births, deaths, immigration, or emigration). 

 110 

Methods: movement model 

 112 

Setup 

Our first model explores infection dynamics as individuals move between home, commuting, and 114 

work environments. Workplaces, including universities, face a number of different decisions about how to 

slowly ramp up work following easing of lockdown. Here, we simulate three potential strategies for 116 

returning to work: (i) allowing people to return while maintaining physical distancing, (ii) limiting the 

number of people returning to campus during the work day, and (iii) limiting the time each person spends 118 

on campus. For each strategy combination, we simulate infection dynamics and quantify two output 

metrics: (1) the ‘final epidemic size’ (cumulative fraction of the population infected, at equilibrium), and 120 

(2) the ‘epidemic peak size’ (maximum fraction of the population infected during the outbreak). The aim 

of this type of conceptual model is to clarify the connections between assumptions and outcomes, unlike 122 

predictive models which would contain an abundance of empirical data and aim to generate forecasts for a 

specific system [34]. 124 

 

Daily cycle 126 

Our model dynamics have a combination of continuous and discrete time (e.g., [35]), where each 

day is broken into discrete phases (Th spent at home, Tw spent at work, and Tc spent commuting each way, 128 

with Th + Tw + 2Tc = 1) and infection dynamics occur continuously during each phase (Fig 1, see Tables 

1-2 for model variables and parameters). All individuals start at home and spend a fraction of their day (of 130 

length Th) there and not working. During this time, the infection dynamics are given by 

dS/dt = - βh S (I/N) 132 
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dE/dt = βh S (I/N) - σ E     [eqn. 1] 

dI/dt = σ E - γ I      134 

dR/dt = γ I 

where S is the number of susceptible individuals, E is the number of exposed individuals, I is the number 136 

of infected individuals, R is the number of removed (recovered and immune, or deceased) individuals, N 

is the total number of individuals in the population (N = S + E + I + R), βh is the rate of transmission while 138 

at home, σ is the rate of moving from exposed to infected (inverse of the latent period) and γ is the rate of 

recovery from infection. 140 

 

[Fig 1. Movement model schematic, showing a daily cycle. 142 

All individuals — Susceptible (S), Exposed (E), Infected (I) or Removed (R) — spend part of their day 

(Th) at home. A proportion θ of individuals move to campus, spending Tc time commuting in each 144 

direction, and work from campus during the workday (time Tw), while the other fraction (1 - θ) works 

from home. A total 24 hour cycle is then represented by: Th + Tw + 2 Tc = 1. Transmission rates can vary 146 

among home (βh; this includes transmission during essential trips e.g., to the grocery store), commute (βc; 

traveling between home and work), and work (βw; campus-based interactions) environments, while the 148 

rate of moving from exposed to infected (σ) and recovery rate (γ) are the same regardless of where 

individuals are located.] 150 

  

Here, the rate at which new susceptible individuals (S) become exposed (E) depends on three 152 

components [36]. First is the rate of contact between two individuals in a location. Here we assume this 

contact rate is constant (does not change with population density) but can differ across environments 154 

(home vs. work vs. commuting). Critically, we assume that βh accounts for transmission not just in an 

individual’s actual home, but transmission that occurs during other essential activities during lockdown 156 

(e.g., grocery store trips). Second is the probability that the contact for each susceptible individual is with 
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an infected individual; this is given by the proportion of infected individuals in the local population (I/N). 158 

Third is the probability that contact with an infectious individual results in transmission. In equation 1 

above (and the other equations below), we have combined the first and third factors into a single term, β, 160 

while the second factor is given by I/N. Overall, this gives us frequency-dependent transmission 

(transmission rate depends on the frequency — not density — of infected individuals in the population); 162 

an appropriate assumption for spatially structured environments [2,36]. 

After the period of time at home (Th), a fraction, θ, of all individuals commute to work while the 164 

remaining (1- θ) stay to work from home. At this point we subdivide the population based on the number 

of individuals of each type and fraction commuting. We denote location by subscripts (h for home, c for 166 

commute), so the number of individuals of each type are 

Sc(Th) = θ S(Th) 168 

Ec(Th) = θ E(Th) 

Ic(Th) = θ I(Th) 170 

Rc(Th) = θ R(Th)     [eqn. 2] 

Sh(Th) = (1 - θ) S(Th) 172 

Eh(Th) = (1 - θ) E(Th) 

Ih(Th) = (1 - θ) I(Th) 174 

Rh(Th) = (1 - θ) R(Th)  . 

