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Here, we provide detailed background information for our work on Bayesian inference of change-
points in the spread of SARS-CoV-2 and the effectiveness of non-pharmaceutical interventions
(Dehning et al., Science, 2020). We outline the general background of Bayesian inference and of
SIR-like models. We explain the assumptions that underlie model-based estimates of the reproduction
number and compare them to the assumptions that underlie model-free estimates, such as used in the
Robert-Koch Institute situation reports. We highlight effects that originate from the two estimation
approaches, and how they may cause differences in the inferred reproduction number. Furthermore,
we explore the challenges that originate from data availability — such as publication delays and
inconsistent testing — and explain their impact on the time-course of inferred case numbers. Along
with alternative data sources, this allowed us to cross-check and verify our previous results.
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I. INTRODUCTION

After the release of our study “Inferring change points
in the spread of COVID-19 reveals the effectiveness of
interventions” in Science [1], we have received many con-
structive comments and interesting questions. Here, we
address the most important of these questions and put
them into perspective with respect to model-based and
model free analyses of epidemic outbreaks. We provide
additional background on our results, and we also discuss
the robustness and performance of our published model
in the light of newly available data.

The questions and comments we received can be broadly
categorized into four topics:

1. Remarks on apparent discrepancies between the
values for the estimated reproductive number R
as reported by the Robert Koch Institute (RKI)
and the corresponding spreading rate resulting from
our published analysis. We will explain below how
this apparent discrepancy partly arises from the

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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FIG. 1. Illustration of two basic compartmental models in epidemiology. The SEIR model (left) captures the basic
steps that infections passes through: A healthy person becomes infected but not infectious (leaves S, enters E); after some time
('latent period’) the person becomes infectious (leaves E, enters I) but symptoms only show after some incubation period; after
some time the person is no longer infectious (leaves I, enters R), which can have several reasons including isolation, conventional
recovery, or death. The SIR model (right) is the most basic compartmental model and does not distinguish between infectious
and infected: A healthy person becomes infected (leaves S, enters I), immediately begins to infect other persons but only shows
symptoms with a delay. After some time the person “recovers” (leaves I, enters R), which again includes isolation, recovery, or
death.

comparison of model-free estimates to those from our central conclusions remain unchanged when
a differential-equation based modeling of disease updating our model to the new data.

dynamics. We show how the model-free approach
may substantially underestimate the reproductive
number R immediately after a sudden drop in R has
occurred. From the comments we received it seems
that this very important fact related to estimating
R, i.e. R, is largely unknown, and also counter-
intuitive to most readers. This effect,together with
the usage of alternative data (see point 3.), explains
the apparent discrepancies between the RKI reports
and our study. We therefore derive and demonstrate
it in detail here.

4. Questions on how changes in testing capacity may
have influenced our results. Given the data that
have become available on the weekly (daily) number
of performed tests, test capacity, and on delays
between symptom onset, test and case report, we
reanalyze in great detail the disease and testing
dynamics, especially with respect to the timing of
the peak in new symptom onsets. We conclude that
all symptom onsets that are relevant for the main
conclusions of our previous publication have been
tested at a time when testing had sufficient capacity

2. Questions revolving around the philosophy and inter- and was sufficiently constant.
pretation of our modeling approach that combines a
differential equation model of the disease outbreak,
Bayesian parameter inference and Bayesian model
comparison. Most frequently we were asked if and
in what sense our results have a causal interpreta-
tion. As we will explain below, our approach selects
the most plausible of multiple causal explanations
of the observed data, but does not establish strict
interventional causality.

We will in the following address the issues revolving
around the reproductive number R first, also introduc-
ing the basic terminology of disease spreading and the
fundamental difference between model-free and model-
based estimation of epidemiological parameters. Next, we
will discuss philosophy and interpretation of model-based
estimation in the Bayesian framework and the causality
question. We then show how our original analyses can be
evolved to incorporate new data, in particular on symp-
3. New data have been released in the time since our ~ tom onset (epi curve). Last we turn to the important

analyses were completed. Most prominently, data  question of testing.

on the times of symptom onsets (epi curve) are now

accessible in online data bases. The advantage is

that the date of symptom onsets is closer to the II. ESTIMATING THE REPRODUCTIVE

infection date, allowing in principle a more precise NUMBER R

estimation of the dynamics of the propagation. It

brings however its owns source of errors, because A. Basic SIR dynamics

the onset of symptoms is not reported for all cases,

and the subjective reporting of symptom onset also Before we define the reproductive number R, we briefly

bears some uncertainty. As we will show below,  recapitulate the basic SIR dynamics that we consider
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(Fig. 1). In principle, the course of an infection can be
described as follows: A susceptible person (not infected
and not immune) becomes infected but is initially not
infectious; after some time, the person starts to be in-
fectious but symptoms only show after the incubation
period; eventually, the person is no longer infectious be-
cause she or he has been either isolated, has recovered, or
died. The idea of compartmental models is to group the
population into compartments; in the most simple but
established SIR model these are susceptible (S), infected
(I), and recovered (R). Assuming a well-mixed population
(a mean-field approximation of everybody interacting with
everybody), one can formulate differential equations that
describe the time development of these compartments:

ds SI

R Y 1
dt N )
ar - SI

a N 2)
dR

o pl (3)

This assumes a spreading rate A\ for infected people to
infect susceptible people (who they meet randomly) and
a recovery rate p for infected people to recover. These
differential equations can be extended to include various
different compartments, in order to better resolve the
temporal course of the disease, but typically keep the
mean-field assumption of a well-mixed population unless
evaluated on some (typically unknown) network. In this
case, additional compartments reflect spatial information.

Observed case numbers are always delayed from
the true infection date (Fig. 2). In general, when
a person becomes infected, the onset of symptoms is
delayed by the incubation period. Upon symptom onset, it
typically takes a few days until the person undergoes a test
and the case is reported (although some people are tested
before symptom onset, e.g. if contacts are traced or tests
are performed at random “Stichprobe”). However, for
the modeling, one is usually interested in the actual time
when a person becomes infected — but this information
is not directly available in real-world data. One either
works with the reporting date or with the dates of the
symptom onset (epi curve) that can be reconstructed
e.g. via questionnaires and imputation methods. Note that
even symptom onset dates are still delayed with respect
to the true infection dates due to the incubation period.
For the reporting dates a second delay occurs between
symptom onset and report, unless an asymptomatic case
is discovered in random testing. For the example models
in the following, we synthetically generate observed cases
— symptomatic or reported — by convolving the infected
cases with a distribution of incubation periods or reporting
delays, respectively (Fig. 2).
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FIG. 2. A change-point in R can lead to a transient

decrease in case numbers. To illustrate the effect of a
change point, and the delays in observing symptomatic and
reported cases, we consider an SIR model with a fast or slow
decrease of R, and generate synthetic case numbers. A: The
reproductive number R exhibits a change point from R = 3
to R = 1.15, with a duration of either 1 day (solid) or 9 days
(dashed). B: The number of new infections can show a tran-
sient decrease caused by the change point in R, even though
the underlying dynamics are always in the exponentially grow-
ing regime of R > 1. Such a decrease can be misinterpreted
as R < 1. The number of C new symptomatic cases, and D
reported cases is generated by convolving the new infected
with a log-normal incubation period (median 5 days) or re-
porting delay (median 10 days), respectively. Note that the
convolution shifts and smooths the curve of the new infected.
Nonetheless, the counter-intuitive effects of a transient de-
crease in case numbers caused by a change point, is still very
well visible (See Fig. 4 for the challenges in estimating R
around the change point.)

B. Model-free estimation of reproduction number
R

Definition of R. The reproductive number R quanti-
fies how many susceptible persons are on average infected
by one infected person. If one infected person infects
on average more than one other person (R > 1), then
case numbers are growing exponentially. In contrast, if
less than one other person gets infected (R < 1), then
case numbers are declining. Therefore, R = 1 marks
the critical transition between growth and decline of case
numbers. Last, note that R =~ 1 means that new infec-
tions keep occuring at their current levels (which may be
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FIG. 3. Two different conventions to define the re-

productive number R: Infections in the future or in-
fections from the past. A: Synthetic data for new symp-
tomatic cases. The marked interval indicates an assumed
generation time of 4 days. B: The basic reproductive number
can be defined either on the left edge of the generation interval
(left, dashed line), describing the average number of future
infections that are cause at time ¢, or on the right edge of the
interval (right, solid line), describing the average number of
infections at time ¢ that were caused by the past ones. C: De-
pending on the convention, the resulting curve of R is shifted
by the generation time g. Note that in both cases the R is
estimated erroneously to fall below R = 1, although in the
underlying model it was was R > 1 all the time. This is an
effect of the SIR dynamics together with a change point in
the underlying R. (See Fig. 4 for model details, and Figs. -
for other parameters).

high, depending on when and how R = 1 was reached).

Estimating the reproductive number R in principle
can be done in two manners, either by inferring it from
observed case numbers, or by following infection chains
step by step (which is not discussed here). If one infers
it from observed case numbers, there are a number of
possible approaches. Some approaches are summarized
in Fig. 4 and detailed below. All of these approaches can
be applied to the epi curve (day of symptom onset) or to
the reported cases (day or reporting). In the following,
we assume that they are applied to the epi curve.

