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Abstract

The timing of transmission plays a key role in the dynamics and controllability of an epidemic.
However, observing the distribution of generation times (time interval between the points of in-
fection of an infector and infectee in a transmission pair) requires data on infection times, which
are generally unknown. The timing of symptom onset is more easily observed; the generation
time distribution is therefore often estimated based on the serial interval distribution (distribu-
tion of time intervals between symptom onset of an infector and an infectee). This estimation
follows one of two approaches: i) approximating the generation time distribution by the serial
interval distribution; or ii) deriving the generation time distribution from the serial interval and
incubation period (time interval between infection and symptom onset in a single individual)
distributions. These two approaches make different — and not always explicitly stated — as-
sumptions about the relationship between infectiousness and symptoms, resulting in different
generation time distributions with the same mean but unequal variances. Here, we clarify the
assumptions that each approach makes and show that neither set of assumptions is plausible
for most pathogens. However, the variances of the generation time distribution derived under
each assumption can reasonably be considered as upper (approximation with serial interval) and
lower (derivation from serial interval) bounds. Thus, we suggest a pragmatic solution is to use
both approaches and treat these as edge cases in downstream analysis. We discuss the impact
of the variance of the generation time distribution on the controllability of an epidemic through
strategies based on contact tracing, and we show that underestimating this variance is likely to
overestimate controllability.

Background
Motivation

Estimating the generation time (the timing between successive infections in a transmission chain)
distribution in an emerging epidemic is both extremely important and extremely challenging.
Generation time is key to assessing the controllability of the epidemic: it determines the rela-
tionship between the basic reproductive number Ry and the epidemic’s growth rate [1, 2], as
well as how much delays in the isolation of infected individuals impede epidemic control [3, 4].
However, the timing of transmission events is often unknown. The distribution of generation
times is therefore typically estimated based on the timing of symptom onset, which requires
assumptions about the relationship between infectiousness and symptoms. These assumptions
are not always explicitly stated and their plausibility is rarely discussed. Here, we illustrate how
assumptions about infectiousness and symptom onset affect the relationship between the gener-
ation time and serial interval distributions, and the implications this has for assessing epidemic
controllability.

Definitions

We consider an infector ¢ and infectee j (Figure 1A), and define: S;; as the serial interval (time
interval between symptom onset of infector ¢ and symptom onset of infectee j); G;; as the
norERsTation, tizms, (e Laterval, from. infectionaof o) fo.irdaction, ofodli ndise e G ntST & ce.
from symptom onset of ¢ to infection of j; and I;”as the incubation period of ¢ Eand I; is the
incubation period of j). We use the letters without indices to denote the distributions of these
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time intervals (e.g. S is the serial interval distribution). The generation time distribution G
describes infectiousness relative to the point of infection, while P describes infectiousness relative
to symptom onset. We refer to P as the infectiousness profile [5, 6].
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Figure 1: A schematic of how the assumptions about infectiousness and symptoms affect the re-
lationship between the serial interval and generation time distributions. A: Definitions of: serial
interval S;;, time from symptom onset of infector ¢ to symptom onset of infectee j; generation
time G, time from infection of ¢ to infection of j; incubation time I;, time from infection of ¢ to
symptom onset of ¢; and P;;, time from symptom onset of i to infection of j. B: Illustration of
how infectiousness relates to the point of infection and onset of symptoms under the two differ-
ent assumptions. Under assumption 1 (P;; and I; independent), the infectiousness is fixed with
reference to symptom onset. Under assumption 2 (G;; and I; independent), the infectiousness is
fixed with reference to the point of infection. C: The relationship between the generation time
distribution, the infectiousness profile, and the serial interval distribution under assumptions 1
and 2.

Data availability in early epidemics

The distributions I, G, P and S are typically derived from contact tracing data during epidemic
outbreaks. Such data consist of transmission pairs, usually with the timing of symptom onset for
infector and infectee, and an exposure window for the timing of the transmission event. These
data allow direct estimations I and S, but not P and G.