During the commute phase, the infection dynamics for those commuting are given by 176 

dSc/dt = - βc Sc (Ic/Nc) 

dEc/dt = βc Sc (Ic/Nc) - σ Ec    [eqn. 3] 178 

dIc/dt = σ Ec - γ Ic  

dRc/dt = γ Ic 180 

where Nc is the total number of individuals commuting (Nc = Sc + Ec + Ic + Rc), and βc is the rate of 

transmission while commuting. Similarly, during the commute phase, the infection dynamics for those 182 
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still at home are given by 

dSh/dt = - βh Sh (Ih/Nh) 184 

dEh/dt = βh Sh (Ih/Nh) - σ Eh    [eqn. 4] 

dIh/dt = σ Eh - γ Ih 186 

dRh/dt = γ Ih 

where Nh is the total number of individuals at home (Nh = Sh + Eh + Ih + Rh). 188 

After the commute phase (of length Tc), comes a work phase. Here, the population continues to be 

subdivided into eight types, where the number of individuals of each type are 190 

Sw(Th+Tc) = Sc(Th+Tc) 

Ew(Th+Tc) = Ec(Th+Tc) 192 

Iw(Th+Tc) = Ic(Th+Tc) 

Rw(Th+Tc) = Rc(Th+Tc)     [eqn. 5] 194 

Sh(Th+Tc) = Sh(Th+Tc) 

Eh(Th+Tc) = Eh(Th+Tc) 196 

Ih(Th+Tc) = Ih(Th+Tc) 

Rh(Th+Tc) = Rh(Th+Tc) 198 

where the subscript w denotes work. Note that individuals that work on campus switch from a commute 

(c) subscript to a work (w) one here, while individuals that work at home continue with the same 200 

subscript (h). Both groups are still experiencing infection dynamics. During the work phase, the infection 

dynamics in the workplace are given by 202 

dSw/dt = - βw Sw (Iw/Nw) 

dEw/dt = βw Sw (Iw/Nw) - σ Ew    [eqn. 6] 204 

dIw/dt = σ Ew - γ Iw 

dRw/dt = γ Iw 206 

where Nw is the total number of individuals at work (Nw = Sw + Ew + Iw + Rw), and βw is the rate of 
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transmission while at work. During the work phase, the infection dynamics for those working at home are 208 

given by [eqn. 4] above. 

After the work phase (of length Tw), we describe a second commute phase. The population 210 

continues to be subdivided into eight types, where the number of individuals of each type are 

Sc(Th+Tc+Tw) = Sw(Th+Tc+Tw) 212 

Ec(Th+Tc+Tw) = Ew(Th+Tc+Tw) 

Ic(Th+Tc+Tw) = Iw(Th+Tc+Tw) 214 

Rc(Th+Tc+Tw) = Rw(Th+Tc+Tw)    [eqn. 7] 

Sh(Th+Tc+Tw) = Sh(Th+Tc+Tw) 216 

Eh(Th+Tc+Tw) = Eh(Th+Tc+Tw) 

Ih(Th+Tc+Tw) = Ih(Th+Tc+Tw) 218 

Rh(Th+Tc+Tw) = Rh(Th+Tc+Tw) . 

During this second commute phase (also of length Tc), the infection dynamics for those commuting are 220 

given by [eqn. 3] above, and the infection dynamics for those still at home are given by [eqn. 4] above. At 

the end of the second commute phase, all individuals are back in the home environment (no longer 222 

subdivided) and the number of individuals of each type are 

S(Th+2Tc+Tw) = Sw(Th+2Tc+Tw) + Sh(Th+2Tc+Tw) 224 

E(Th+2Tc+Tw) = Ew(Th+2Tc+Tw) + Eh(Th+2Tc+Tw)  [eqn. 8] 

I(Th+2Tc+Tw) = Iw(Th+2Tc+Tw) + Ih(Th+2Tc+Tw) 226 

R(Th+2Tc+Tw) = Rw(Th+2Tc+Tw) + Rh(Th+2Tc+Tw) . 

This ends the cycle for a single day; the next day starts the cycle again. 228 

 

Model Parameters 230 

We used a fixed population size (N) of 3,000 individuals. We did not include births or deaths, or 
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movement in and out of the population. These are reasonable assumptions given the scope of our 232 

simulations: a work population that is not hiring new employees and has few retirements or actual deaths 

over a few months. Because we assumed frequency-dependent transmission, the relative fraction of the 234 

population infected is the same regardless of population size. 

Infection parameters were calculated as follows. We used 4.2 days as the latent period [37] and 236 

calculated the rate of moving from exposed to infected (σ) as the inverse of this: σ = 1/4.2 = 0.238 per 

day. We used 9.5 days as the infectious period (the estimated length of viral shedding for SARS-coV-2; 238 

[38]), and calculated the recovery rate (γ) as the inverse of this: γ = 1/9.5 = 0.105 per day. Transmission 

rate (β) was calculated based on the basic reproductive number, R0. We assumed a ‘baseline’ R0 240 

