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Abstract 
Objective The relationship between specific humidity and influenza/SARS-CoV-2 in the 
Netherlands is evaluated over time and at regional level. 
Design Parametric and non-parametric correlation coefficients are calculated to quantify 
the relationship between humidity and influenza, using five years of weekly data. Bayesian 
spatio-temporal models—with a Poisson and a Gaussian likelihood—are estimated to find 
the relationship between regional humidity and the daily cases of SARS-CoV-2 in the 
municipalities and provinces of the Netherlands. 
Results An inverse (negative) relationship is observed between specific humidity and the 
incidence of influenza between 2015 and 2019. The space-time analysis indicates that an 
increase of specific humidity of one gram of water vapor per kilogram of air (1 g/kg) is 
related to a reduction of approximately 5% in the risk of COVID-19 infections. 
Conclusions The increase in humidity during the outbreak of the SARS-CoV-2 in the 
Netherlands helped to reduce the risk of regional COVID-19 infections. Public policies that 
promote higher levels of specific humidification—above 6 g/Kg—can lead to significant 
reductions in the spread of respiratory viruses, such as influenza and SARS-CoV-2. 
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1. Introduction 

Previous experimental evidence indicates that that the 
aerosolization of secretions lubricating the vocal cords 
can be a major source of microscopic droplet 
(microdroplet) virus infections [1]. Evidence of airborne 
spread of the severe acute respiratory syndrome virus 
(SARS) is provided by [2]. Recent studies also suggest 
the possibility of airborne transmission of SARS-CoV-2 
through respiratory air droplets and aerosols [3]. 

Weather factors—such as humidity and temperature—
are suspected of playing a role in the transmission of 
viral particles through aerosolized droplet nuclei or 
aerosols. Particularly, differences in humidity are 
suspected to provide an explanation for the observed 
variability of influenza and its transmission [4]. Weather 
conditions can have a similar effect on SARS-CoV-2 
(COVID-19), as airborne inactivation of the human 
coronavirus 229E is affected by temperature and 
relative humidity [5], and in experimental settings both 
temperature and absolute humidity affect the 

environmental survival of surrogates of mammalian 
coronaviruses [6].  

Based on observational data, the relationship between 
SARS-CoV-2 and weather has been recently analyzed 
in published studies [7-12] and pre-prints [13-18]. All of 
these studies find a negative correlation between 
absolute humidity and the spread of SARS-CoV-2, 
indicating that low levels of humidity increase the risk of 
COVID-19 cases. In [18], for example, weather 
conditions are investigated worldwide, and [18] 
conclude that the community transmission of SARS-
CoV-2 is consistent with average temperatures of 5º to 
11ºC, combined with low specific humidity between 3 to 
6 g/kg. Humidity seems to be the most important factor 
in viral spreading, while temperature play a less 
important role [13]. 

Our study provides new evidence about the relationship 
between specific humidity and the risk of influenza and 
COVID-19 cases. Five years of hourly weather data 
from 34 regional weather stations in the Netherlands is 
analyzed against five years of weekly data of influenza 
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cases, as well as daily regional data of COVID-19 
cases, hospitalizations, and deaths. The Netherlands 
has accurate and easily accessible data that allows for 
a high-resolution and precise estimation of the 
relationship between weather conditions and the spread 
of viral diseases. As time trends of viral transmission 
can vary substantially in time and at sub-national level, 
the combination of high spatial and temporal resolution 
captures the heterogeneity of viral spreading across 
time and space.  

In our study, parametric and non-parametric 
correlations are calculated for specific humidity and 
influenza/SARS-CoV-2 at country-level. An inverse 
(negative) relationship is observed between specific 
humidity and the incidence of influenza between 2015 
and 2019, but a positive correlation is found between 
specific humidity and the reported cases of COVID-19. 
Since the positive correlation between specific humidity 
and COVID-19 may be caused by the use of 
aggregated data at national level—besides the lack of 
herd immunity—a Bayesian spatio-temporal disease 
model for the Netherlands is estimated at municipality 
and province level. This model allows to quantify the 
relation of COVID-19 cases with the specific humidity in 
the Netherlands at regional sub-national levels and over 
time. 