The most straight-forward definition of the reproductive
number assumes a reproductive process with offspring
generation, such as a branching process [2]. For this,
one assumes a generation time g in which an infectious
person can generate offspring infections. In the simplest
case, one could consider that offspring infections occur
exactly after one generation time g. This allows to infer
the reproductive number R precisely:
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FIG. 4. The inferred reproductive number R depends
on the inference method. A, B: Synthetic data for new
symptomatic cases generated with SIR dynamics from an
underlying R with one change point of duration 1 day (solid)
or 9 days (dashed). C: Model-free inference of R based on the
ratio of case numbers at time ¢ and time ¢ — g, marked by a red
and gray cross (inset), respectively (‘right-edge convention’,
cf. Fig. 3). D: Model-free inference of R following the Robert
Koch Institute convention, i.e. using the definition of C but
with averaging over a window of the past 4 days (inset, red
and gray bars). E: Same as D but averaging over 7 days. Note
the overlap of intervals. All the model-free methods (C-E)
can show an erroneous estimate of R < 1 transiently, due to
the change point in the underlying true R. F: The inferred
R using change-point detection with an underlying dynamic
model (SIR) does not show a transient erroneous R < 1 period.
If the underlying dynamic model corresponds well enough to
the true disease dynamics, then this approach reproduces the
true R that was used to generate the data.
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FIG. 5. The inferred reproductive number depends

on the assumed generation time g. A, B: We generate
synthetic data using SIR dynamics with time-dependent R in-
cluding a 1-day change point (A) that yields new symptomatic
cases with transient decrease (B) despite all R > 1. C—E: Us-
ing the RKI convention to infer R (4-day average, right-edge
convention), we demonstrate how generation times g result
in different R curves. In particular, we find different initial
levels of R (left plateau), differently long crossover duration
(time from left plateau to right plateau), and differently deep
transients of R < 1 (insets).

- number of newly infected at time t + g
number of newly infected at time ¢
Ciig
Cy (5)

In reality, these newly infected case numbers C; have to
be approximated, e.g., by using new symptomatic cases
or new reported cases. Moreover, the generation times g
of each infection are widely distributed, so that using the
average value g (or an estimate of it) is used as a further
approximation.

When going into detail, there are two different conven-
tions for the timing of the estimated reproductive number
R with respect to the case numbers C; (Fig. 3). Above, we
consider Rt to characterize the number of future infections
that are caused by infections at time ¢ (left-edge conven-

tion). Alternatively, one can consider R, to characterize
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FIG. 6. The model-based methodology yields con-
sistent results irrespective of whether it is applied to
the new reported cases or the new symptomatic cases
(e.g. obtained by nowcasting). A: Time-dependent reproduc-
tive number as inferred from case numbers in Germany [1].
B: Synthetic data for new symptomatic cases generated with
SIR dynamics from the underlying time-dependent R. C: In-
ferred R from new symptomatic cases using RKI method (4
days generation time, right-edge convention) would reproduce
step-like behavior (no noise present) but drops below R =1
(dotted line) already after the second change point (note that
curve is shifted and smoothed compared to input R, cf. Fig. 4).
D: Inferred R from new symptomatic cases using change-point
detection with dynamic model (SIR) correctly reproduces the
input. E: Synthetic data for new reported cases generate with
SIR dynamics as in B (cf. Fig. 2). F: Inferred R from new
reported cases (E) using change-point detection with dynamic
model (SIR) also correctly reproduces the input. Note that
both, D and F show sharper steps because of the assumed
piece-wise linear change points in the model, and that they per-
form so well because they employ the true dynamic model that
is used for the synthetic data. Both are model assumptions
that need to be justified in our approach.

the number of infections at time ¢ that were caused by
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the past pool of infected (right-edge convention), defined
as

- number of newly infected at time ¢

Ry = (6)

number of newly infected at time t — g
(7)

Cr_y

The results for R are exactly equivalent, apart from
a shift in time by exactly g. However, the distinction
between left-edge and right-edge convention and the asso-
ciated time-shift crucially matter when discussing changes
in R; with respect to interventions.

R as calculated by the RKI. Real-world data are
often noisy, and therefore averaging over a certain time
window can help to smooth the estimate. This procedure
is used in two variants by the RKI, smoothing over four
days or over seven days. The details of the procedure
are documented in detail in Ref. [3]. For both smoothing
lengths, they assume a constant serial interval (generation
time) of g = 4 days (Fig. 4) and the right-edge convention.
The four-day smoothing has the advantage that it reacts
a bit faster, the seven-day smoothing has the advantage
that it smooths better the relatively strong variations. In
particular,

t
. ..
Ry = thsfti?’ (8)
Zs:tffi Csfg
t
. .
fooyr = 2amtoCe ©)
> smt—6Cs—g

where g = 4 is the assumed generation duration, and the
averaging is done over 4 and 7 days, respectively. Note
the shift by one day in the 7-day version Eq. (9).

Model-free methods also build on assumptions.
Clearly, when using model-based methods, assumptions
go into the model itself; but also when using what we call
model-free methods, assumptions have to be made. In
particular, the core assumptions behind the model-free
approach to estimate R that we discussed so far are that
every new infected person infects on average R persons,
and it does so precisely g days after becoming infected. As
is the case in modelling, these assumptions present a sim-
plification of the complex real-world dynamics. Whether
a chosen way to answer a given question is reasonable
or not depends on the specific question one asks (every
question may need its own model simplifications and type
of data set), on the quality of the data, and on how well
the relevant real-world dynamics for the question are cap-
tured in the simplified model. For the question of whether
case numbers are increasing or decreasing in general, the
above method of calculating R has proven very useful.

C. Model-free methods versus model-based
methods to infer the reproductive number

In order to demonstrate potential issues when inferring
the reproductive number R, we systematically compare
the model-free methods with model-based methods (akin
to our analysis of A\* in [1]) on synthetic data from an
SIR model (Fig. 2). With model-free methods, we refer
to inference methods for R, which do not explicitly in-
corporate disease dynamics (SIR). The three methods we
presented above belong to this group. These methods to
estimate R are straight forward and easy to implement.
However, they might lead to biased estimates when R
is changing rapidly. More precisely, in the following we
show that these methods (1) smooth out fast changes in
R, (2) produce some delay compared to the underlying R,
(3) the estimate depends on the assumed generation time,
and (4) around change points they may return transiently
R < 1, even if the true value was never smaller than 1.
While these methods have the above limitations when
R is changing quickly, they are still very useful for an
easy-to-obtain estimate of R.

1. Model-free methods may smooth out fast changes.

In Fig. 4, the R that is inferred by model-free meth-
ods undergoes a smoother change than the true R. The
smoothing has two origins: First, when using the sliding-
window of four or seven days (RKI methods), multiple
days are combined to obtain an R value for one day.
Second, R has to be calculated from the daily new symp-
tomatic or reported cases (Fig. 2 C, D), because the dates
of infection (Fig. 2 B) are not directly accessible in real-
world data. As discussed before, symptom onset and
reporting date are delayed from the infection date. Be-
cause the delays vary from case-to-case, these two curves
are smoothed out compared to the infection curve (in
other words, the smoothing originates from the variance
in incubation period and reporting delay, see later Fig. 12
in the section about testing). Hence, if smoothing is not
explicitly incorporated in the inference of R, fast changes
appear slower than they truly are, and successive fast
changes may appear as a long transient.

2.  Model-free methods produce delayed estimates that are
difficult to interpret.

In our example in Fig. 4, we estimated R based on
the number of new symptomatic cases as produced by
our synthetic disease model. The R of all three model-
free methods is shifted in time compared to the true R
(Fig. 4 A).

How does one interpret the shift and where does it
come from? To interpret the shift and compare between
the different methods, we focus on the time point where
half of the steep step in R has been detected (gray dots).
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This shift has multiple contributions. One contribution
originates from using the dates of symptom onset, which
is shifted on average by the incubation period (in our
example =5 days). This generates the 4-5 day shift of
the one-day method (Fig. 4 C). Because the incubation
period is not constant and typically asymmetric, there is
an additional asymmetric distortion towards either direc-
tion, depending on the shape of the actual distribution of
incubation periods. Another source for the shift comes
from the time average, which explains the additional (ap-
proximate) 1-2 day shift in the four-day and seven-day
methods employed by the RKI (Fig. 4 D, E). Because of
the specific definition of the position of the 4 and 7-day
window of the RKI (see eq. 8, 9), the two versions of R
have a very similar average delay of 56 days in total with
respect to the true R.

Both, the variable incubation time and the time aver-
aging also impact the start- and end-points of the change
in a non-trivial manner. In combination, multiple sources
cause shifts that can point into opposite directions. While
the sources can be identified conceptually, the combined
effect cannot be perfectly disentangled or compensated.

Due to multiple sources of shifts and smoothing, a
simple post-hoc shift of the R-curve cannot reproduce the
true R around a change point. For example, a shift of
Fig. 4D by 5 days would suggest a start of the change point
before it starts in reality (Fig. 4 A). This fact has led to
multiple prominent misunderstandings in relation to the
RKI data and the effects of governmental interventions.
Instead of shifting curves to partially correct for one or
another potential delay, an inference of R using model-
based methods can account for this and other potential
biases. When using a good model, such a model-based
approach returns the correct R with the correct steepness
and time point (Fig. 4 E, for technical details, see Methods

in [1]).

3. R-estimates depend on the assumed generation time.

The assumed generation time g impacts the magnitude
of the estimated reproductive number R (Fig. 5). We
exemplify this effect using the method of the RKI (4-day
average), where we vary the assumed (constant) gener-
ation time g. In particular, the chosen generation time
(g9 =2, 4 or 8) affects the initial plateau (R ~ 1.6, 2.5 and
6.4 respectively), the duration of the inferred change, and
the depth of the transient underestimation. This small
example shows that estimating the magnitude of the re-
productive number from observed case numbers without
knowing the precise generation time can be challenging.

4. Model-free methods may return erroneous transient
periods of R < 1 at change points.

In our examples (Figs. 4 and 5), we consider that R
changes rapidly from Ry = 3 to Ry = 1.15 within one day

(full lines). Such a sudden change leads to a transient
decrease in new case numbers — despite R being always
> 1. How can there be decrease in new cases although
R > 17 The transient decrease results from the pool of
infected suddenly infecting considerably less people. This
decrease in infections causes the sharp peak and a sudden
drop in new infections (Fig. 2 B, solid line). It then
carries over to the number of new symptomatic and new
reported cases, with the respective delay and smoothing
(Fig. 2 C, D]). This transient decrease depends on the
duration of the change point: While it is strongest for
steep changes, it also occurs for a change point with a
transient time of nine days (Fig. 2, dashed line).