It is important to note that in a growing epidemic, there is a difference between distributions
derived from backwards (from infectee to infector) and forwards (from infector to infectee)
intervals. This is because in a growing epidemic, a randomly sampled infected is likely to have
been infected more recently than expected based on the generation time. As contact tracing
data typically gives rise to backward intervals, it is important to correct for this bias [2]. In this
work, for clarity, we omit this correction when discussing the relationship between G, P and S.


https://doi.org/10.1101/2020.09.18.20197210
http://creativecommons.org/licenses/by-nc/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.09.18.20197210; this version posted September 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

Relationship between G, P and S
Deriving G and P from S

The relationships between G;;, P;; and S;; are illustrated in Figure 1A and are captured by the
following equations:

Sij = Pij + Ij (1a)
Gij = Pij + I; (1b)
Gij = Sij + I, — Ij (lc)

Deriving P from S does not require strong assumptions; P;; and I; are plausibly independent:
it is reasonable to assume that the interval between the infector’s symptom onset and onward
transmission does not affect the incubation period of the infectee. From Eq. (1a) we can then
write S as the convolution between P and I, i.e.

S=Pxl. (2)

The infectiousness profile P can therefore be derived by deconvolution of the serial interval and
incubation period distributions [5, 6].

Deriving G is not as straightforward: as F;; and I; relate to the same individual, indepen-
dence of the two is a more debatable assumption than for P;; and I;. Assuming I; and I; are
independent and identically distributed (i.i.d), S and G have the same mean and their variances
are related through [7]:

Var(G) = Var(S) + 2Cov(FP;;, I;). (3)

Deriving the generation time distribution G requires further assumptions: typically, either the
independence of P;; and I; or the independence of G;; and I;.

Assumption 1: independence of incubation period of the infector (I;) and time from
symptoms of infector to infection of infectee (P;;)

Under this assumption, there is no correlation between how long it takes an individual to develop
symptoms and the interval between symptom onset and onward transmission (Figure 1B). Such
a situation would arise, for example, if individuals have a variable period between infection and
the onset of infectiousness, without this period affecting subsequent infectiousness or onset of
symptoms (see also [2]).

Using Eq. (1b), the independence of P;; and I; means that G can be derived as the convolution
of P and I (i.e. G = P x1I) and is thus identical to S (Eq. 2). Thus, the often-used approach
of approximating the generation time distribution by the serial interval implicitly makes this
assumption (Figure 1C).

In line with the above, under this assumption, the variance of G is equal to the variance of

S:

Var(G) = Var(S) + QCOV(PZ'J', Iz) (4)

= Var(5).

This assumption is biologically implausible: it requires the incubation period to be inde-

pendent of processes affecting infectiousness. Yet infectiousness and symptom onset both likely

depend on pathogen load; it is therefore unlikely that assumption 1 holds for most pathogens.

Furthermore, unlike serial intervals, generation times cannot be negative. When observed, neg-
ative serial intervals are empirical evidence against assumption 1.

Assumption 2: independence of incubation period of the infector (I;) and time from
infection of infector to infection of infectee (Gi;)

Under this assumption, the timing of transmission is uncorrelated with the timing of symptom
onset (Figure 1B). As P;; = Gj; — I; [Eq. (1b)], P would then be the convolution of G and
—I, P = G (—I). The generation time distribution G could therefore be derived from S by
deconvolving first with I and then with —I (Figure 1C), i.e. solving S*I = G*(—1I) for G. The


https://doi.org/10.1101/2020.09.18.20197210
http://creativecommons.org/licenses/by-nc/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.09.18.20197210; this version posted September 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

functional form of G would therefore depend on both empirical distributions S and I. This is
the approach adopted for deriving the generation interval of SARS-CoV-2 in Ferretti et al. [4]
and Ganyani et al. [8].

