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Abstract
Understanding variations in the performance of serological tests for SARS-CoV-2
across varying demographics is relevant to clinical interpretations and public policy
derived from their results. Appropriate use of serological assays to detect
anti-SARS-CoV-2 antibodies requires estimation of their accuracy over large
populations and an understanding of the variance in performance over time and across
demographic groups. In this manuscript we focus on anti-SARS-CoV-2 IgG, IgA, and
IgM antibody tests approved under emergency use authorizations and determine the
recall of the serological tests compared to RT-PCR tests by Logical Observation
Identifiers Names and Codes (LOINCs). Variability in test performance was further
examined over time and by demographics. The recall of the most common IgG assay
(LOINC 94563-4) was 91.2% (95% CI: 90.5%, 91.9%). IgA (LOINC 94562-6) and IgM
(94564-2) assays performed significantly worse than IgG assays with estimated recall
rates of 20.6% and 27.3%, respectively. A statistically significant difference in recall
(p = 0.019) was observed across sex with a higher recall in males than females, 92.1%
and 90.4%, respectively. Recall also differed significantly by age group, with higher
recall in those over 45 compared to those under 45, 92.9% and 88.0%, respectively
(p < 0.001). While race was unavailable for the majority of the individuals, a
significant difference was observed between recall in White individuals and Black
individuals (p = 0.007) and White individuals and Hispanic individuals (p = 0.001).
The estimates of recall were 89.3%, 95.9%, and 94.2% for White, Black, and Hispanic
individuals respectively.

1 Introduction
As the Coronavirus Disease 2019 (COVID-19) pandemic evolves, it is clear that testing
is crucial for understanding the disease. Estimates of disease prevalence can be used to
inform public policy and help prioritize scientific research agendas, but accurate
estimates require the correct interpretation of testing data. They also directly affect
individual patients to the extent that clinicians assume negative test results are
equivalent to no viral exposure. If systematic differences in test performance across
different population subgroups exist, they should, at the very least, inform both policy
and clinical decision-making.

We analyze here a collection of almost 2.5 million test results to assess the quality
of antibody tests (see Table 1). Specifically, a positive SARS-CoV-2 reverse
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transcription polymerase chain reaction (RT-PCR) test is assumed to be the reference
gold standard for COVID-19 infection, to which antibody test results are compared
against. Given the limited supporting evidence on these tests and their variable
performance depending on the stage of the disease, this approach provides a simplified
framework for determining the recall of serological antibody tests [1, 2].

2 Methods

2.1 Data

Table 1. Dataset summary.
Date range for testing March 2, 2020 through August 1, 2020
Number of individuals tested 1,913,640
Age range 1 month to >100 years old
Gender 56.1% female, 43.6% male
Total number of tests 2,445,907
Test type given 66.8% PCR tests, 33.2% antibody tests

We used de-identified administrative claims for individuals enrolled in a Medicare
Advantage, commercial, or Medicaid plan in a research database from a single large
health insurance provider in the United States. The database contains medical
(physician, inpatient, outpatient) and pharmacy claims for services submitted for
third-party reimbursement. We joined this claims database with a limited outpatient
dataset that included test results for individuals undergoing outpatient testing for
SARS-CoV-2 at 84 hospital-based, free-standing outpatient, and third-party labs
across the United States. Approximately 90% of the test results were submitted by
just two large national labs (Lab A: 58.5% and Lab B: 31.0%), with other 82 labs
making up the final 10.5% of tests. Results for 1,864 individuals were excluded from
the analysis due to multiple reported sexes or birth dates. The resulting dataset
included 2,445,907 test results from 1,913,640 individuals (Table 1). The population
represents a wide range of ages, and a good balance of sex. Figure 1 presents the count
of individuals by state, showing that the dataset covers individuals from across the
United States with the highest number of tests conducted in New York, followed by
Florida, and Texas.