Naively, a transient decrease might be interpreted as
a transient R < 1, but that is not the case here. A
model-free method cannot distinguish between different
causes for transient decreases in case numbers, being it
due to transient non-linear effects (Fig. 2) or due to a
true exponential decay (R < 1). The model-free meth-
ods in our example (Figs. 4 and 5) correspondingly yield
non-negligible periods of R < 1, even though the under-
lying model dynamics have R > 1 always. Model-based
approaches, on the other hand, can account for transient
non-linear effects if included in the model, e.g., as change
points, and — if the model is correct — even reproduce
the true underlying dynamics (Fig. 4 F). To conclude,
if one infers R in a model-free manner, by computing
ratios of case numbers, one interprets reductions in case
numbers as R < 1 (Fig. 4 C-E). After strong decreases
of the true R this may be an incorrect interpretation.

5. Well chosen model-based methods can reconstruct
complex disease dynamics.

When the chosen model describes the true disease dy-
namics well, robust inference of the true underlying repro-
duction number (and other parameters) is possible. To
demonstrate the robustness of model-based inference, we
generate synthetic data using an SIR-model as inferred
from case numbers in Germany between March 2 and
April 21 [1] (Fig. 6). The Bayesian model inference can
recover the reproductive rate (Fig. 6 D, F), whereas with
the model-free method, the recovered R is slightly biased
(Fig. 6 C). Note, however, that the chosen model has to
match at least approximately the disease dynamics, to
allow a good inference. This is why we used different
models to assess the robustness of our results in Ref. [1]
(SIR: Fig. 3, SEIR-like: Fig. S3, SIR without weekend
modulation: Fig. S4).
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III. WHAT CONCLUSIONS CAN ONE DRAW
FROM A BAYESIAN ANALYSIS?

A. Modeling background

When the Coronavirus-pandemic arrived in Germany
we set out to model the spread of the disease as rapidly as
possible. Thus, our model from the start was aimed at giv-
ing estimates with their corresponding error bounds based
on the data available at that time. To this end we decided
to use a Bayesian strategy as it allowed formulating well-
documented assumptions on those aspects not available
from data at that time. Within the Bayesian framework
these assumptions can and should be replaced by data
as soon as these become available, and we implement
such an improvement below for the case of information on
symptom onset times that have become available in the
meantime. Given such new data it will also be interesting
to evaluate post-hoc the assumptions and the performance
of our model. This will also give some guidance as to
whether to employ a model of this kind again in a new sce-
nario (another disease outbreak or pandemic) where some
relevant data will also not be available immediately. We
note that taking these steps is the intended development
in Bayesian inference.

We also note that all statistical procedures come with
their own assumptions, e.g. on distribution of the data,
models of measurements and random errors. Bayesian
analysis is no exception to this rule; in our view the only
difference is that modeling assumptions are not taken for
granted based on the long-established used of a method
(say, a t-test) but need to be formulated anew for each
case. The fact that the assumptions are hand-tailored to
the application case may seem subjective sometimes; yet,
similar assumptions are being made, more tacitly perhaps,
in other frameworks, as well. This said, it is neverthe-
less important to question and discuss (our) modeling
assumptions and to test the sensitivity of our results to
these modeling assumptions. We have already concisely
discussed our assumptions in the main manuscript [1], but
we here give a much deeper, broader and more educational
treatment.

B. Bayesian inference as reasoning under
uncertainty, bound to be updated

The results of a Bayesian analysis at some publication
time point T represent what we should consider most
plausible at that time point 7', given the knowledge avail-
able at T (causes and data known at T'). These results
represent something that we should be able to agree on
given the knowledge at T' (and some practical constraints,
see below), but these results may change given more infor-
mation at a later time T+ AT. Changing one’s mind with
the availability of additional information is designed into
Bayesian inference as “the logic of science” (E.T. Jaynes,
[4]) from the start. In other words, scientific inference

and the associated models are bound to be updated. The
important question is thus not whether a model is correct
in absolute terms, but whether it was possible to agree
on the model (and the inference provided by it) at time
T, and also if the inference provided at T was robust,
for example in the sense that the credible intervals for
the model parameters at T' comprise those obtained at
T+ AT.

From this perspective, it is obvious that now, more
than a month after finalization of our published analyses
on April 21, new data have become available and that
the model can, and should, be improved accordingly. Im-
portant data in this respect are data on reconstructed
infection dates which at present take about 7 days to come
in for at last 80% of the cases (Fig. 12), and took even
longer during the early stages of the outbreak. We present
results obtained using these data below and compare them
to our published results.

C. Conditions for plausible alternative models
entering model comparison

A frequent, and important misunderstanding around
Bayesian model comparison is that one is allowed to
formulate very many models at random and then let the
data decide on the best model via the Bayesian model
evidence (or the LOO-scores). This notion fails to notice
that the model evidence p(D|M;) is only one part of the
decision on the preferred model. The formal equation for
deciding between models ¢ and j would be:

p(M;|D)  p(D|M;) p(M;)

p(M;|D) ~ p(DIM;) p(M;) (10)

i.e. taking such a decision entails accounting for a-priori
plausibility of different models, i.e. p(M;) and p(M;).
While it is customary to assign equal a-priori plausibility
to all the models being considered, this does not mean that
just any model qualifies for use in this decision procedure.
Rather, each model subjected to a model comparison
needs to be well justified. This is one of the reasons why we
did not consider for example models of sustained, constant
drifts in the effective spreading rate A\* (or, equivalently
the reproductive number R), as we did not come up
with plausible explanations for such a behavior (except
perhaps arguments based on herd-immunity, which seem
implausible now, in the light of second waves of infections
and a recent rise in A* from its all-time low, and also in
the light of country to country comparisons, Fig. 7).

On a practical note, useful modeling also has to reflect
certain limits on model complexity in relation to the
available data, and also computational resources. Known
phenomena, that can nevertheless not be modeled must
therefore often be integrated into noise terms that are
designed accordingly (as was done with the modeling
of observation noise in our case, instead of using full
stochastic differential equations). The best that can be
done then is to investigate the sensitivity of results with
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respect to the simplifying assumptions that have been
made.

It is also in order to explain in simple terms how results
of a Bayesian analysis may be interpreted: In the Bayesian
framework probabilities are measures of the plausibility of
statements about the world, given our present knowledge
(see [4] for the exact mathematical derivation of this
statement). Thus, the results of Bayesian parameter
inference indicate credible (plausible) ranges in which we
should assume the unknown parameters to be. Assuming
them to be elsewhere with high probability would be
inconsistent with the information we have. In this sense,
these credible intervals may form the basis for decisions
we have to take.

D. Models as competing causal explanations of
data

Last, we note that the notion of causality resides only
in the construction of the models — with different models
incorporating different possible causal explanations of the
data (e.g. in the form of differential equations for the
disease dynamics). Performing model comparisons then
selects more plausible over less plausible explanations but
does not provide a proof of causality in the strict sense

advocated for example by Pearl [5] or by Ay and Polani [0].

Yet, fulfilling the formal criteria for causality in this strict
sense would need multiple replications of the pandemic
process, each time with different settings of the relevant
variables, such as interventions. Even when treating the
SARS-CoV-2 outbreaks in different countries around the
world, with their different interventions (or lack thereof),
as replications establishiung formal casuality may remain
an elusive goal due to multiple other variations from
country to country. In sum, the results of our Bayesian
analysis must be seen as a search for the most plausible
causal model of the data, given the data available at the
time of analysis, and as providing credible ranges of the
parameter values relative to this most plausible model.

Later, discussions (such as the one presented here) of
the selected models and the inferred parameter ranges
should then investigate and update modeling assumptions,
and reason whether the causal model can be maintained,
or not.

When analyzing improved data that reflect the dates of
symptom onset rather than case reports to improve our
modeling, we find that both the preference for a three
change-point model as well as the inferred parameter
ranges do not change drastically, and we maintain our
original interpretation of the pandemic process and the
effectiveness of governmental interventions.

Last, alternative models assuming herd immunity as a
reason for the sustained observed drop in infection rates
still do not seem plausible to us in the light of rapidly
surging second waves or sustained high levels of new
infections (such as in Sweden, see Figure 7).
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FIG. 7. Comparison of the case numbers per one mil-
lion inhabitants of exemplary countries as illustration of
the range of possible case numbers developments. Note how
both the peak height as well as peak width of some countries
are considerably larger than for Germany, providing evidence
against saturation effects ("herd immunity’) in Germany (Data
until June 3, 2020).

IV. MODEL EVOLUTION

Modeling efforts at the beginning of an epidemic out-
break are aimed at providing a rough but timely and
robust description of the disease outbreak, making use of
data that is available (and easily accessible) at that time
(Tab. I). Later modeling efforts, in contrast, can make use
of more detailed data and provide deeper insights into
how the outbreak unfolded. While these latter models
are useful for a better understanding after the fact, they
cannot be applied early on due to a lack of data, and often
cannot inform decisions sufficiently fast. However, a com-
parison of early and later models can provide important
insights about the robustness and usefulness of the early
models with respect to the later ones (here usefulness
means that the early models describe the epidemiological
parameters and their uncertainties well enough to inform
decisions).