(unmitigated; no behavioral changes like physical distancing) of 2.5 based on current estimates for SARS-

coV-2 [39], although some estimates put R0 as high as 5.7 [37]. To quantify how behavioral changes to 242 

movement and contact affect transmission we defined effective reproduction numbers (Re) for each of the 

environments (home, work, commute). We assumed that stay-at-home measures to reduce pathogen 244 

spread in the community halved the rate of contacts at home (e.g., [40]), that is Re-h = 0.5R0. We assumed 

that infection at work could be anywhere between current infection rates at home (Re-w = 0.5R0) and 246 

unmitigated rates (Re-w = R0). To facilitate interpretation of our results, we also describe infection at work 

in terms of the fraction increase in transmission compared to home, where 0 indicates transmission is the 248 

same at work and home, 0.5 indicates transmission at work is 50% higher than at home and 1 indicates 

transmission at work is 100% higher than at home (i.e., double). Finally, we assumed that infection while 250 

commuting spanned a broader range of possible values than either home or work. At one extreme, 

commuting by private transport effectively has no risk of transmission from others (Re-c = 0). At the other 252 

extreme, commuting by crowded public transport can reduce feasible physical distancing (Re-c = 2R0), 

both because individuals have a greater number of contacts while commuting and because these contacts 254 

potentially last for longer than normal. Transmission rates (β) were back-calculated from Re values, based 

on rearranging the expression Re = β/γ to β = γ Re. We assume that R0 and Re values estimated for the 256 
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general public apply to our population of University workers. If instead our population had lower 

transmission rates than the general public under stay-at-home measures, going back to work could lead to 258 

faster pathogen spread than we predict here. 

 260 

Simulations 

Since our aim was to understand the relative importance of model parameters on infection 262 

dynamics (rather than try to forecast outcomes), we started each simulation with one individual infected 

(I(t=0)=1), zero exposed (E(t=0)=0), zero removed (R(t=0)=0), and the rest susceptible (S(t=0)=2,999). 264 

Each simulation was run until it reached equilibrium (where the fraction of the population in the R class 

did not change from one day to the next). We defined a baseline set of values for each parameter (see 266 

Table 2). Then we ran the following simulations that varied some parameters while holding others 

constant: 268 

(i)  Varying transmission while at work (βw) and during the commutes (βc). We considered three 

scenarios that differed in the degree of risk of a commute to work and back. For low risk, we assumed 270 

low contact both during commutes and on campus (Re-w = 0.5R0 = 1.25, equivalent to at home). For 

moderate risk, we assumed unmitigated contact during commute (Re-c = R0 = 2.5, shared transport) 272 

and partial physical distancing at work (Re-w = 0.75R0 = 1.875, intermediate between home and 

unmitigated). For high risk, we assumed elevated contact during commute (Re-c = 2R0 = 5, crowded 274 

shared transport), and unmitigated contact at work (Re-w = R0 = 2.5). These results are presented in Fig 

2. 276 

(ii)  Varying the fraction of the population commuting (θ) and fraction of the day spent on campus 

(Tw). We considered eleven values of the fraction of the population commuting (θ = 0,0.1,...,0.9,1) 278 

and eleven values of the fraction of an 8-hour workday spent on campus (Tw = x(8/24) where x = 

0,0.1,...,0.9,1). These results are presented in Fig 3a. 280 
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(iii) Varying the fraction of the population commuting (θ) and fraction increase in transmission at 

work compared to home (Re-w). We considered eleven values of the fraction of the population 282 

commuting (θ = 0,0.1,...,0.9,1) and eleven values of the fraction increase in transmission at work 

compared to at home (Re-w = (1+x)Re-h where x = 0,0.1,...,0.9,1). These results are presented in Fig 3b. 284 

(iv) Varying the fraction of the day spent on campus (Tw) and fraction increase in transmission at 

work compared to home (Re-w). We considered eleven values of the fraction of an 8-hour workday 286 

spent on campus (Tw = y(8/24) where y = 0,0.1,...,0.9,1), and eleven values of the fraction increase in 

transmission at work compared to at home (Re-w = (1+x)Re-h where x = 0,0.1,...,0.9,1). These results 288 

are presented in Fig 3c. 

Movement model simulations were conducted in Matlab 2018b. 290 

 

[Fig 2. Movement model: varying the degree of physical distancing on campus and during 292 

commutes. 

The fraction of the population that is Susceptible (S), Exposed (E), Infected (I), and Removed (R), when 294 

all individuals either work from home (solid lines) or commute to work on campus (dashed lines), for 

different degrees of physical distancing both on campus and during the commute: (a) low risk: low 296 

contact during commute and on campus (Re-c = Re-w = 0.5R0 = 1.25, equivalent to at home), dashed and 

solid lines are identical, (b) moderate risk: unmitigated contact during commute (Re-c = R0 = 2.5, shared 298 

transport) and partial physical distancing at work (Re-w = 0.75R0 = 1.875, intermediate between home and 

unmitigated), (c) high risk: elevated contact during commute (Re-c = 2R0 = 5, crowded shared transport), 300 

and unmitigated contact at work (Re-w = R0 = 2.5).] 

 302 

[Fig 3. Movement model: limiting people, time and contact on campus. 

The final epidemic size (cumulative fraction of the population infected) as a function of (a) the fraction of 304 

an 8-hour workday spent on campus (x-axis) and the fraction of the population working on campus (y-
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axis) with no physical distancing, (b) the fraction increase in transmission while at work compared to at 306 

home (x-axis) and the fraction of the population working on campus (y-axis) with an 8-hour work day, (c) 

the fraction increase in transmission while at work compared to at home (x-axis) and the fraction of an 8-308 

hour workday spent on campus (y-axis) with 100% of people on campus.] 