In line with the above, under this assumption, the variance of GG is smaller than the variance

of S:
Var(G) = Var(5) +2COV(.PZJ,I)
= Var(S) + 2Cov(Gy; — I, I;)
= Var(5) + Q[COV(GW, I;) — Cov(I;, I;)] (5)
= Var(S) — 2Var(I)
< Var(S)

This assumption is also biologically implausible. If infectiousness and symptom onset both
depend on pathogen load, individuals with a rapid increase in pathogen load will develop symp-
toms early (short I;) and transmit sooner after infection (small G;;), leading to Cov(G;;, I;) > 0.
Furthermore, symptom onset itself is likely to affect infectiousness. Depending on the pathogen,
the effect could be in either direction (symptomatic individuals transmitting more because symp-
toms contribute to transmission, or symptomatic individuals transmitting less because they
self-isolate). However, either scenario would lead to a positive correlation between the timing of
symptom onset and transmission (SI Figure 1).

Assumptions 1 and 2 bound the variance of G

Although neither assumption 1 or 2 are plausible, they are still informative: the variances of
the generation time distribution derived under these assumptions can reasonably be considered
as upper and lower bounds for Var(G):

Var(S) — 2Var(I) < Var(G) < Var(S5) (6)

Assumption 1 leads to the upper bound Var(G) = Var(S). A greater variance would require
Cov(P;;,1;) > 0 (see Eq. (3)): i.e. transmission occurring late with reference to symptoms for
individuals with a longer incubation period - for example, a greater proportion of transmission
being post-symptomatic when symptoms appear late. The notion that Cov(P;,I;) > 0 is
unlikely has also been previously suggested in the literature [2]. Furthermore, if negative serial
intervals are observed, this suggests Var(G) < Var(S) (assuming the serial interval distribution
and generation time distribution have a similar shape), since the distributions have the same
mean and negative generation times are not possible.

Assumption 2 leads to the lower bound Var(G) = Var(S) — 2Var(I). A lower variance
would require Cov(Gj;,1;) < 0 (see Eq. (5)): i.e. transmission occurring soon after infection
for individuals with a longer incubation period. However, as discussed above, individuals with
a faster increase in pathogen load are likely to start transmitting earlier and also have shorter
incubation period, leading to Cov(Gjj,I;) > 0. Furthermore, if the appearance of symptoms
leads to a change in infectiousness (in either direction), earlier symptoms will correlate with
earlier transmission, again leading to Cov(Gj, I;) > 0.

Possible solutions
Empirical testing of assumptions

A priori, there is no reason to consider either assumption 1 or assumption 2 as more plausible
that the other. With appropriate data, the assumptions can be tested empirically. For example,
such analysis for SARS-CoV-2 suggests a strong positive correlation between G;; and I;, and
a weak negative correlation between P;; and I; [9]. In other words, for SARS-CoV-2, neither
assumption holds, but assumption 1 (independence of P;; and I;) is a better approximation.
The empirical testing of these assumptions requires transmission pairs for which I; and G;;
(or, equivalently, P;;) can be estimated. This can be done with either: i) data on the timing of
infection for both infector i and infectee j and the timing of symptom onset for ¢; or ii) data on
the timing of symptom onset for both ¢ and j and the timing infection for i, as the assumption
that P;; and I; are independent allows estimating the timing of infection for j. Therefore, an
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Study Distribution Shape Mean  Variance N
(days) (days?)
Zhang [10] Incubation Lognormal 52 6.7 49
Li [11] Incubation Lognormal 5.2 15.3 10
Lauer [12] Incubation Lognormal 5.5 5.8 181
Backer [13] Incubation Weibull 6.4 5.3 88
Linton [14] Incubation Lognormal 5.6 7.8 158
Ganyani [8]  Serial interval (Singapore) Gamma 5.2 18.7 54
Ganyani [8]  Serial interval (Tianjin) Gamma 3.95 18.0 114
Zhang [10] Serial interval Gamma 5-1 7.2 34
Li [11) Serial interval Gamma 7.5 11.6 6
He [5] Serial interval Gamma (shifted) 5.8 20.0 77
Nishiura [15]  Serial Interval Lognormal 4.7 8.4 28
Ali [16] Serial Interval (all) Normal 5.1 28.1 677
Ali [16] Serial Interval (pre-peak)  Normal 7.1 27.0 162

Table 1: Shape, mean and variance of incubation period and serial interval distributions of
SARS-CoV-2 from a range of studies. N indicates the sample size.

interesting corollary here is that for transmission pairs with a known serial interval, data on
the timing of infection of the infector is more informative than the timing of infection of the
infectee.