For the case of the COVID-19 outbreak in Germany,
the initially available data were sorted based on date of
reporting, where the reporting occurred after an unknown
delay between symptom onset and report. Only later,
data organized by time of symptom onset, the so-called epi
curve, became available. Even after their initial release,
these data were still updated and refined (see Fig. 10);
also note that data for symptom onsets still take some
time to arrive and be compiled, i.e. the delay between
symptom onset and testing/reporting is still considerable
(see Tab. I). In particular, this means that reliable epi
curve data for the date of April 21, our analysis cut-
off date in [1], were not available on that day but only
considerably later (cf. Tab. I). Now that these data are
available, however, we can compare models based on data
organized by reporting date (modeling the reporting delay
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available since source g |8 |%2 E & | notes
Jan 22 [7] JHU dashboard (ArcGIS) X | X
Feb 2 [3] JHU dashboard (GitHub) X X first commit with case numbers on Feb 4
Mar 4 [9] RKI situation report (pdf) x| x| x
Mar 20 [10] RKI dashboard (ArcGIS) x| x known symptom onsets added ~2nd half of April
Apr 6 [11] RKI dashboard (API, csv) X X | x
Apr 9 [12] RKI Epi Bulletin (pdf) x| x| x X X | nowcasting introduced in bulletin 17/20v1,
includes R: estimate, note the transient R < 0
Apr 15 RKI situation report (pdf) x | x | x x X | nowcasting initially only in German
May 11 [13] RKI resources on nowcasting (xlsx) | x X | x x x | includes R; estimate

TABLE I. Data sources differ in availability, the detail they provide, and accessibility. For our previous study [1],
modelling needed to be fast; we used the JHU data from GitHub because it was available early, it is easy to access (machine
readable) and it is the unofficial go-to resource on case numbers. Note that some sources (red cross) need manual extraction
of the data from a plot — a process that, even when assisted [
listed sources are also accessible in their past, as-was state (for instance, the dashboards only display the most recent data, in

real-time).

and incubation period) with models based on the epi curve
(modeling the incubation period, only).

A. Model updates based on time of symptom onset
and comparison to previous results based on time of
reporting

Ideally, modeling of an epidemic outbreak should rely
on data organized by infection date — yet, such data
are rarely available outside of the analysis of individual,
well-confined infection chains. The next best option are
data organized by date of symptom onset — the epi curve.
Normally, symptom onset precedes the test and report in
time. Thus, the epi curve is only available after a certain
delay, which can be substantial. Furthermore, the time of
symptom onset may remain unknown for a significant frac-
tion of reported cases. If so, then reconstructing the epi
curve requires data imputation and further modeling (e.g.
nowcasting [18, 19]), which may further delay the avail-
ability of this curve and introduce additional sources of
uncertainty. At the initial stages of an outbreak, one may
therefore decide to analyze data organized by reporting
data, and to model the relevant delays.

For a comparison of analyses, it is important to un-
derstand how the curve of reporting dates and the epi
curve are linked. Both curves originate from the curve
of initial infections by a convolution (see again Fig. 2).
The epi curve is the curve of initial infections convolved
by the distribution of incubation periods, while the curve
based on reporting date is the curve of true infections
convolved by the (less well known) distribution of delays

], introduces uncertainties. Also note that only some of the

between infection data and reporting date. Technically,
a report can also happen before symptom onset, albeit
this is typically rare!. Therefore, the curve of reporting
dates is not exactly a convolution of the epi curve with
an additional delay distribution.

We have reanalyzed the initial stages of the outbreak
until April 21 based on the epi curve that has become
available (cf. Tab. I). In Figure 8, we show a comparison
of our analysis where the SIR model with three change-
points is applied to RKI data, using either the reporting
date or the date of symptom onset (for the SEIR model,
cf. Figs. 17 and 19 at the end of the document).

These complementary results do not change our main
inference result presented in [1]. Specifically, model com-
parison still favors the three-change-point models over
their simpler counterparts (Tab. II), and only the third
change point leads to a value of the effective growth rate
A* that is clearly below zero. Importantly, the growth
rate has to be sufficiently below zero to cause a notable
decrease in new infections. At the quantitative level,
however, the model based on the epi curve (Fig. 8, top
row) suggests a larger drop introduced by the first change
point compared to the model based on the reporting dates
(Fig. 8, bottom row), and consequently smaller drops in-
duced by the second and third change point. This effect
is more pronounced in the SEIR model (see Fig. 19 at the

I Tn Germany, only for a tiny fraction of cases the reported symptom
onset (Refdatum) is after testing (Meldedatum): 1446 of 130027
cases in the RKI dataset of Jun 11.
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https://corona.rki.de
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https://www.rki.de/DE/Content/Infekt/EpidBull/epid_bull_node.html
https://edoc.rki.de/bitstream/handle/176904/6650/17_2020_2.Artikel.pdf
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FIG. 8. Model-based inference is consistent when based on symptom onset (top) or reporting date (bottom).
We repeated our SIR-model based inference (Fig. 3 in [1]) that used JHU data [15], now using the date of symptom onset
(red diamonds, top) [16] and the reporting date (green diamonds, bottom) of daily new cases as reported by the RKI [17].
Note: We currently do not incorporate the uncertainties that are introduced by nowcasting (red diamonds, top), compared to
using the reported cases. This leads to over-confident parameter estimates, including the effective spreading rate A*(t); the
shown uncertainties are underestimated. Left: Effective growth rate A*(¢) inferred by the model. Dates of the three main
public interventions are indicated by colored circles and vertical lines. The values of \*(t) before and after all change points is
consistent across both data sources. Note that, when the symptom onset is used, A\*(¢) drops to zero already after the second
change point. Still, only after the third change point A*(¢) becomes sufficiently negative to cause decreasing daily new case
numbers. Center: Daily new case numbers. Dashed lines show inferred case numbers assuming that the last two (red) or the
last one (orange) change points were excluded. The weekday-dependence in daily new reported cases is already accounted for
when using symptom onsets (top). Center, Top: Although \*(¢) already dropped to (slightly-below) zero as of the second
change point, daily new cases do not decrease if the third change point is excluded (orange). Note the arrow: Due to the
transient decrease in new cases after change points (cf. Fig. 4) as well as the delay between symptom onset and reporting
(cf. Fig. 4), the peak that corresponds to maximum daily new infections is located already around March 16 (for symptom
onsets); yet note again that this does not mean that new cases would have declined rapidly already after the second change
point (see the orange curve). Right: Total, cumulative case numbers.

end of the document). These quantitative changes are
driven by the epi curve dropping faster than the curve of
reporting date (Fig. 8, middle column). Note, however,
that we did not yet include in our analysis the uncertainty
of the epi curve from the nowcast data imputation, nor did
we consider the effects of potentially missing data at the
time of analysis. For example, comparing the maximum
of the epi curve in mid March, using either data avail-
able mid April or end of May still shows clear differences
(Fig. 10. This shows that the case number counts of the
epi curve and the associated nowcast are being updated
for several weeks after the putative symptom onset date.

In sum, we conclude that the original model based on
data organized by reporting date was useful to understand
disease dynamics in the absence of the epi curve and
robust in the sense that its main results still hold.

B. At most minor differences between results
based on RKI versus JHU data sources

At the beginning of the outbreak, data were made avail-
able on a daily basis both by Johns Hopkins University
(JHU) and the German Robert Koch Institute (RKI).
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TABLE II. Model comparison: Using leave-one-out (LOO)
cross-validation, we compare the SIR and SEIR model vari-
ants using the epi curve as data (Figs. 17 and 19). Lower
LOO-scores represent a better match between model and data
(pLOO is the effective number of parameters).

Model # c-pts. || LOO-score | pLOO
SIR main 0 900+ 13 [6.36
SIR main 1 774+ 14 |12.72
SIR main 2 755 +£13 |12.17
SIR main 3 725+ 15 |19.66
SEIR-like 0 900 + 14 |6.65
SEIR-like 1 749+ 12 |8.05
SEIR-like 2 739 £ 13 |10.28
SEIR-like 3 726 £14 |14.04
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FIG. 9. Comparison of the German case numbers as published
by the Johns Hopkins University (JHU) used in our previ-
ous publication [1], to the case number of the Robert Koch
Institute (RKI).

Both sources initially provided only reported cases (in
text form), with the JHU resources providing data faster
and with a better interface for automated analyses. The
RKI resources were updated only a few days later, as in-
formation has to be transmitted from regional agencies to
the RKI, whereas the JHU data for Germany are gathered
from a few reputed online media (Berliner Morgenpost,
Taggesspiegel and Zeit Online [20]). However the JHU
resources have been partially criticised for lacking quality
control (see issues section on the Github page [15]). We
therefore compared the JHU data used in [1] to the official
RKI count (Fig. 9) and have rerun the analysis using the
RKI reported cases (the “Meldedatum”, Fig. 15 and 16).
The differences are clearly very minor.

V. IMPACT OF TESTING

Our modeling depends on reported case numbers, which
in turn depend on testing. Throughout the COVID-19
spread, test availability, test requirements and known case
numbers changed continuously over time (Fig. 10). Such
an inconsistent and fluctuating data-acquisition obviously

12

5k A
—== published Mar 26 (sit. rep.)
—=—- published Apr 2 (sit. rep.)
published Apr 15 (API)
—— published May 2 (API)
published Jun 2 (API)

N w »
~ ~ ~
L L L

known symptom onsets
(no imputation)
-
=

0k A -

Feb' 24 ' Ma'r 9 Ma; 23 ' Ap'r 6 '

FIG. 10. The curve of known symptom onset con-
tinuously changes over time, as the date of onset of
further reported cases is obtained. Because testing con-
firms the onset of symptoms in the past with varying delay,
the curve not only grows at its tail but over a wide time period
with each new publication. Known onsets are reproduced
from the RKI’s daily situation reports (Mar 26 and Apr 2,
read of from respective plots) and the publicly available RKI-
database (Apr 15, May 2 and Jun 2). Unknown onsets of
symptoms, which account for 40% of total number of cases,
are not considered here. Hence the curve on displey here is
not the full epi curve.

introduces additional sources of uncertainty. While we
decided to exclude the effects of testing in previous models,
concerns about results derived from data that stem from
inconsistent testing should be taken seriously. Thus, we
analyze possible distortions in more detail.

During the initial outbreak of a disease, it is common
that only very preliminary data and statistics on test-
ing is available. This was also the case at the time of
writing of our initial manuscript [1]. Since then, several
improvements of the available data were implemented.
Improvements include details such as testing statistics,
but also an estimate of the epi curve (the number of cases
based on the date of symptom onset) via imputation
and Nowcasting. For the epi curve, complete data on
symptom onset is only available for 60% of cases, and the
remaining 40% of onsets need to be imputed based on
the reporting date[19]. Fortunately, the publicly available
RKI database contains both date of onset of symptoms
and reporting for individual cases and thus implicitly also
the date of testing, which in general is one day earlier
than the report. Now, with new data, we come to the
conclusion that reported case numbers — although they
might derive from variable testing — are still useful to
infer the actual disease dynamics. As we will demonstrate
below, our major conclusions remain unchanged.