 310 

Sensitivity Analysis 

Finally, we performed a sensitivity analysis to determine how sensitive the two model output 312 

metrics (final epidemic size, epidemic peak size) were to each of the model parameters, using a 

combination of Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC). The 314 

LHS/PRCC sensitivity analysis is appropriate when the relationship between model output and each 

model parameter is monotonic and nonlinear [41]. For our model, this relationship was monotonic for all 316 

nine parameters considered (N, Tc, Tw, θ, σ, γ, Re-c, Re-h, and Re-w; S1-S2 Figs). The LHS/PRCC sensitivity 

analysis has two steps. 318 

First, we used Latin Hypercube Sampling (LHS; [42]), a Monte Carlo approach, to generate sets 

of parameter value combinations from preset ranges of parameter values. LHS has a minimum required 320 

sample size (n) which is given by: n ≥ k+1 or n ≥ k(4/3) where k is the number of parameters included in 

the LHS [43], nine for our analysis. We chose the number of samples (see below) to meet these criteria. 322 

Each of the nine model parameters considered was sampled from a uniform probability density function 

based on the ranges given in Table 2. The model was run for each parameter value set, and the final 324 

epidemic size (cumulative fraction of the population infected, in the long-term) and epidemic peak size 

(maximum fraction of the population infected at any time) were both saved as output metrics. 326 

Second, we measured the sensitivity of the output metrics to each parameter using Spearman 

Partial Rank Correlation Coefficients (PRCC). To determine how many samples of each parameter was 328 

needed to generate stable PRCC value, we calculated PRCC value for an increasing number of samples 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.05.27.20114728doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.27.20114728
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

(S3 Fig) and noted that the PRCC values were relatively stable past 1000 samples. Thus, we used 1000 330 

samples of each parameter value for our final PRCC analysis. A positive PRCC value indicates that 

increasing the value of that parameter increases the output metric while a negative PRCC value indicates 332 

that increasing the value of that parameter decreases the output metric. PRCC values that were not 

significant at the 0.05 level are marked with ‘ns’ in Fig 4 (not corrected for multiple comparisons). 334 

Finally, we used a z-test to rank significant model parameters in terms of their relative importance, since 

larger PRCC values do not always indicate more important parameters [41]. For our results (Fig 4), model 336 

output sensitivity was indeed given by the size of PRCC values. 

 338 

[Fig 4. Movement model: sensitivity analysis. 

The partial rank correlation coefficient (PRCC) values for each model parameter (Table 2) for the final 340 

epidemic size metric (blue bars) and the epidemic peak size metric (orange bars). Positive values indicate 

parameters that increase epidemic size as they are increased (negative values indicate parameters that 342 

decrease epidemic size as they are increased). Cases where the relationship between the parameter and 

model output metric was not significant are indicated with 'ns'.] 344 

 

Methods: network model 346 

Our second model explores infection dynamics as individuals work on campus either in both 

office and lab spaces or just in lab spaces. We created a network map of all the individuals housed in the 348 

Ecology building on the St. Paul campus of the University of Minnesota. We created our dataset by 

merging information on the office and lab room assignments for each individual with an office or lab in 350 

the building. (The methods for collection and analyses of these data were reviewed by the University of 

Minnesota’s Institutional Review Board and were determined not to be human subjects research.) Work 352 

in the Ecology building is structured by two primary space types, laboratories that can include one to 
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three research groups, each associated with a single faculty member, and offices which can be single-354 

occupancy or shared. Office space is generally shared by groups of graduate students and postdoctoral 

scholars, often from different lab groups. Because undergraduates are generally not permitted to work on 356 

campus during the resumption of research, we included faculty, staff, postdocs, and graduate students, but 

excluded all undergraduates from this visualization.  358 

We considered two types of bipartite networks: shared office space and shared lab space. 

Individuals sharing an office or a lab all had an edge with that location node. We then consider the one-360 

mode projection of each network, creating a weighted unipartite network connecting individuals 

according to their shared spaces. The binary representation of these networks was used to create static 362 

network visualizations of connections among individuals using the igraph, tidygraph, and ggraph libraries 

in R [44–46], shown in Fig 5a and b. Animations of disease progression through the networks were 364 

produced using the gganimate library in R (S5-S6 Figs; [47]). For each network, we computed the 

distribution of (finite) shortest paths between each pair of nodes (Fig 5c) and for each distinct component 366 

of the networks, we noted its size (number of nodes), diameter (longest shortest path), and mean path 

length (average shortest path length; S7 Fig). 368 

 

[Fig 5. Network model structure. 370 

Space-sharing, or ‘contacts’ (edges) are shown among all individuals (nodes) for two scenarios: (a) when 

individuals at work share either office or lab spaces, or (b) when individuals only used shared lab space 372 

and not shared offices (e.g., bench work is done on campus while office work is done at home). (c) 

Histograms showing the distribution of shortest paths between all connected pairs of individuals. 374 

Importantly, though all shortest paths between nodes in the network containing only links of shared lab 

spaces are less than or equal to three, the vast majority (approximately 95%) of pairwise combinations of 376 

individuals actually have no chain of interactions connecting them. In contrast, the combined network 

contains a component consisting of almost 90% of individuals in the network, corresponding to nearly 378 
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80% of all pairs of individuals having a chain of interactions connecting them.] 