The results of the spatio-temporal disease model 
indicate that the increase of specific humidity during the 
outbreak of the SARS-CoV-2 helped to reduce the risk 
of regional COVID-19 cases in the Netherlands. 
Specifically, an increase of specific humidity of one 
gram of water vapor per kilogram of air (1 g/kg) is 
related to a reduction of approximately 5% in the risk of 
COVID-19 cases. 

2. Data 

Weekly data of influenza reports were collected for the 
years 2015 to 2019 from the Nivel Primary Care 
Database (Nivel Zorgregistraties Eerste Lijn). Daily 
COVID-19 data (Reported Infections, Hospitalizations 
and Mortality) was provided by The Dutch National 
Institute for Public Health and the Environment (RIVM). 
RIVM is the government agency focused as Centre for 
Infectious Disease Control (CDC), under supervision of 
the Dutch Government. The COVID-19 data covers the 
twelve provinces and the 355 municipalities in the 
Netherlands, from March 13th to July 9th.  

Specific humidity (�) was calculated with the data from 
34 weather stations, spread across The Netherlands. 
This data was provided by The Royal Netherlands 

Meteorological Institute (KNMI), the Dutch national 
weather service. Since KNMI only reports relative 
humidity (�), specific humidity � was calculated using 
the Rotronic formula1, which is based on the UK 
National Physical Laboratory guide for the 
measurement of humidity [19]: 

� �  � ���

�������
                             (1) 

In (1), � is specific humidity of air vapor mixture 
(expressed in g/Kg), � is relative humidity (in 
percentage), �� is the density of water vapor (kg/m3), 
�� is density of the moist or humid air (kg/m3) and � � .622. Specific humidity is analyzed instead of 
relative humidity because relative humidity is affected 
by the surrounding temperature. Specific humidity in 
contrast remains the same in indoor and outdoor 
conditions2. The hourly weather data provided by the 
KNMI was aggregated at daily and weekly levels using 
the average values during the time periods. 

Additional population data was used in the spatial-time 
models to calculate the incidence of SARS-CoV-2 at 
intra-regional level. This data was provided by the 
national statistical office, Statistics Netherlands (CBS) 
and is also used by the RIVM. 

 

3. Methods 

Parametric and non-parametric correlation coefficients 
were calculated between specific humidity � and the 
incidence of influenza and SARS-CoV-2. Spatio-
temporal disease models were estimated with the daily 
data of specific humidity (��	) and SARS-CoV-2 (
�	� in 
the Netherlands. Spatial dependence in the latent 
component of the disease mapping is modelled by 
specifying neighborhood relationships among the area-
level risks [20-21].  

In the space-time analysis, the Besag-York-Mollié 
(BYM) spatio-temporal model [22] is used to estimate 
the impact of specific humidity on the risk of SARS-
CoV-2 (COVID-19) cases at province and municipality 
level. In the BYM model, the number of SARS-CoV-2 
cases follows a Poisson stochastic process for each 

                                                           
1 The Rotronic technical note about humidity definitions is freely available at: 
0https://www.rotronic.com/media/productattachments/files/h/u/humidity_definitio
ns_weba.pdf?_ga=2.192612136.342104324.1597340506-
398495933.1597340506 
2 For example, weather stations may report a temperature of 5ºC and a relative 
humidity of 35% for the outside environment (equal to a specific humidity of 
1.87g/kg). However, inside the households, the temperature can be 21ºC with a 
relative humidity of 12% due to heating systems, but specific humidity will 
remains the same (1.87g/kg) regardless of the temperature. 
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area � and time points 
, 
�	~����	�, as in [23]. The 
parameter ��	 is defined by the ecological regression: 