In particular, evidence for the key characteristics of
the first wave — strong exponential growth in new cases,
change in transmission dynamics over a limited time pe-
riod and slow exponential decline — can be derived from
the available data, even if changes in testing are consid-
ered.

To investigate the impact of testing, we first
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focus on two central quantities: i) the number of
tests that are performed, say, on a given day or in a given
week and ii) the fraction of the performed tests that are
positive — a positive tests translates to a confirmed case.

Let us consider two simple limiting cases, in which only
one of these quantities changes and the other one remains
constant: If a constant number of tests is performed day-
after-day and we observe a growing fraction of positive
test results, this corresponds to an increase of the under-
lying case numbers. Conversely, if the number of tests
is increased and we find a constant fraction of positive
tests, this also implies an increase of the underlying case
numbers?. Fig. 11 A, B shows that in Germany in early
March both, the number of tests as well as the fraction
of positives increased simultaneously. This simultane-
ous increase indicates a significant growth in new case
numbers.

A. Strong growth of new cases until week 12

By focusing on testing before week 12 in Fig. 11 A and
B, we can deduce a strong growth in daily new cases, as
both the fraction of positives as well as the number of
performed tests rise (matching the combined two scenarios
above).

For the time before week 12, the number of tests
changed week-to-week and a direct link between the test
fraction and the reported cases does not hold. However,
we can assume a constant level of testing within one week
(Fig. 8 in [21]). At the same time, we see a continu-
ous increase in the fraction of positives within the week
(Fig. 11 B). Especially going from week 11 to week 12,
where we have both, an increase in testing (from week-to-
week) and an overall increase in the fraction of positives
(from day-to-day), this implies a strong growth of new
infections.

For weeks 12 onward, the number of performed tests
stays roughly constant. Thus, the fraction of positive tests
directly links to the number of reported cases, and both
indicate a decline in the underlying (true) case numbers
that starts in week 14. This conclusion is further sup-
ported by the high level of testing that starts in week 12:
Testing at a constant and high level makes the fraction
of positives a reliable indicator of case numbers.

Hypothetical Scenario: If we were to reject the
above simple explanation that growing case numbers re-
flect growing numbers of infections, there is one alternative
scenario to explain the observed trend. As this scenario
has frequently occurred in the public debate on the spread
of COVID-19 in Germany, we discuss it briefly.

The underlying assumption in this scenario is that the
few tests that were performed during the initial outbreak

2 The second case only holds with additional assumptions: i) the
fraction of positive tests is larger than the prevalence and ii) tests
are not performed randomly, both of which were met in Germany.
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until week 11 missed most of the actual cases, i.e. a large
pool of infected persons would have existed unobserved.
Then, at the same time at which the amount of tests
was increased from week 11 to 12, coincidentally the
effectiveness of the testing could have increased, so that
the unobserved pool (of constant size!) is identified and,
thus, apparent case numbers rise. Given the rigorous
criteria (based on symptoms and risk of exposition) that
were required from patients in order to qualify for one of
the early tests, we deem this scenario of an unobserved
and constant pool to be quite unlikely.

B. The reporting delay relates reported cases to
disease dynamics

We here focus on the disease dynamics that shape the
peak of the epi curve, corresponding to the maximum new
daily infections (see again Fig. 11, C, red). We notice
that the increase of the fraction of positives tests (gray)
continues longer and more smoothly than the increase in
the epi curve (red). Thus, in the following, we discuss
that testing from week 12 on reliably describes the epi
curve in weeks 11-13. In general, we find as a rule of
thumb that the majority of positive tests of week ¢ have
onsets in week ¢ — 1.

The key is the connection between the date of symptoms
onset (when symptoms first show), the testing (when the
symptom onset is confirmed or an asymptomatic case is
uncovered), and the reporting date (when a positive test-
result is registered). Any reported case must inherently
be preceded by a test and according to the RKI, positive
test results are reported within 24 hours to the responsible
health department. Thus, the date of testing is taken
as the day before reporting in the rest of the analysis.
The remaining task is to reveal the connection between
symptom onset and reporting date, i.e. the reporting delay
for each individual case.

In Fig. 12, we detail the reporting delay by plotting
distributions of how many days after the symptom onset
a case is reported. For example, if each and every infected
person would receive a test result (become a reported
case) exactly three days after they showed symptoms,
then the plotted distributions would have only one entry:
a delta-peak at three days. However, we see that most
reports arrive 1-7 days after symptom onset, where the
details of the (lognormal) distribution depend on the week
of onset of symptoms.

Heavy tails in the distributions correspond to long
reporting delays. Until and including week 12, the distri-
butions have heavy tails. After week 12, the distributions
have lighter tails. This provides some intuition of the
distributions and the meaning of the heavy tails: most
of the symptom onsets are reported within the first week
but some will be reported much later, so that the shape
of the distribution still keeps changing. If the test level
is low, more cases will be reported later and the tails of
the distribution are heavier. This latter effect is what we
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FIG. 11. Weeks 10 to 12 show strong growth in in the number of new cases, which was not limited by the
early testing capacity. A: Comparison of number of positive test results with the number of tests performed for each week.
Reproduced from Table 5 in [21] and extrapolated from [22]. Note: Numbers for week 10 and earlier are represented by a single
data point in the first source and individually in the latter. The week-over-week increase uses available weekly data. B: Mid-term
changes in the fraction of positive tests is more obvious in the daily data (points) than in the weekly (bars), especially in early
March. Daily values are taken from situation reports [21, 23, 24] (full dataset) and the epi bulletin [22, 25] (ARS dataset).
Weekly values, represented as horizontal lines, are taken from a situation report table and a weekly lab surveillance report (ARS
dataset). Note: the latter represents a subset of all tests. Compared to the situation report, the ARS dataset lists weeks 8 to
10 individually. C: Overlay of Panel B with the number of cases reported per day by the RKI and the estimated epi curve
(imputation and Nowcasting, as described in [19] ). The fraction of positive tests correlates with the number of reported cases
from week 13 onward, as the total number of tests reaches a constant level.
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FIG. 12. The onsets of symptoms are confirmed by
testing at a later and varying point in time, which
accounts for most of the delay until all or the main fraction
of known onset of symptoms (IstErkrankungsbeginn in RKI-
database) are reported. From the RKI data, the number of
cases per delay between onset of illness and reporting (i.e.
RefDatum and Meldedatum) for cases with known onset of
symptoms (IstErkrankungsbeginn) are counted for each week.
The fraction of reported cases out of the total onsets up to a
delay are highlighted for 20%, 50% and 80%. The cumulative
number of cases reported up to each delay is displayed for
reference.
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FIG. 13. The reporting delay decreases from week 9
to week 14. Grouped by week, the delay between onset of
symptoms and the reporting of 20%, 50%, 80% fractions of
all known onsets is shown (cf. dots in Fig. 12).

see for the onsets during the first weeks until 11; due to
limited testing capacities, many cases were only reported
weeks later — once more testing was available.

The distributions of the reporting delay give infor-
mation about how timely the reporting is, on average
(Fig. 13). Focusing on week 11, 20% of all the onsets
of symptoms that were found to be in this week were
reported very quickly, within 2.5 days (blue dashed line).
Within 5 days, half of all onsets have been reported (red
solid line) and within 9 days, the fraction of onsets from
this week that have been reported rises to 80% (blue solid
line). As a practical example, let us look at the onsets
that occurred on Wednesday of week 11: Half of all onsets
get reported very quickly, until Sunday, and the remaining
half is only reported over the following weeks.

This example also hints at a dependence of the reporting
delay on the weekday. Clearly, less tests are performed
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during weekends. Hence, if a symptom onset occurs on
Monday, it is more likely to be tested and reported within
the same week than if it occurs on Friday. For later
days of the week, the fraction of tests (and cases) that is
performed (and reported) not in the same week but only
in the next week rises systematically.

The shape of the distributions (Fig. 12) and the
weekday-dependence motivate the rule of thumb men-
tioned earlier: 80% of all the symptom onsets that occur
in a given week are reported by the end of the following
week. However, due to the weekday-dependence, only
around half of all onsets are found within the same week
— much less during weeks 9-11, when testing was at ca-
pacity limits. In conclusion, high test levels in week i give
confidence in the epi curve of week ¢ — 1.

C. Decomposing the epi curve into weeks of testing

Having established the delay between symptom onset
and reporting, we can decompose the epi curve and iden-
tify parts of the curve that stem from certain weeks of
testing. We do so by reconsidering the reporting delay.
We may ask: Given the test results of a chosen week,
how are the dates of symptom onset that we found in the
chosen week distributed over the previous weeks?

In Fig. 14 A, B we collect all the symptom onsets
that were found by testing in week 12 (blue), in week 13
(orange) and in both weeks combined (dashed). As we
see, the peak of the full epi curve (red) on March 16 is
dominantly composed of cases that were tested in week
12 and 13, weeks that already featured the high level of
testing. This decomposition — which part of the curve
stems from which tests — further confirms what we saw
earlier: high testing in a week gives confidence in the epi
curve of the previous week.

With the decomposition of the epi curve at hand, we
may pick one particular week of testing and compare the
number of onsets in different weeks that were confirmed
in the testing-week we picked. In other words, we are
interested in the distribution of onsets per week seen by
the testing in one single week.

As viewed from one single week of testing, we distin-
guish four categories according to the delay between onset
and testing (Fig. 14 C): onsets in the same week as the
test (solid), onsets one week earlier than the test (dashed),
onsets two weeks earlier (dash-dotted), and onsets three
weeks earlier (dotted). By comparing the fraction of cases
in these categories week-over-week, we can reveal the back-
log of testing. The backlog of testing corresponds to the
last three categories; it describes how many cases were not
tested within the same week (different dashing). Looking
at the backlog week-over-week helps us to identify weeks
during which the limit of testing capacity might have
been reached or the testing policy might have changed.