 380 

For the network simulations, we used an SEIR model framework, starting with a randomly 

selected index case to serve as the first infected individual in an entirely susceptible population (Fig 6). 382 

Simulations proceeded in discrete time. At each time step, individuals who had been exposed to the virus 

transitioned into the infectious class (E→I) based on the result of a Bernoulli trial using the disease 384 

progression rate as the probability of success. Likewise, currently infectious individuals were removed 

(i.e., either recovered and immune or deceased; I→R) based on the result of a Bernoulli trial using the 386 

recovery rate as the probability of success. Finally, one Bernoulli trial using the transmission rate as 

probability of success was conducted for each edge connecting a susceptible individual to an infectious 388 

one. Susceptible individuals became exposed (S→E) if at least one such trial resulted in success. At the 

end of each simulation, we took note of the epidemic peak size, the final epidemic size, and the time 390 

needed to read the epidemic peak (Fig 7). We evaluated the sensitivity of these results by comparing them 

to simulations run on randomized versions of these empirical networks (S8 Supporting Information). 392 

Network analysis and simulations were conducted in R (Version 3.6.3). 

 394 

[Fig 6. Network model simulations. 

Final disease status of members of networks based on use of (a) both shared lab and office space and (c) 396 

only shared lab space, following a simulated epidemic with susceptible individuals in blue, exposed 

individuals in green, infectious individuals in orange, and removed individuals in red. (b, d) the 398 

cumulative number of susceptible, infectious, and removed individuals over time for each network 

simulation.] 400 

 

[Fig 7. Network model simulations. 402 

Outcome of 100 infection simulations on networks: the maximum peak number of individuals infected at 
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any one time (epidemic peak size), total number of individuals infected (final epidemic size), and time 404 

until peak number of individuals infected for simulations of pathogen spread on networks based on use of 

both shared lab and office space (blue) and only shared lab space (orange).] 406 

 

 408 

Results 

 410 

Movement model 

Whether returning to work on campus affects the epidemic outcomes (measured as final epidemic 412 

size and epidemic peak size) depends critically on the degree of physical distancing maintained both on 

campus and during the commute between home and campus (Fig 2). If the current degree of physical 414 

distancing that is achieved while working from home can be maintained while on campus, then working 

from campus will not speed up infection dynamics compared to working from home (Fig 2a). However, if 416 

physical distancing on campus or during the commute is less successful than current physical distancing 

at home, then returning to work on campus will both increase the epidemic peak size in the short-term and 418 

increase the final epidemic size in the long term (Fig 2b-c). When physical distancing cannot be 

maintained on campus or during the commute, then infection dynamics can be kept slower by limiting the 420 

fraction of workers on campus and the amount of time workers are on campus (Fig 3a). 

Intriguingly the three strategies we considered (limiting contact, people, or time on campus) are 422 

interchangeable with approximately equivalent effects on both the long-term metric, final epidemic size 

(Fig 3) and the short-term metric, epidemic peak size (S4 Fig). That is, in situations where one of these 424 

strategies cannot be fully implemented, a different strategy can be used in its stead. For example, if 

individuals need to be on campus for an extended period of time to run an experiment (thus limiting time 426 
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on campus is not a feasible strategy), this can be compensated for by limiting the number of other 

individuals on campus at the same time. However, of the three strategies, reducing the fraction of the 428 

population on campus had a bigger impact than reducing either time or contact on campus, due to the 

effect of commuting to and from campus. Regardless of time or physical distancing on campus, more 430 

people working on campus requires that more people commute. Thus, if commuting substantially 

increases transmission risk compared to staying at home (i.e., any form of shared transport vs. commuting 432 

alone), reducing the number of people commuting will be a more effective strategy than reducing either 

time or contact while on campus. 434 

The sensitivity analysis revealed that both model metrics (final epidemic size, epidemic peak 

size) were most sensitive to transmission at home (Re-h), since most of the day is spent in that 436 

environment, as well as the fraction of the population commuting (θ) to campus (Fig 4). Transmission on 

campus (Re-w) and transmission during commutes (Re-c) were the next most influential; the first because 438 

most time during the workday is spent on campus and the second because we allowed transmission to 

vary across a wider range during commuting than on campus. The time spent on campus (Tw) and time 440 

commuting (Tc) were somewhat influential. For each of these parameters, increasing the parameter value 

increased the final and peak epidemic sizes. Finally, population size (N) did not significantly affect either 442 

metric (but would be critical for the total number of individuals infected). The rate of moving from 

exposed to infected (σ) and the recovery rate (γ) did not significantly affect final epidemic size, but both 444 

had a minor effect on epidemic peak size: increasing σ (i.e., a shorter latent period) increased epidemic 

peak size, while increasing γ (i.e., a shorter infectious period) decreased epidemic peak size. 446 

 