The tests themselves are identified by Logical Observation Identifiers Names and
Codes (LOINCs). The LOINCs associated with the tested population and the
frequency of tests reported are listed in Table 2. It is notable that 65.54% of all tests
conducted were RT-PCR tests of one particular type (LOINC 94500-6). This LOINC
accounted for 98.12% of RT-PCR tests and is associated with tests manufactured by
over 40 different entities [3]. As LOINCs often exist in a one-to-many relationship to
manufacturers, the data does not allow for analysis of specific tests marketed by a
particular manufacturer. To get the most robust estimate of the recall of antibody
tests, only RT-PCR tests with LOINC 94500-6 are considered in the following analysis.

Of the 130,835 individuals with positive RT-PCR tests, 191 individuals had a
negative RT-PCR test result reported on the same day as their positive result and
were removed from the analysis; this left 130,644 individuals with a valid positive
RT-PCR test. The positive RT-PCR tests occurred throughout the date range (March
2, 2020 through August 1, 2020) but are concentrated in April and July (Figure 2). Of
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note, we do not have access to testing results for at home and point-of-care lateral flow
assay tests.

Table 2. Administered tests by LOINC code.
Type Component LOINC Lab A Lab B Other Total All Tests Same Type

94661-6 0 0 15 15 0.00% 0.00%
Ab 94762-2 0 11,389 41,668 53,057 2.17% 6.53%
Ab IgA 94562-6 0 20,371 225 20,596 0.84% 2.54%

94505-5 0 0 2,435 2,435 0.10% 0.30%
94507-1 0 0 4,023 4,023 0.16% 0.50%Ab IgG
94563-4 420,435 217,762 36,081 674,278 27.57% 83.01%

Ab IgG+IgM 94547-7 0 0 875 875 0.04% 0.11%
94508-9 0 0 593 593 0.02% 0.07%

Serological

Ab IgM 94564-2 0 55,506 907 56,413 2.31% 6.94%
Total Total 420,435 305,028 86,822 812,285 33.21% 100.00%

94316-7 0 0 1,509 1,509 0.06% 0.09%
N gene 94533-7 0 0 684 684 0.03% 0.04%
RdRp gene 94534-5 0 0 142 142 0.01% 0.01%

94309-2 7,556 0 20,028 27,584 1.13% 1.69%
94500-6 1,003,562 454,062 145,326 1,602,950 65.54% 98.12%
94559-2 0 0 496 496 0.02% 0.03%
94565-9 0 0 184 184 0.01% 0.01%

PCR

RNA

94759-8 0 0 73 73 0.00% 0.00%
Total Total 1,011,118 454,062 168,442 1,633,622 66.79% 100.00%
Grand Total Grand Total 1,431,553 759,090 255,264 2,445,907 - -

Like the RT-PCR tests, the antibody tests also concentrated into a single LOINC

Figure 1. Counts of individuals tested by state in our dataset. Not shown: Alaska
(n = 384), Hawaii (n = 1, 267), and Washington D.C. (n = 6, 755).

3

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.14.20191833doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.14.20191833


code with 83.01% of them coded as LOINC 94563-4 (Table 2). The next most
frequent antibody test (LOINC 94564-2) only accounted for 6.94% of antibody tests.
While there were still thousands of tests conducted using the 2nd through 6th ranked
tests, they represented relatively small samples after filtering was applied.

Figure 2. Counts of individuals with positive RT-PCR tests by date.

2.2 Data Analysis
When estimating recall, only individuals that received a positive RT-PCR test and any
antibody test were considered. When estimating recall overall and by demographics,
antibody test results were only considered if they succeeded the first positive RT-PCR
test by at least 14 days. This provides sufficient time for seroconversion to occur and
be reasonably detectable by an antibody test as antibodies may take an average of 10
to 14 days to be detectable after infection [4–10]. Additionally, only antibody tests
conducted on the first date that met the criteria were considered to avoid bias by
counting a single individual multiple times. When estimating recall changes by
prognosis, all antibody tests were considered.

Confidence intervals for recall were calculated by inverting the score test with the
null hypothesis that the recall was equal to 0.5. Yates’ continuity correction was
applied where possible and the resulting interval was clipped to [0, 100]. All analyses
were conducted using the statistical software R [11]. Proportion tests were used to
identify significant differences across sex, race, and age group. A total of eight
hypothesis tests were conducted and the p-values were adjusted using the
Benjamini-Hochberg method to control the false discovery rate [12].