When considering the respective maxima of the backlog-
categories (colored dots in Fig. 14), we find that backlog
was build up especially during week 11. In week 11, most
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is assumed that the delay between the time of testing and Meldedatum is 1 day. Tue-Mon Meldedatum is taken as a proxy
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Most known onsets around the peak of the epi curve in week 11 are confirmed by the testing in weeks 12 and 13. B stacked
decomposition of the epi curve into weeks of testing. C To reveal crucial information about week-to-week change in the number
of total onsets based on one week of testing, the shape of the distributions of onsets of symptoms confirmed by that week of
testing is characterized. The fraction of onsets in the same week and each preceding week out of the total onsets confirmed by
the week of testing is calculated. This indicates, the portion of a week’s positive tests confirming onsets in the same week or in
preceding weeks (max. 3 weeks earlier). The evolution of these 4 values is plotted by the week of testing. The peak of the
epi curve can be tracked through testing results of weeks 11 to 14 as a maximum in the same-week/n-weeks earlier fraction of
onsets confirmed in those respective weeks: 52% of all cases confirmed through testing in week 11 had onset of symptoms in the
same week. Even more notable: 66% of positive tests in week 12 are linked to onsets 1 week earlier: in week 11. For comparison,
see Fig. 7?7
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onsets stem from the same week (52%, maximum of the
solid line). At the same time, in week 11 there was very
little backlog; only few cases from previous weeks were
found (minima of the dashed lines). In week 12, we find
that most cases stem from the previous week — namely
week 11 (66%, maximum of the dashed line). This trend
continues in weeks 13 and 14, which exhibit compara-
bly high fractions of onset 2 weeks and 3 weeks earlier,
respectively, each pointing to week 11 (maxima marked
by dots). Together, this (self-consistently) supports the
strong growth of new onsets especially during week 11; a
strong rise of cases before week 11 is less likely because it
did not manifested in the backlog.

D. Available data on testing

The epi bulletin [26] outlines the different networks that
the RKI uses to source information on testing: Voxco,
Resp Vir, the antibiotics-resistance-surveillance (ARS) [22]
and lab-accociation queries. These sources are compiled
into weekly data-sets with total number of tests and posi-
tive tests, which are published in the daily situation report
once a week.

Data from the ARS contains daily number on testing and
a separate weekly report is published on the RKI website.
The ARS dataset covers 25-30% of the total number of
tests reported by the RKI, as only 62 of 180+ labs par-
ticipate. The ARS data-set shows a mean delay between
sampling and testing between 1 and 1.2 days except for
weeks 12 to 15, where the delay is 1.5 days, peaking in
week 13 at 1.8 days.

An overview of all publicly available data on testing for
march 2020 is presented in Fig 11. The following obser-
vations along with additional comments are based on this
presentation:

e From week 8 to week 12 the number of tests rises
week to week by a factor greater than 2. 120k is a
combined number for weeks up to 10. Individual
numbers of tests for those weeks has to be estimated
with help from the ARS-subset (Fig. 11 B May 26
lab. surveillance). Assuming ARS is representative
the number of test performed in week 10 should
be around 60k, 30k in week 9 and 30k in all weeks
up to and including 8, extending the exponential
pattern.

e The number of tests remains on a high level from
week 12 on. In the range of 340-430k.

e The number of positive tests rises faster than the
total number of tests until week 14.

e The fraction of positive tests per week peaks around
10%, relatively low compared with neighbouring
countries.

e The fraction of positive tests per day varies with
time from 2% around March 1 to around 10% in
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weeks 13 and 14, peaking at 14% at the end of
March. Afterwards declining to less than 2% in
week 20 (not shown in figure). The day-to-day rise
in week 10 and 11 is more pronounced than the
weekly average would suggest.

e The increase in the fraction of positive tests does
not correlate to the rise in number of reported cases
until week 13, but correlates with the decline in
reported cases from week 13 on, which is expected
as the total number of tests fluctuates around 380k
tests per week on a high level.

e The ARS data shows a steady day to day increase in
positive fraction of test in weeks 10 and 11. Week-
ends show a higher fraction, while the total number
of tests is lower (daily total number not shown in
the figure). Deviating from the rise in the positive
fraction, weeks up to 8 have a 3 times higher fraction
of positive results than week 9.

e The maximum test-capacity per week as reported by
the labs increased to 1M in week 19, showing strong
growth until week 14. A week to week doubling in
test capacity continues for two more weeks compared
to growth in number of tests performed (not shown).

For the total data-set, the fraction of positive tests varies
from 1.5 to 7.2% for different states. Not a single day of
testing for individual states exceeded 20% positive results.

VI. SUMMARY & CONCLUSIONS

In these technical notes, we have comprehensively ad-
dressed questions and comments regarding our recent
publication [1]. First, we compared direct, model-free es-
timates of the reproduction number to the ones obtained
from dynamical modeling. To this end, we established
synthetic ground-truth data based on an SIR model and
subsequently inferred the reproduction number based on
various complementary approaches that are in practical
use. We revealed how sudden changes in the spreading
rate — as expected from the broad and swift implementa-
tion of non-pharmaceutical interventions and concurrent
changes in behavior — can lead to counter-intuitive tran-
sient drops in new reported cases. Most importantly, we
found that modeling of spreading dynamics can correctly
capture effects of sudden changes in the spreading rate.

Second, we provided extensive background on our mod-
eling rationale, which combines differential-equation based
modeling of dynamics with Bayesian parameter inference
and formal model comparison. Within the Bayesian frame-
work, we argued that based on prior knowledge, the most
plausible models explaining the data can be systematically
identified and also updated as new information becomes
available. We also discussed why we do not think that
strong effects of herd immunity are plausible given our
present knowledge.
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Third, we analyzed additional data on the SARS-CoV-
2 spread in Germany, which has become available since
the completion of the analysis presented in [1]. Most
importantly, we included data sets from the German
Robert Koch Institute based on the reporting date as
well as based on the onset of symptoms (epi curve). We
analyzed the data in the framework of SIR and SEIR
models, and we also tested a broad range of varying prior
assumptions. We found our central results to be robust
across these varying modeling assumptions and data sets,
and to support the conclusions drawn in [1]. In turn, this
lead us to conclude that under the conditions comparable
to those in Germany, models based on reporting date are
a viable alternative for analyzing the early stages of a
disease outbreak, before the epi curve becomes available
— as long as the reporting delay is properly modeled.

Finally, we addressed the issue of changes in the testing
capacities and procedures over the course of our analysis.
Most importantly, we found that, while data from the
initial onset of the pandemic is presumably affected by
a rise in test capacities, the crucial part of our analysis
is based on a regime of comparably stable testing. In
particular, we concluded that the inference of the second
and third change point is widely unaffected by testing.

Overall, the analysis here evaluated the robustness of
our previously reported results with respect to statistical
and dynamical modeling assumptions as well as comple-
mentary data sources and provided additional support for
the central conclusions of our publication [1]:

1. combining epidemiological modelling with Bayesian
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inference enables a robust assessment of the spread-
ing of infectious diseases in a timely manner;

2. the spreading dynamics can only be inferred with a
considerable delay (due to incubation periods and
testing/reporting delays);

3. applied to the COVID-19 outbreak in Germany,
it appears most plausible that all interventions to-
gether with the concurrent change in behavior re-
duced the effective growth rate A\*, and that \*
dropped substantially below zero close to the time
of the third intervention.

ACKNOWLEDGMENTS

Funding: All authors received support from the
Max-Planck-Society. JD and PS acknowledge funding
by SMARTSTART, the joint training program in
computational neuroscience by the VolkswagenStiftung
and the Bernstein Network. JZ received financial support
from the Joachim Herz Stiftung. MW is employed
at the Campus Institute for Dynamics of Biological
Networks funded by the VolkswagenStiftung. Data
and materials availability: We provide the code for
generating graphics and the different analyses included
in both this manuscript and its supplementary materials
at https://github.com/Priesemann-Group/covid19_
research/tree/master/Technical’20notes’200n%
20Dehning%20et%20al. %2C%20Science’2C%202020.

[1] J. Dehning, J. Zierenberg, F. P. Spitzner, M. Wibral,
J. Pinheiro Neto, M. Wilczek, and V. Priesemann. Infer-
ring change points in the spread of COVID-19 reveals the
effectiveness of interventions. Science, 369(6500), July
2020.

[2] T. E. Harris. The Theory of Branching Pro-

cesses. Grundlehren der mathematischen Wissenschaften.

Springer-Verlag, Berlin Heidelberg, 1963.

Erlauterung der Schétzung der zeitlich variierenden

Reproduktionszahl R/7-Tages-R, https://www.rki.

de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/

Projekte_RKI/R-Wert-Erlaeuterung.html.

[4] E. T Jaynes. Probability theory: The logic of science.
Cambridge university press, 2003.

[5] J. Pearl. Causality: Models, Reasoning and Inference.
Cambridge University Press, Cambridge, U.K. ; New
York, 2nd edition, Sep 2009.

[6] N. Ay and D. Polani. Information flows in causal networks.
Advances in Complex Systems, 11(01):17—41, Feb 2008.

3

[7] First appearance of the JHU dashboard, https:
//systems. jhu.edu/research/public-health/
2019-ncov-map-faqs/.

[8] First commit in JHU GitHub repository, https:

//github.com/CSSEGISandData/COVID-19/graphs/
commit-activity.

[9] First appearance of the RKI situation re-
port, https://www.rki.de/DE/Content/InfAZ/
N/Neuartiges_Coronavirus/Situationsberichte/
Archiv_M%C3%A4rz.html.

[10] First appearance of the RKI dasboard, https://tuwitter.
com/rki_de/status/1241057746679746560.

[11] Creation date of the public RKI
https://www.arcgis.com/home/item.html?id=
£10774£1c63e40168479alfebbc7ca74.

[12] First appearance of COVID-19 numbers in the RKI
Epi Bulletin, https://www.rki.de/DE/Content/Infekt/
EpidBull/epid_bull_form.html.