���	 � ��	��	                                                             ��	 � exp�� � �� � �� � ��	 � ���
 � �
��	�         (2) 

where ��	 is the expected number of cases in each 
area, at each point in time, ��	 is the ratio between the 
number of observed cases 
�	 and the number of 
expected cases, � is the average rate of cases in all the 
areas, �� is the unstructured area-specific effect, which 
follows a Gaussian prior ��~!�0, $���, and �� is the 
spatially structured area-specific effect, modelled with 
an intrinsic conditional autoregressive prior that takes 
into account the number of %-areas which share 
boundaries with the �-areas (% & �), i.e. the neighbors of 
each province/municipality [24]. 

In (2), the temporal component 
 is modelled with a 
parametric approach [25], where �	 represents the 
global time effect, and ��~!�0, 1/$
�� is the differential 
trend that captures the interaction between time and 
space. Specific humidity levels (��	) were included as a 
risk factor in the spatio-temporal model (1) to evaluate 
their impact on the risk of SARS-CoV-2 cases, 
measured by the parameter �
. When the incidence of 
SARS-CoV-2 per 100,000 population is used as the 
dependent variable, a Gaussian likelihood is used 
instead of the Poisson model in equation (2)3.  

 

4. Results 

Figure 1 shows the weekly historical patterns of specific 
humidity � and the incidence of influenza in the 
Netherlands, from 2015 to 2019. Specific humidity � 
during the winter periods is between 3 and 6 g/kg, while 
in the summer specific humidity is above 8 g/kg. The 
highest incidence of influenza infection is observed in 
weeks with a specific humidity of less than 6 g/kg. 
Particularly, a higher incidence is observed in children 
of less than 4 years and individuals with 65 years or 
more (Figure 2a). Above 6 g/kg, a significant drop in 
infections is observed. The opposite is also true: the 
rate of influenza cases is 5.91 higher when specific 
humidity levels are approximately 2 g/kg compared to 
the average cases at 8 g/kg (Table 1). 

Figure 2b illustrates the inverse non-linear relationship 
between the levels of specific humidity and the weekly 
incidence of influenza. The ordinary Pearson 

                                                           
3 The data an R codes to replicate the results with R-INLA (www.r-inla.org) are 
feely available upon request. 

correlation of specific humidity with influenza cases is 
negative and equal to –.6986 (t-value: –15.713, p-
value: 0.0000). The value of the non-parametric 
Spearman correlation is equal to –0.8083 (t-statistic: –
22.0993, p-value: 0.0000). 

In the case of SARS-CoV-2, there is a positive 
correlation between humidity levels and the daily 
COVID-19 cases in the Netherlands (Figure 3). The 
Pearson correlation is equal to .7016 (t-value: 10.651, 
p-value: 0.0000), and the Spearman correlation is 
0.8389 (t-statistic: 16.6734, p-value: 0.0000). This 
positive correlation can be explained by the lack of herd 
immunity—due to the novelty of the SARS-CoV-2—, 
the increasing number of tests, and the use of 
aggregate data at country level which does not capture 
the dissimilarities of specific humidity at sub-national 
levels in the Netherlands.  

 

 

In order to take into account the differential spatial and 
temporal patterns of specific humidity across the 
Netherlands during the outbreak of the COVID-19, a 
Bayesian spatial-time model based on a Poisson 
stochastics process was estimated for the number of 
reported cases of SARS-CoV-2, at municipality and 
province level. The increase in testing, which increases 
reported COVID-19 cases, was controlled by 
relativizing the number of COVID-19 cases with the 
population at municipality and province level, i.e. 
estimating an additional Gaussian space-time model for 
the incidence of COVID-19 cases per 100,000 people4.  