Network model 448 

The mixing of researchers from different labs in shared office spaces had a substantial impact on 

the modularity of the resulting network. In particular, when people do not use shared office spaces (i.e., 450 
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work from home if they share an office), but work on campus only in labs, the network is far more 

modular, with smaller, more densely connected groups and few connections among groups (Fig 5b, S7 452 

Fig). In this case, most individuals are directly connected to all other members of their group (i.e., 

“shortest path” of one, Fig 5c); however the absence of connections between groups means that, on 454 

average, an infected individual lacks a path of connections to 95% of the rest of the population. In 

contrast, when individuals share both lab and office space, the connectedness of the network is relatively 456 

high because students, staff, and postdocs that share offices are often from different labs. For this 

combined case, most individuals are four or fewer connections from one another (Fig 5c) and the largest 458 

component contains nearly 90% of all individuals in the network (Fig 5a, S7 Fig). Thus, in the case where 

an infected individual (presumably pre-symptomatic or asymptomatic) came to work, the combined lab 460 

and office network has the potential for greater disease incidence than in the lab-only network, where the 

infection could be constrained to a single lab (Figs 6-7, S5-S6 Figs). In general, when compared to the 462 

combined network, the lab-only network had outbreaks that were less explosive (i.e., had less variance 

and a lower mean number of individuals infected at any one time), fewer individuals infected overall, and 464 

a shorter time until the peak number of infectious individuals (Fig 7).  

 466 

Discussion 

Movement and contact behaviors are key drivers of the spread of pathogens like SARS-CoV-2, 468 

and not all movement and contacts have the same impact on pathogen spread. However, basic 

compartmental models used to describe SARS-CoV-2 dynamics assume all individuals move and contact 470 

each other at random (i.e., populations are well-mixed). Our models show how explicitly accounting for 

movement, space use in a building, and contact behaviors can provide a more nuanced understanding of 472 

relative risk. Our movement model, capturing the predictable movement between home and work/campus 

environments, shows that reducing the number of people, rate of contact, and amount of time spent on 474 
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campus are all equivalently effective strategies for slowing pathogen spread. However, if commutes 

specifically increase transmission risk (i.e., shared transport), reducing the number of people on campus is 476 

the most effective strategy to reduce the infection spread rate. We also considered heterogeneity in 

contact behavior once at the workplace; our network model captures the regular interactions among 478 

workers in shared workspaces on campus and shows that restricting building use to lab spaces (rather than 

lab and office space) may reduce pathogen spread. Our results provide a number of tools to distinguish 480 

among different movement and contact patterns at the scale of individuals and workplace communities. 

A number of future directions could be explored, by changing some of our simplifying 482 

assumptions. First, staying within the broad structure of our model, alternative spatiotemporal strategies 

could be explored including: structured work weeks (e.g., four days on-campus and ten off; [48]), or 484 

further compartmentalizing time (e.g., sequential work shifts) or space (e.g., different buildings on 

campus). For instance, if evidence suggests that infection can occur through air circulation within 486 

buildings [49], these models could be altered to account for connections arising from shared ventilation 

systems. These models also could be modified to account for movement and contact behavior that 488 

explicitly depends on infection status [50]; e.g., splitting infected individuals into infectious but 

asymptomatic (who still potentially commute to work) and symptomatic individuals (who stay home) or 490 

building dynamic networks where contact behavior can change in response to infectious status (e.g. 

infectious and symptomatic individuals reducing their interpersonal contacts either through staying home 492 

or altering their behavior at work). Second, one could expand the scale of the model. This could be done 

foremost by combining the movement model (movement between work, commute, campus) with the 494 

network model (movement while on campus). Further expansions could consider both larger scales 

(linking in regional patterns) as well as smaller ones (allowing contacts within buildings to vary over 496 

time). For instance, integrating local models such as ours with regional variation in infection rates and 

degree of community social mixing [11,51,52] could further inform recommendations. Third, as data 498 

accumulate on transmission dynamics and individual susceptibility, we can alter specific players or 
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interactions in the model. For instance, while the virus can survive on surfaces [53], most transmission 500 

appears to be aerosolized, mediated by extended person-to-person interactions in close spaces [54–58], so 

masking and minimizing temporal and spatial overlap of workers in shared spaces is key [59–61]. In 502 

addition, susceptibility and thus local demographic data can provide additional layers of tailored 

recommendations [62]. 504 

Our findings mesh with concepts in the broader movement and disease ecology literature. Within 

movement ecology, there has long been a distinction between random/undirected movement like dispersal 506 

versus predictable movements like diel and seasonal migration [63]. Human movement between home 

and work is often a predictable and daily occurrence and thus is better viewed from the lens of predictable 508 

migratory movements (as we do here) rather than random dispersive ones (as implicit in basic 

compartmental models). Moving predictably between two environments does not always increase 510 

infection (either for individuals or at the population level) compared to remaining in a single location; the 

relative transmission in each environment is critical [22]. We find that transmission risk during a 512 

commute is key to infection dynamics when considering the impact of movement between home and 

work, paralleling recent work calling for the explicit consideration of how transient phases of movement 514 

affect infection dynamics [24] and theory showing that infection dynamics during transit can have a 