[13] First  available nowcasting data-table, http:
//web.archive.org/web/*/https://www.rki.de/DE/
Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_
RKI/Nowcasting.html.

[14] Ankit Rohatgi. Webplotdigitizer https://automeris.io/
WebPlotDigitizer.

[15] Johns Hopkins University. COVID-19 data repository
https://github.com/CSSEGISandData/COVID-19.

[16] RKI - Coronavirus SARS-CoV-2 - Nowcasting und
R-Schéatzung: Schatzung der aktuellen Entwicklung
der SARS-CoV-2-Epidemie in Deutschland, https:
//www.rki.de/DE/Content/InfAZ/N/Neuartiges_
Coronavirus/Projekte_RKI/Nowcasting.html,
loaded May 22.

API,

down-


https://github.com/Priesemann-Group/covid19_research/tree/master/Technical%20notes%20on%20Dehning%20et%20al.%2C%20Science%2C%202020
https://github.com/Priesemann-Group/covid19_research/tree/master/Technical%20notes%20on%20Dehning%20et%20al.%2C%20Science%2C%202020
https://github.com/Priesemann-Group/covid19_research/tree/master/Technical%20notes%20on%20Dehning%20et%20al.%2C%20Science%2C%202020
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/R-Wert-Erlaeuterung.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/R-Wert-Erlaeuterung.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/R-Wert-Erlaeuterung.html
https://systems.jhu.edu/research/public-health/2019-ncov-map-faqs/
https://systems.jhu.edu/research/public-health/2019-ncov-map-faqs/
https://systems.jhu.edu/research/public-health/2019-ncov-map-faqs/
https://github.com/CSSEGISandData/COVID-19/graphs/commit-activity
https://github.com/CSSEGISandData/COVID-19/graphs/commit-activity
https://github.com/CSSEGISandData/COVID-19/graphs/commit-activity
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Archiv_M%C3%A4rz.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Archiv_M%C3%A4rz.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Archiv_M%C3%A4rz.html
https://twitter.com/rki_de/status/1241057746679746560
https://twitter.com/rki_de/status/1241057746679746560
https://www.arcgis.com/home/item.html?id=f10774f1c63e40168479a1feb6c7ca74
https://www.arcgis.com/home/item.html?id=f10774f1c63e40168479a1feb6c7ca74
https://www.rki.de/DE/Content/Infekt/EpidBull/epid_bull_form.html
https://www.rki.de/DE/Content/Infekt/EpidBull/epid_bull_form.html
http://web.archive.org/web/*/https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/Nowcasting.html
http://web.archive.org/web/*/https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/Nowcasting.html
http://web.archive.org/web/*/https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/Nowcasting.html
http://web.archive.org/web/*/https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/Nowcasting.html
https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
https://github.com/CSSEGISandData/COVID-19
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/Nowcasting.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/Nowcasting.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/Nowcasting.html
https://doi.org/10.1101/2020.09.16.20187484

medRxiv preprint doi: https://doi.org/10.1101/2020.09.16.20187484; this version posted September 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

(17]

(18]

(19]

20]

COVID-19 Fallzahlen in Deutschland, Robert Koch-
Institut, https://npgeo-corona-npgeo-de.hub.arcgis.
com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0,
downloaded June 22.

M. Hohle and M. an der Heiden. Bayesian nowcasting
during the STEC O104:H4 outbreak in Germany, 2011.
Biometrics, 70(4):993-1002, 2014.

M. an der Heiden and O. Hamouda. Schétzung der
aktuellen Entwicklung der SARS-CoV-2-Epidemie in
Deutschland — Nowcasting. Epidemiologisches Bulletin,
2020(17):10-15, 2020.

Tagesschau.de. Exklusiv: Woher die Johns-Hopkins-
Zahlen zu Corona stammen, https://www.tagesschau.
de/inland/johns-hopkins-uni-corona-zahlen-101.
html.

(21]

22]

23]

24]

(25]

[26]

19

Daily RKI situation report from Mai 25 https://www.rki.
de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/
Situationsberichte/2020-05-27-en.pdf, 2020.

SARS CoV2 Surveillance - Weekly report from May 26,
2020.

Daily RKI situation report from April 8 https://wuw.rki.
de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/
Situationsberichte/2020-04-08-en.pdf, 2020.

Daily RKI situation report from Mai 5 https://wuw.rki.
de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/
Situationsberichte/2020-05-22-de.pdf, 2020.

A. Hoffmann, I. Noll, N. Willrich, A. Reuss, M. Feig, M.J.
Schneider, T. Eckmanns, O. Hamouda, and M. Abu Sin.
Laborbasierte Surveillance SARS-CoV-2. Epidemiologis-
ches Bulletin, 2020(15):5-9, 2020.

J. Seifried and O. Hamouda. Erfassung der SARS-CoV-2
Testzahlen in Deutschland. Epidemiologisches Bulletin,
2020(15):3-4, 2020.


https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0
https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0
https://www.tagesschau.de/inland/johns-hopkins-uni-corona-zahlen-101.html
https://www.tagesschau.de/inland/johns-hopkins-uni-corona-zahlen-101.html
https://www.tagesschau.de/inland/johns-hopkins-uni-corona-zahlen-101.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-05-27-en.pdf
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-05-27-en.pdf
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-05-27-en.pdf
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-04-08-en.pdf
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-04-08-en.pdf
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-04-08-en.pdf
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-05-22-de.pdf
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-05-22-de.pdf
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-05-22-de.pdf
https://doi.org/10.1101/2020.09.16.20187484

medRxiv preprint doi: https://doi.org/10.1101/2020.09.16.20187484; this version posted September 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

20
SUPPLEMENTARY INFORMATION: FIGURES
A - Weekend, amplitude Weekend, offset
= 0.4 . . D of modulation from sunday
* Y constrained | unconstrained
3 due to fw=0.4 ¢w=0.8
£ 0.2 reporting delay [0.3, 0.5] [0.7,0.9]
Lc Data until
W 0.0 rreerermee s iz 03 04 0.5 0.6 08 1.0 April 21
g I SN Scale (width) s Prior
Mar8 Mar22 Apr5 Aprl9 May 3 E . Ret_:overy rate of the likelihood EEE Posterior
‘u=0.13 o=3.4
B 15k 1 i 4@[0.10, 0.18] [2.5, 4.7]
gz 10 ' FDii'ta 0.0 02 0.4 2 4
%g 10k A - 102 == = Forecast F Initial rate Initial infections  Reporting delay
=0 I 1 20=0.43 lo=46.1 D.='10.4
Qs 1 037, 0.49] [10.5, 112.9] (6.2, 13.1]
i o 5k - f——
T © 0.0 0.2 04 0 100 200 5 10 15
av \/ \’ I
0k 4 ; . . . i i : : G Spreading rates Change times Change duration
Mar8 Mar22 Apr5 Aprl9 May3 1 A1=0.23 i t1=6.2 . 1 Atp=4.5
] ‘[0.19, 0.29] 7 [3.1, 10.1] 7 [2.2, 8.1]
C 300k - e e—— _% — e
- 10° 0.0 0.2 0.4 Mar8 0 2 4 6
C 4 .
- 1o A2=016 | t,=160 1 Ap=35
S5 - 1 0.13,0.21] 1 [14.2,17.71 A [1.8,6.3]
S0 R - _.L& ' e, | b —
tc . + 10 0.0 02 0.4 Mar 15 0 2 4 6
£ ¢ 100k 1Mar8  Apr 19 o
Fa Z4 hA3=0.09 1 t3=23.7 1 At3=6.8
© 5- :[0.07, 0.14] 7 [21.8, 25.5] 1 [3.0,113.3]
Ok - [a : : e __L'#
Mar8 Mar22 Apr5 Aprl9 May3 0.0 0.2 04 Mar 22 0 2 4 6
Date
H 15k 7 1V o | I 300k A 7 /
1 n I 1 ¢ Data ] /7
T > 12k A | > 250k | .
‘q;)' 5 /4 I n I \ I ° 5 — Fit / /
8 £ 10k A " a I " £ € 200k 4{ === 3 cp forecast /4 7/
g '] I\ S — / -
S8 gy I I\ I ' 88 150k - 2 cp forecast y ——
q;,c ',\' I ‘, = == = ] cp forecast g
X ¥ L
=9 5kA \, £y
=0 - (%]
T © @
avY 2k- ]
voN
Ok -
Mar2 Mar16 Mar30 Aprl3 Apr27 Mar2 Mar16 Mar30 Aprl3 Apr27
Date Date