Table 2 shows the results of estimating the fixed-effects 
)�, �	 , �
* of the spatio-temporal model. The low 
standard deviation of the posterior means in all the 
models indicates a good level of accuracy in the 
integrated nested Laplace approximation of the 
approximate Bayesian inference. The value of the 
exponentiated estimate of �	 implies a 1.5% daily rate 
of infection of SARS-CoV-2 in the Netherlands from 
March to July of 2020, with a 95% credibility interval 
ranging from 1.47% to 1.62%. The negative sign of the 
mean estimate of �
—as well as the sign of the low and 
upper limit of the 95% credible interval—suggests that 

                                                           
4 The Netherlands increased COVID-19 testing from 55,000 weekly tests in 
March to 110,000 tests per week in July 2020. The testing was only focused on 
care workers in March, but now the entire population is subject to testing. Due 
to the possible bias caused by testing, space-time models were also estimated 
using data of the number of hospitalizations, and similar results were obtained 
as those for reported cases. The results for hospitalization are available upon 
request.  
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regions with higher specific humidity levels have, on 
average, lower number of COVID-19 cases in the 
Netherlands. Specifically, the estimated values of 
�+
 � ,0.048 at province level and �+
 � ,0.053 at 
municipality level in the Poisson space-time model 

indicate that an increase of one gram of water vapor 
per kilogram of air (1 g/kg) is related to a reduction of 
around 5% in the risk of Covid-19 cases.  

 

Table 1. Average incidence of influenza 
cases at different intervals of specific 
humidity 

Specific humidity 
Average incidence of 
influenza per 100000 

people 
Below 2 g/kg 147.3 
Between 2 and 3 135.4 
Between 3 and 4 110.9 
Between 4 and 5 79.7 
Between 5 and 6 54.4 
Between 6 and 7 33.2 
Between 7 and 8 29.5 
Between 8 and 9 24.9 
Between 9 and 10 17.2 
Above 10 15.8 

 

Figure 1. Specific humidity and incidence of influenza in the Netherlands  
Weekly historical observations per year 
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Figure 2. Specific humidity and incidence of influenza for age categories in the Netherlands.  
a: Weekly historical observations (left), b: bivariate scatterplot (right) 

 

 

Figure 3. Specific humidity and SARS-CoV-2 (Covid-19) cases in the Netherlands  
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a: Daily historical observations (left), b: bivariate scatterplot (right) 

 
 

Similar results are obtained using a Gaussian space-
time model for the incidence of SARS-CoV-2 cases per 
100,000 population in the Netherlands. On average, 
regions with higher levels of specific humidity showed a 
lower incidence of COVID-19 cases per 100,000 people, 
on a magnitude of  at province level and 

 at municipality level.  

Figure 4 shows the area-specific relative risks of 
COVID-19 in the Netherlands—at province and 
municipality level—calculated with the random-effects 

 estimated with the spatio-temporal 
models. The regions located in the North of the country, 

where specific humidity tends to be higher, sho
lower risk of COVID-19 cases. In contrast the reg
with less specific humidity, in the South East o
country, display higher levels of relative risk of SA
CoV-2 cases.  

Interestingly, municipalities with the hig
concentration of conservative orthodox Cal
Protestants in the country, i.e. those in the ‘Bible 
have a higher risk of SARS-CoV-2, compared to 
regions in the Netherlands. The identification of this
of regions with a high risk of COVID-19 cases can
to allocate resources during the SARS-CoV-2 pand
[26]. 

 

Table 2. Estimation results: Besag-York-Mollie spatio-temporal disease model of daily ( ) 
COVID-19 cases and specific humidity ( ) in the Netherlands 

  
 

Parameter Area's 
break 

Mean 
estimate 

Standard 
deviation 

Credible interval 

2.5% 97.5% 

Number of cases 
of SARS-CoV-2 

(COVID-19) 

 
Province 6.770375 0.092920 6.585284 6.955255 
Municipality 3.407532 0.043961    3.321127   3.493834   

 
Province 0.015331 0.000354 0.014625 0.016037 
Municipality 0.015307 0.000035    0.015238   0.015375   

 
Province -0.047696 0.000361 -0.048404 -0.046988 
Municipality -0.053141 0.000364   -0.053855 -0.052427 