similar impact to dynamics in the second environment [64]. 516 

There are important insights that emerge from our movement and contact-network models that 

can guide policy. For example, basic disease models assume random movement and equal probability of 518 

contact, whereas many hosts, including humans, move in directed ways and in very structured social 

networks. For this reason, disease mitigation policies will likely be more effective when they consider 520 

disease risk in a more holistic way that integrates risk across the various components of a person's daily 

movement. For example, in settings where many people commute by mass transit (e.g., New York City), 522 

the efficacy of workplace safety protocols may be overwhelmed by transmission during daily commutes 

rather than contacts at work. Careful examination of social network patterns could also help guide policy 524 
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to provide intermediate scenarios between business as usual and complete lock down. For example, in our 

case-study contact rates and potential disease spread were significantly reduced when people’s contacts at 526 

the workplace were restricted to single lab groups, as opposed to linking separate lab and office networks. 

These findings are consistent with emerging calls to reduce COVID-19 spread by creating “learning 528 

pods” and “social bubbles” of interacting children and adults as schools and workplaces re-open [65,66].  

Even so, the protective effects of heterogeneity in contact structure should not be overemphasized 530 

for decision making. First, although the threshold for herd immunity can be lower in heterogeneous 

networks [67], making outbreaks less likely, outbreaks that do occur can also be more explosive [25]. 532 

Second, because SARS-CoV-2 spread appears to be primarily by aerosolized transmission, the potential 

contact behaviors needed for transmission are more ubiquitous than for pathogens with more specific 534 

transmission modes (e.g., sexually transmitted diseases like HIV/AIDS). Importantly, the networks 

presented here consider only the room in which an employee works (their office or lab space), explicitly 536 

omitting broader workplace considerations like air flow, shared surfaces, entry points, etc., these 

additional points must be addressed in conjunction with thinking about explicit contact behavior when 538 

forming a public health strategy. Lastly, these static networks are a simplification of an inherently 

dynamic process of movement, contact, and infection. Using a time-ordered or dynamic network 540 

approach could provide better insights to actual duration of exposures and sickness-induced behavioral 

changes [68].  542 

  

Conclusions 544 

Human movement and contact behaviors are critical for the spread of pathogens like SARS-

CoV-2, yet are rarely addressed explicitly in the current conversations about decision-making in the face 546 

of relaxing Stay at Home orders. Here we have drawn on movement and network models to demonstrate 

the effect of these behaviors. First, we have shown that regular movement between two ‘environments’ 548 
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(i.e., work and home) does not inherently increase infection spread the way random dispersive 

movements might. Rather the outcome depends on the relative degree of transmission (e.g., degree of 550 

physical distancing) in each environment. Second, we have shown that different contact patterns (e.g., 

space usage) within the work environment could lead to different outcomes in terms of SARS-CoV-2 552 

spread. In sum, we advocate for using an understanding of movement and contact patterns as an 

adjunctive approach (alongside widespread testing, contact tracing, vaccine development and other tools) 554 

to mitigate the effects of SARS-CoV-2 and COVID-19, particularly when considering return to work 

environments. 556 

 

Funding 558 

This material is based in part upon work supported by the University of Minnesota’s Office of 

Academic Clinical Affairs COVID-19 Rapid Response Grant (https://clinicalaffairs.umn.edu/umn-covid-560 

19-research) (to MEC, LAW, and MMS), by the National Science Foundation (https://www.nsf.gov/) 

under Grants DEB-2030509 (to MEC and MMS), DEB-1654609 (to AKS and MEC) and DEB-1556649 562 

(to EWS and ETB) and by the National Socio Environmental Synthesis Center (SESYNC) under funding 

received from the NSF DBI 1639145. The funders had no role in study design, data collection and 564 

analysis, decision to publish, or preparation of the manuscript. The funders had no role in study design, 

data collection and analysis, decision to publish, or preparation of the manuscript. 566 

 

Acknowledgements  568 

We thank William Harcombe for helpful feedback and discussion, and Valery Forbes, David 

Greenstein and Daniel Stanton for encouragement. 570 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.05.27.20114728doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.27.20114728
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

Data Availability 572 

Model code and simulation output for the movement model is available on Data Dryad [69]. All Code to 

generate the network model figures and animations is available on Github 574 

(https://github.com/whit1951/EEBCovid).  
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Table 1. Movement model state variables and their meaning. 762 

 

Variable Meaning 

S Total number of susceptible individuals 

E Total number of exposed individuals 

I Total number of infected individuals 

R Total number of removed individuals 

Sc Number of susceptible individuals commuting to campus (during the commute phases) 

Ec Number of exposed individuals commuting to campus (during the commute phases) 

Ic Number of infected individuals commuting to campus (during the commute phases) 

Rc Number of removed individuals commuting to campus (during the commute phases) 

Sw Number of susceptible individuals working from work (during the work phase) 

Ew Number of exposed individuals working from work (during the work phase) 

Iw Number of infected individuals working from work (during the work phase) 

Rw Number of removed individuals working from work (during the work phase) 

Sh Number of susceptible individuals working from home (during the commute and work 

phases) 
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Eh Number of exposed individuals working from home (during the commute and work 

phases) 

Ih Number of infected individuals working from home (during the commute and work 

phases) 

Rh Number of recovered individuals working from home (during the commute and work 

phases) 

 764 
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Table 2. Movement model parameters, meaning, and default value (with units). 