While recall estimates were calculated for all antibody LOINCs with more than 10
individuals with positive results, we focused demographic analyses on individuals with
the most frequent antibody test (LOINC 94563-4) to avoid confounding of the results
by the use of less sensitive tests.

This study was reviewed and deemed exempt by the institutional review board of
UnitedHealth Group.
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Figure 3. Counts of distinct individuals by type of test and results. Counts in row 5
refer to number of tests rather than individuals. One person had conflicting LOINC
94563-4 test results and was removed from the population. Boxes 4a and 4b do not
sum to 3b because 871 individuals received both a LOINC 94563-4 test result and
another antibody (AB) test result on the first testing date that met the criteria.

3 Results

3.1 Antibody Testing Recall
Figure 3 shows population counts by test type and result. Filtering the data down to
include only those individuals with a positive RT-PCR test at least 14 days prior to an
antibody test and excluding an individual with conflicting antibody test results on the
same date created a pool of 7,406 people. The demographics in this subset were
similar to those in the complete dataset with a sex split of 47/53% (male/female) and
an age range of 1 to over 100 years old with a median age of 52. The population
represents 48 states with the highest counts in New York, New Jersey, and Florida.

The time from the positive RT-PCR test to the first antibody test ranged from 14
to 133 days with a median of 38 days and mean of 43 days. A total of 871 individuals
received both a LOINC 94563-4 test result and another antibody test result on the first
testing date that met the criteria. Of the remaining pool, 6,635 individuals received an
IgG antibody test recorded as LOINC 94563-4, and 6,052 of those results were
positive, resulting in a recall of 91.2% and 95% confidence interval of (90.5%, 91.9%).

Table 3. Estimated recall of serological tests by LOINC. Only LOINCs with > 10
positive results reported are shown.
LOINC Component Total Count Positive Count Recall Lower Bound Upper Bound
94563-4 Ab IgG 6,635 6,052 91.2% 90.5% 91.9%
94564-2 Ab IgM 904 247 27.3% 24.5% 30.4%
94762-2 Ab 706 638 90.4% 87.9% 92.4%
94562-6 Ab IgA 296 61 20.6% 16.2% 25.8%
94507-1 Ab IgG 15 13 86.7% 58.4% 97.7%

Despite the relatively high recall rate of LOINC 94563-4, performance was highly
variable across the nine types of serologic tests used1. Table 3 reports recall rates for
these tests and their 95% confidence intervals. Estimates of average test recall rates

1Four results were removed from the analysis due to small sample size (≤ 10 positive results).
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range from a low of 20.6% (LOINC 94562-6) to a high of 91.2% (LOINC 94563-4).
The poorest-performing LOINC 94562-6 measures IgA antibodies. IgA is primarily
secreted from mucosal membranes, where it fights early viral entry into cells [13].
There has been speculation that testing for the IgA antibody may not be a reliable
method for identifying COVID-19 infections, and these findings seem to validate this
as it is the poorest-performing test. The test that measures IgM also performs
significantly worse than the IgG tests with a recall of 27.3% for LOINC 94564-2.

3.2 Recall Changes Over Prognosis

Figure 4. Estimated recall of serological tests by length of time from first positive
RT-PCR test. Only groupings with > 10 positive results reported are shown.

Relaxing the 14 day requirement for antibody tests resulted in a population of
11,810 individuals with 15,232 reported test results. From what is currently
understood about the timing of serological conversion, we expect that the probability
of a positive antibody test would increase over time followed by a decrease as antibody
titers decline. In general, the data supported this hypothesis (Figure 4), with most
tests exhibiting the highest recall rates after three and four weeks from the date of the
positive RT-PCR test.