Incidence of 
cases of SARS-

CoV-2 
(COVID-19) per 

100,000h 

 
Province 67.440261 2.982071   61.584535 73.291041 
Municipality 87.629212 3.374872   81.003201 94.249693 

 
Province 2.448832 0.049035    2.352544   2.545038   
Municipality 2.866350 0.013162    2.840509   2.892170   

 
Province -6.231110 0.706851   -7.619118 -4.844281 
Municipality -8.399374 0.194467   -8.781178 -8.017889 

  

6 

how a 
regions 
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alvinist 
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his type 
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ndemic 
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Figure 4. Area-specific relative risk* of SARS-CoV-2 in the Netherlands 

 
(*) Relative risk: residual risk after regional specific humidity ( ) levels are taken into account. 
Area’s break: province level (left) and municipality level (right). 
5. Discussion 

Higher levels of specific humidity ( ) were found to be 
related to a lower number of reported cases of 
respiratory viruses in the Netherlands. An inverse non-
linear relationship between specific humidity and 
influenza is observed historically between 2015 and 
2019. A similar inverse (negative) relationship between 
specific humidity and SARS-CoV-2 cases is found using 
spatio-temporal models that consider the differential 
patterns of specific humidity ( ) and SARS-CoV-2 cases 
at municipality and province levels in the Netherlands. 
Given the seasonal dynamics of humidity in the last 5 
years, an uptake (second wave) of SARS-CoV-2 
infections can be expected during the weeks 43 to 45 of 
2020, if low levels of humidity—below 6 g/Kg—are 
observed during those periods. 

The results are in line with previous studies [7-18]5, as 
our risk analysis shows that higher levels of humidity 
may result in a slower spread of COVID-19 [10, 12]. The 
findings are consistent with the hypothesis that suggests 
that SARS-CoV-2 spreads through airborne 
aerosolization [28], since lower levels of specific 
humidity  lead to a higher rate of infections due to the 

                                                           
5 Compared to these previous studies, we use more detailed data, with a high 
temporal and spatial resolution, in order to reduce the possibility of the ecological 
fallacy that may arise in the analysis of large spatial units that neglect the strong 
localized patterns of SARS-CoV-2 [27].  

effects of water activity on virus survivability, s
inactivation, salt toxicity, or changes in pH induc
evaporation that modify the surface glycoprote
enveloped viruses and subsequently compromise
infectivity [29]. Lower levels of humidity can partic
lead to higher aerosol concentration when a d
increases the evaporation of respiratory droplet
when droplets smaller in diameter than a
micrometers—referred to as ‘droplet nuclei’—evap
to about half their initial size [30]. In the ca
influenza, for example, the probabilities of exposur
infection risk of aerosol and droplet transmissio
within the same order of magnitude, but intra
inoculation leads to about 20 times lower infectivit
when the virus is delivered in an inhalable aerosol 

In practice, the findings suggest that public policie
promote higher levels of specific humidification—
6 g/Kg—can lead to significant reductions in the s
of respiratory viruses, such as influenza and SARS
2. For example, the deployment of hygrometers aim
measuring specific humidity can guide the 
behavior in the face of a warning of an increased 
infection6. The results also imply that the use 

                                                           
6 For example, smart social distancing regulations may take into
humidity levels, per municipality, and allow social gatherings in outs
e.g. terraces) on humid days. At the same, social gatherings on c
days with low humidity or in dry environments (such as restaur
discouraged, unless these environments have approved humidific

7 
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conditioning (which decreases the specific humidity in a 
cooled area), must be complemented with humidification 
during the fall and winter periods, particularly when 
specific humidity � decreases below 6 g/kg. 

Future studies can study the interaction effects of 
sunlight with humidity, as sunlight radiation may act as 
and additional environmental factor in the reduction and 
prevention of the risk of SARS-CoV-2 [32], since solar 
radiation plays an important role in vitamin D production, 
which seems to play a role in reducing COVID-19 
infections [33-34]. 
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