FIG. 15. SIR model (see Fig. 3 of [1]) using the reporting date (Meldedatum) of the RKI data for inference. A: Time-
dependent model estimate of the effective spreading rate A*(¢). B: Comparison of daily new reported cases and the model
(green solid line for median fit with 95% credible intervals, dashed line for median forecast with 95% CI); inset same data in
log-lin scale. C: Comparison of total reported cases and the model (same representation as in B). D—G: Priors (gray lines)
and posteriors (green histograms) of all model parameters; inset values indicate the median and 95% credible intervals of
the posteriors. H—I: The fitted model with two alternative forecasts. We consider in addition one scenario where only one
intervention happened (red) and one where two interventions happened (orange). Includes 50% and 95% CI.
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FIG. 16. SEIR-like model (see Fig. S3 in Supplementary Information of [1]) using the reporting date (Meldedatum) of
the RKI data for inference. A: Time-dependent model estimate of the effective spreading rate A*(t). Note: Due to different
model dynamics, A\*(¢) can only be compared qualitatively between SEIR and SIR models. The numeric values of the rates (u, A
etc.) differ between models because they reflect the duration a person remains in a given compartment. B: Comparison of
daily new reported cases and the model (purple solid line for median fit with 95% credible intervals, dashed line for median
forecast with 95% CI); inset same data in log-lin scale. Note: We currently do not (yet) incorporate the uncertainties that are
introduced by nowcasting, compared to using the reported cases. This leads to over-confident parameter estimates, including
the effective spreading rate A*(t); the shown uncertainties are underestimated. C: Comparison of total reported cases and the
model (same representation as in B). D—G: Priors (gray lines) and posteriors (purple histograms) of all model parameters; inset
values indicate the median and 95% credible intervals of the posteriors.
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FIG. 17. SIR model using the onset of symptoms (unsmoothed Nowcast from May 22 [16]) of the RKI data for inference.
The median of the lognormal prior of the delay between infection and onset of symptoms has been set to 5 days (right-most panel
F). A: Time-dependent model estimate of the effective spreading rate A*(t). Note: We currently do not (yet) incorporate the
uncertainties that are introduced by nowcasting, compared to using the reported cases. This leads to over-confident parameter
estimates, including the effective spreading rate A*(¢); the shown uncertainties are underestimated. B: Comparison of daily new
reported cases and the model (green solid line for median fit with 95% credible intervals, dashed line for median forecast with
95% CI); inset: same data in log-lin scale. Note: We currently do not (yet) incorporate the uncertainties that are introduced
by nowcasting, compared to using the reported cases. This leads to over-confident parameter estimates, including the effective
spreading rate A*(¢); the shown uncertainties are underestimated. C: Comparison of total reported cases and the model (same
representation as in B). D—G: Priors (gray lines) and posteriors (green histograms) of all model parameters; inset values indicate
the median and 95% credible intervals of the posteriors. H-I The fitted model with two alternative forecasts. We consider in
addition one scenario where only one intervention happened (red) and one where two interventions happened (orange). Includes
50% and 95% CI.
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FIG. 18. SIR model using the onset of symptoms (unsmoothed Nowcast from May 22 [16]) of the RKI data for inference.
The median of the lognormal prior of the delay between infection and onset of symptoms has been set to a
relatively uninformative prior (right-most panel F). The posterior of the delay has as median 7.2 days, which is close to
the expected incubation period of 5 days. A: Time-dependent model estimate of the effective spreading rate A*(¢). Note: We
currently do not (yet) incorporate the uncertainties that are introduced by nowcasting, compared to using the reported cases.
This leads to over-confident parameter estimates, including the effective spreading rate A*(¢); the shown uncertainties are
underestimated. B: Comparison of daily new reported cases and the model (green solid line for median fit with 95% credible
intervals, dashed line for median forecast with 95% CI); inset same data in log-lin scale. C: Comparison of total reported
cases and the model (same representation as in B). D—G: Priors (gray lines) and posteriors (green histograms) of all model
parameters; inset values indicate the median and 95% credible intervals of the posteriors.
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FIG. 19. SEIR-like model using the onset of symptoms (unsmoothed Nowcast from May 22 [16]) of the RKI data for
inference. The median of the lognormal prior of the delay between infectious and onset of symptoms has been set to 1 day
(right-most panel F). A: Time-dependent model estimate of the effective spreading rate A*(¢). Note: Due to different model
dynamics, A*(t) can only be compared qualitatively between SEIR and SIR models. The numeric values of the rates (i, A etc.)
differ between models because they reflect the duration a person remains in a given compartment. Note: We currently do not
(yet) incorporate the uncertainties that are introduced by nowcasting, compared to using the reported cases. This leads to
over-confident parameter estimates, including the effective spreading rate A*(t); the shown uncertainties are underestimated.
B: Comparison of daily new reported cases and the model (purple solid line for median fit with 95% credible intervals, dashed
line for median forecast with 95% CI); inset same data in log-lin scale. C: Comparison of total reported cases and the model
(same representation as in B). D—G: Priors (gray lines) and posteriors (purple histograms) of all model parameters; inset values
indicate the median and 95% credible intervals of the posteriors.


https://doi.org/10.1101/2020.09.16.20187484

medRxiv preprint doi: https://doi.org/10.1101/2020.09.16.20187484; this version posted September 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

25
A Weekend, amplitude Weekend, offset
= D of modulation from sunday
x 0.4 constrained | unconstrained . &
o~ due to fiw=0.6 ony=0.4
b % 0.2 A reporting delay g N\ (-0.2,0.7]
9 = Datg:l until
"uj§ 0.0 deeerrmmmme T e ereree e 0.4 0.6 0.8 -1 0 1 April 21
o E Scale (width) == Prior
o T T T T T T T T T Recovery rate of the likelihood EEE Posterior
Mar8 Mar22 Apr5 Aprl9 May3 i
P P y ‘u=0.13 0=17.6
B :[0.09, 0.18] [13.1, 24.2]
> ¢ Data 00 0.2 0.4 10 20 30
(] . . .
£ 60k, A 104 — Fit . ol I _ |
%g f L 103 — = Forecast Ir:1|t|a rate Initial infections  Reporting delay
o Apg=0.42 lp =183.6 D=11.3
%.E 7  :[0.36, 0.51] [47.0, 527.9] [9.0, 13.7]
S wn N |
%‘% 0.0 0.2 04 0 500 1000 5 10 15
er 0k N G spreading rates Change times Change duration
Mar8 Mar22 Apr5 Aprl9 May3 1 A1=0.25 1 t=68 1 At=3.0
C i :[0.21, 0.30] 4 [3.6, 9.9] i 1 [1.7,5.2]
1500k 106 0.0 0.2 0.4 Mar8 0 2 4 6
é\ - .
I A, =0.15 § t; =16.2 1 At =31
£ € 1000k - 104 1 #0.12, 0.20] 1 [14.5,17.9] A [1.7,5.3]
%8 - . —_— =
tc 107 0.0 0.2 04 Mar 15 0 2 4 6
S v 500k-qMar8 Apr19 > - J
g3 P 21 1A3=0.09 t;=23.6 1 Aty=4.1
(V] 5' :[0.06, 0.14] T [21.9, 25.5] b [2.0, 7.8]
0k - [ap . e ——— __J..*
Mar8 Mar22 Apr5 Aprl9 May 3 00 02 04 Mar 22 0 2 4 6

Date

FIG. 20. SIR model with reported case number multiplied by 5, to account for an eventual factor five of unknown
cases. Results are nearly identical to original non-multiplied plot (Fig 3. in [1]), showing that a constant underreporting has
a negligible effect. The median inferred spreading rates A are about 0.01 larger. A: Time-dependent model estimate of the
effective spreading rate A\*(¢). B: Comparison of daily new reported cases and the model (green solid line for median fit with
95% credible intervals, dashed line for median forecast with 95% CI); inset same data in log-lin scale. C: Comparison of total
reported cases and the model (same representation as in B). D—G: Priors (gray lines) and posteriors (green histograms) of all
model parameters; inset values indicate the median and 95% credible intervals of the posteriors.
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FIG. 21. SIR model with reported case number multiplied by 10, to account for an eventual factor 10 of unknown
cases. Results are nearly identical to original non-multiplied plot (Fig 3. in [1]), showing that a constant under-reporting has a
negligible effect, similar to Fig. 20. The median inferred spreading rates A are 0.01-0.02 larger. A: Time-dependent model
estimate of the effective spreading rate A\*(¢). B: Comparison of daily new reported cases and the model (green solid line for
median fit with 95% credible intervals, dashed line for median forecast with 95% CI); inset same data in log-lin scale. C:
Comparison of total reported cases and the model (same representation as in B). D—G: Priors (gray lines) and posteriors (green
histograms) of all model parameters; inset values indicate the median and 95% credible intervals of the posteriors.
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FIG. 22. Inferring R with different methods (like Fig. 4), using a synthetic model with R =3 to R = 0.9. A, B: Synthetic
data for new symptomatic cases generated with SIR dynamics from an underlying R with one change point of duration 1
day (solid) or 7 days (dashed). C: Model-free inference of R based on the ratio of case numbers at time ¢ and time ¢ — g.
D: Model-free inference of R following the Robert Koch Institute convention, i.e. using the definition of C but with averaging
over a window of the past 4 days. E: Same as D but averaging over 7 days. Note the overlap of intervals. All the model-free
methods (C-E) can show an erroneous estimate of R < 0.9 transiently, due to the change point in the underlying true R. F: The
inferred R using change-point detection with an underlying dynamic model (SIR) does not show a transient erroneous R < 0.9
period. If the underlying dynamic model corresponds well enough to the true disease dynamics, then this approach reproduces
the true R that was used to generate the data.
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FIG. 23. Inferring R with different methods (like Fig. 4), using a synthetic model with R =3 to R =1. A, B: Synthetic data
for new symptomatic cases generated with SIR dynamics from an underlying R with one change point of duration 1 day (solid)
or 7 days (dashed). C: Model-free inference of R based on the ratio of case numbers at time ¢ and time ¢ — g. D: Model-free
inference of R following the Robert Koch Institute convention, i.e. using the definition of C but with averaging over a window of
the past 4 days. E: Same as D but averaging over 7 days. Note the overlap of intervals. All the model-free methods (C-E) can
show an erroneous estimate of R < 1 transiently, due to the change point in the underlying true R. F: The inferred R using
change-point detection with an underlying dynamic model (SIR) does not show a transient erroneous R < 1 period. If the
underlying dynamic model corresponds well enough to the true disease dynamics, then this approach reproduces the true R that
was used to generate the data.
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FIG. 24. Inferring R with different methods (like Fig. 4), using a synthetic model with R =3 to R = 1.1. A, B: Synthetic
data for new symptomatic cases generated with SIR dynamics from an underlying R with one change point of duration 1
day (solid) or 7 days (dashed). C: Model-free inference of R based on the ratio of case numbers at time ¢ and time ¢ — g.
D: Model-free inference of R following the Robert Koch Institute convention, i.e. using the definition of C but with averaging
over a window of the past 4 days. E: Same as D but averaging over 7 days. Note the overlap of intervals. All the model-free
methods (C-E) can show an erroneous estimate of R < 1 transiently, due to the change point in the underlying true R. F: The
inferred R using change-point detection with an underlying dynamic model (SIR) does not show a transient erroneous R < 1
period. If the underlying dynamic model corresponds well enough to the true disease dynamics, then this approach reproduces
the true R that was used to generate the data.
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