However, the degree to which recall diminishes after that peak varied greatly across
tests. The most common IgG test (LOINC 94563-4) maintains recall above 90% from
week three to week nine peaking at week seven with samples sizes ranging from 91 to
964 for weeks one through 16. Only in week ten and week 14 does the 95% confidence
interval fall below 90%. The estimated recall of the non-specific antibody test (LOINC
94762-2) rises above 90% at week 7 and the upper bound of the confidence interval
stays above 90% through week 16. The sample sizes for LOINC 94762-2 are smaller
ranging from 16 to 95 for weeks one through 16. The recall of the IgA test (LOINC
94562-6) decreases dramatically from week two to week five, while the recall of the
IgM test (LOINC 94564-2) steadily decreases from week five to week eight.

As the starting time of this analysis is RT-PCR testing, the variability of the
intervals noted above depends where in the course of infection these first tests
occurred. For example late RT-PCR testing might detect viral fragments even after
live virus is cleared and the subsequent IgG assay may appear positive early relative to
others. Interestingly, for the most common test LOINC 94563-4 (IgG), 1,993 antibody
tests were conducted prior to a RT-PCR test, with 16.1% of the results being positive.
When LOINC 94563-4 was taken on the same day as the positive RT-PCR, 52% of the
results were positive.
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3.3 Recall Across Demographics

Table 4. Estimated recall of serological tests by demographics. Complete
demographic information was not available for all individuals, only non-missing data is
displayed.

Total Count Positive Count Recall Lower Bound Upper Bound
female 3,526 3,186 90.4% 89.3% 91.3%

Gender male 3,105 2,861 92.1% 91.1% 93.1%
[0,12) 28 26 92.9% 75.0% 98.8%
[12,25) 435 373 85.7% 82.0% 88.8%
[25,35) 814 707 86.9% 84.3% 89.1%
[35,45) 1,034 927 89.7% 87.6% 91.4%
[45,55) 1,365 1,263 92.5% 91.0% 93.8%
[55,65) 1,569 1,461 93.1% 91.7% 94.3%
[65,75) 960 896 93.3% 91.5% 94.8%
[75,85) 331 305 92.1% 88.6% 94.7%

Age Group

[85,105] 99 93 93.9% 86.8% 97.5%
White 980 875 89.3% 87.1% 91.1%
Hispanic 800 754 94.2% 92.3% 95.7%
Black 242 232 95.9% 92.3% 97.9%
Asian 53 51 96.2% 85.9% 99.3%

Race

Other 172 160 93.0% 87.9% 96.2%
<$50K 1,194 1,099 92.0% 90.3% 93.5%
$50-$75K 1,977 1,791 90.6% 89.2% 91.8%
$75 - $100K 1,555 1,420 91.3% 89.8% 92.6%Income Group

>$100K 1,774 1,618 91.2% 89.8% 92.5%

The demographic analysis was restricted to the most common IgG test (LOINC
94563-4). Table 4 shows the breakdown of recall rate across sex, age group, race, and
income group.

Breakdown by sex showed a statistical difference in the implied recall rates
(p = 0.019), where the male population exhibited higher recall.

Breakdown of recall rate across age group showed increased recall for elder groups,
with ages 12 to 25 and 25 to 35 exhibiting the lowest recall rates, 85.7% and 86.9%,
respectively2.

Recall was also broken down by age and sex simultaneously (Figure 5). The
increased recall in males persists across all age groups except the youngest and eldest
for which sample sizes are the smallest. Recall appears to increase with age until
around age 45. A statistically significant difference was observed between the recall in
those 45 and above, 92.9%, compared with those under 45, 88.0% (p < 0.001).

While race was unknown for the majority of individuals, available data suggests a
lower recall in White individuals than in Hispanic or Black individuals; between White

2High recall and the ensuing variability for the youngest group is due to sample size.
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individuals and Black individuals (p = 0.007) and White individuals and Hispanic
individuals (p = 0.001). The significant differences by race persist when the
population is restricted to those aged 45 and above.

Income group was assigned based on the most recent median household income in
the individual’s zipcode, using the method described in [14]. Recall did not vary
significantly by income group.

Figure 5. Estimated recall of serological tests by age and sex.

4 Discussion
While the FDA has issued emergency use authorization [15] for many tests during this
pandemic, the amount of data supporting these authorizations is frequently limited.
This is especially true of serological tests for antibodies; most recent analysis
results [10,16,17] are over tens of individuals. A study that quantifies their accuracy
over a large population has been lacking.