Parameter Meaning Default values 

[Units] 

Sensitivity 

analysis range 

N Population size 3000 [people] (1500 to 6000) 

R0 Basic reproductive number (number of new 

infections that each infection generates) 

2.5 [unitless] [39] fixed 

Re-c Effective reproductive number while commuting 

between work and campus 

R0 [unitless] (1 to 4 R0) 

Re-h Effective reproductive number while at home 0.5R0 [unitless] 

[40] 

(0.25 R0 to R0) 

Re-w Effective reproductive number while at work at 

campus 

R0 [unitless] (0.5 R0 to 2 R0) 

Tc Fraction of a 24-hour day spent commuting each 

way for those that commute to campus 

1/24 [unitless] (0.5/24 to 2/24) 

Th Fraction of a 24-hour day spent not working 

(everyone is off campus) 

= 1 - 2 Tc - Tw 

[unitless] 

= 1 - 2 Tc - Tw 

Tw Fraction of a 24-hour day spent at work on 

campus for those commuting (some individual are 

on campus) 

8/24 [unitless] (2/24 to 12/24) 

βc Transmission rate while commuting = γ Re-c [day-1] = γ Re-c 
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βh Transmission rate while at home = γ Re-h [day-1] = γ Re-h  

βw Transmission rate while at work = γ Re-w [day-1] = γ Re-w   

σ Rate of moving from exposed to infected (inverse 

of the latent period) 

1/4.2 [day-1] [37] (1/5.1 to 1/3.5) 

γ Recovery rate 1/9.5 [day-1] [38] (1/11 to 1/6) 

θ Fraction of the campus population commuting to 

work on campus (instead of continuing to work at 

home) 

1 [unitless] (0.0001 to 1) 

  768 
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SUPPORTING INFORMATION FIGURE CAPTIONS 

 770 

S1 Fig. Movement model monotonicity plots. 

The relationship between each of the nine model parameters (x-axis) and the model output, final epidemic 772 

size (y-axis) for (a) population size (N); (b) fraction of a 24-hour day spent commuting each way for those 

that commute to campus (Tc); (c) fraction of a 24-hour day spent on campus for those commuting (Tw); 774 

(d) fraction of the campus population commuting to work on campus (θ); (e) recovery rate (γ); (f) 

effective reproductive number while at home (Re-h); (g) effective reproductive number while commuting 776 

between work and campus (Re-c); and (h) effective reproductive number while at work on campus (Re-w). 

 778 

S2 Fig. Movement model monotonicity plots. 

The relationship between each of the nine model parameters (x-axis) and the model output, epidemic peak 780 

size (y-axis) for (a) population size (N); (b) fraction of a 24-hour day spent commuting each way for those 

that commute to campus (Tc); (c) fraction of a 24-hour day spent on campus for those commuting (Tw); 782 

(d) fraction of the campus population commuting to work on campus (�); (e) recovery rate (γ); (F) 

effective reproductive number while at home (Re-h); (g) effective reproductive number while commuting 784 

between work and campus (Re-c); and (h) effective reproductive number while at work on campus (Re-w). 

 786 

S3 Fig. Movement model sample numbers. 

Absolute value of PRCC for the final epidemic size model output and each of the nine model parameters 788 

(N, Tc, Tw, �, σ, γ, Re-h, Re-c, Re-w) as a function of different numbers of LHS samples generated. The 

results seem to stabilize after about 1000 samples. 790 

 

S4 Fig. Movement model: limiting people, time and contact on campus. 792 

The epidemic peak size (maximum fraction of the population infected) as a function of (a) the fraction of 
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an 8-hour workday spent on campus (x-axis) and the fraction of the population working on campus (y-794 

axis) with no physical distancing, (b) the fraction increase in transmission while at work compared to at 

home (x-axis) and the fraction of the population working on campus (y-axis) with an 8-hour work day, (c) 796 

the fraction increase in transmission while at work compared to at home (x-axis) and the fraction of an 8-

hour workday spent on campus (y-axis) with 100% of people on campus. 798 

 

S5 Fig. Network model simulations. 800 

Simulations of pathogen spread across networks based on use of both shared office and lab space. 

 802 

S6 Fig. Network model simulations. 

Simulations of pathogen spread across networks based on use of only shared lab space. 804 

 

S7 Fig. Component-wise network structural metrics. 806 

Measures of the size (number of individuals), diameter (longest shortest path between two individuals), 

and mean path length (average shortest path length between individuals) for each distinct component of 808 

networks presented in Fig 5a,b. The combined lab and office network (blue points) has 8 distinct 

components (8 points for each metric), while the shared lab space network contains 31 distinct 810 

components (31 points for each metric). 

 812 

S8 Supporting Information. 

Sensitivity analysis of the network model and results. 814 
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