In practice, when such data are available, the generation interval distribution can simply be
directly estimated from the data. The reason for deriving G from S is precisely the lack of such
data; an alternative approach for assessing the plausibility of the assumptions underlying this
derivation is therefore necessary.

Assumptions 1 and 2 as edge cases

As assumptions 1 and 2 bound the variance of G, a solution when data are lacking is to derive
G under both assumptions, and treat these as boundary cases in downstream analysis (e.g.
best and worst case scenarios). This approach may not always be entirely straightforward. If
Var(S) < 2Var(I), assumption 2 would lead to negative variance of G. In these cases, the
lower bound for Var(G) is zero. If the serial interval distribution includes negative values,
deriving G under assumption 1 is problematic. A pragmatic approach in these cases would be
to use Var(G) = Var(S) and to assume a non-negative functional form for G (e.g. lognormal,
gamma or Weibull), although the resulting distribution will not be the correct distribution
under assumption 1. The key point is that evidence against assumption 1, such as negative
serial intervals, is not, in itself, evidence in favour of assumption 2.

Implications for the modelling of contact tracing

Finally, we explore the impact of the variance and functional form of the generation time distri-
bution on the modelling of contact tracing, using the example of SARS-CoV-2. Table 1 shows
empirical estimates for the mean and variance of the serial interval and incubation period dis-
tributions. Both distributions have a mean of around 5 days. The variance of the incubation
period distribution is generally estimated to be in the range of 5 to 8 days?, although some
studies have also reported considerably higher values (Table 1). With the exception of some
smaller studies, the variance of the serial interval distribution is generally estimated to be of the
order of 20 to 30 days?. Assuming Var(S) = 25 and Var(I) = 8, a plausible range for Var(G)
would thus be 25 to 9 days? under assumptions 1 and 2 respectively (though lower values cannot
be excluded if the lower estimates of Var(.S) hold).

Figure 2 illustrates how the variance and functional form of the generation time distribution
impact how quickly infected individuals need to be isolated to prevent a significant portion of
onward transmission, that is, how quickly contact tracing needs to operate for the epidemic to
be controllable. For example, assuming generation time is gamma distributed with a mean of 5
days, preventing 80% of onward transmission requires isolation of an infected individual within
1.1 days if Var(G) is 25 days?, and 2.5 days if Var(G) is 9 days?. On the other hand, if the
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variance is large, isolating individuals even with considerable delay will still have an impact on
onward transmission. For example, isolating an infected individual 10 days after infection will
prevent 14% of onward transmission if Var(G) is 25 days?, but only 7% if Var(G) is 9 days®. In
practice, if the goal of contact tracing is to control the epidemic, the former scenario is more
relevant [4]. Thus underestimating the variance of the generation time distribution (assumption
2) risks overestimating the effectiveness of contact tracing.
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Figure 2: A schematic showing the impact of functional form and variance on the timing of on-
ward transmission. The plots show cumulative generation time distributions, i.e. the proportion
of transmission occurring within = days of infection. All distributions have a mean of 5 days.

Conclusion

Neither of these two commonly used approaches for estimating the generation time distribution
from the serial interval distribution is based on plausible assumptions for most pathogens. The
two approaches yield generation time distributions with the same mean, but different variances.
This difference in variance can have a considerable impact on estimating the controllability of an
epidemic through contact tracing. The two variances are plausible upper and lower bounds for
the variance of the generation time distribution. We therefore suggest a pragmatic solution is to
treat the distributions derived through the two approaches as edge cases in downstream analysis.
Preferring one approach over the other risks either over- or underestimating the controllability
of an epidemic.
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Figure 1: Schematic illustrating how symptom onset affecting transmission leads to a positive
correlation between incubation period and generation time, whether symptoms increase or de-
crease transmission. In the left-hand panels, transmission only occurs after symptom onset. In
the right-hand panels, transmission only occurs prior to symptom onset. We make the additional
assumption that the length of the incubation period does not affect when infectiousness ends
(for the left-hand panels) or starts (for the right-hand panel).
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