Our study found important differences between IgG and IgM tests in contrast to
no apparent differences found in the meta-analysis performed in [8]. Of note, this meta
analysis included much smaller sample count (5,016 samples) compared to the 2.4
million samples in our study, but also the time intervals encompassed by our studies
differ. Findings in [9] also support our conclusion that tests measuring IgM are less
reliable than those measuring IgG.

Overall, the empirically derived IgG antibody test recall (LOINC 94563-4) is
91.2%, assuming a positive RT-PCR test as the gold standard. IgM and IgA tests
performed significantly worse than IgG and non-specific tests. There is additional
variability in recall, likely related to the variation in peak antibody levels in
individuals, with respect to sex, age, and ethnicity. We found a recall difference across
sex (p = 0.019) and racial groups; between White individuals and Black individuals
(0.007), and White individuals and Hispanic individuals (p = 0.001) but no significant
difference based on income as estimated from zipcode. Recall increased steadily and
significantly with age until 45 years of age, with a significant difference observed
between those 45 and above compared with those under 45 (p < 0.001).

Our results are similar to prior studies detecting viral presence of SARS-CoV-2.
For example, Gudbjartsson et al. [18] found that children under 10 years old were less
likely to test positive as were females. These differences could be due to different
ascertainment or referral patterns and timing of the ascertainment in these
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subpopulations. The well documented differences of prevalence in these
populations [19,20] do not appear to explain the differences in test performance.
Alternative, biological hypotheses for these differences in seropositivity recall with
control for confounding by co-existing conditions such as obesity [21,22], which have
been shown to be significantly associated with reduced antibody responses, will be
pursued. Evidence for these biological hypotheses (e.g. Takahashi et al. [23–26]) is
very preliminary and requires specific validation for human SARS-CoV-2 infections.

4.1 Limitations
This study has many of the limitations of retrospective observational studies, not least
of which is how the patients were ascertained. This outpatient testing data is skewed
since individuals who receive these tests are generally healthier and have relatively
fewer comorbid conditions than the general population. Biases are especially likely in
the earliest stage of the pandemic when the supply of tests was limited and testing
was frequently reserved for those deemed most likely to be infected. The high number
of asymptomatic infections is another consideration for understanding the tested
population, as those without symptoms may have been less likely to seek out or be
given a test. In fact, some reports show a lower peak antibody level response in these
patients [4]. Also, using the RT-PCR test as a gold standard means that this study
does not include the serology of those patients who had a false negative RT-PCR test,
which may be substantial given reports of poor sensitivity [27,28]. Nonetheless, the
recall rates we report here do reflect much of current practice relative to positive
RT-PCR assays, and the subpopulation seropositivity recall differences are therefore of
interest to policy-making and clinical practice.
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A Database Quality

A.1 Standardization of Data Entry and Data Structure
Medical and pharmacy claims data are captured, predominantly electronically, from
sites of care seeking third-party reimbursement for both Medicare and commercial
plans using the industry standard data collection forms HCFA/CMS-1500 for facility
claims, UB04/CMS-1450 for professional services and outpatient claims, and NCPDP
for pharmacy claims or their electronic equivalents. Structured data from these
standardized forms are coded using the International Classification of Diseases, Tenth
Revision, Clinical Modification (ICD-10-CM), National Drug Codes (NDC), Current
Procedural Terminology (CPT) codes, and Logical Observation Identifiers Names and
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Codes (LOINC) codes, and Diagnosis Related Groups (DRG). This nomenclature
ensures consistency of data collection across geographic regions, health systems, and
payers throughout the United States.

A.2 Methods to Control for Errors in Sampling and Data Col-
lection

Claims that do not adhere to the form or coding standards described above are
rejected from reimbursement, minimizing the risk that inappropriately structured data
are included in the database. Data specific to SARS-CoV-2 and COVID-19 has an
additional Quality Control layer to control for errors in sampling and data collection;
this is described below in Section A.7.

A.3 Data Relevance and Accuracy
Data are transferred into the UnitedHealth Group (UHG) Clinical Discovery Database,
where a dedicated team pursues data management to ensure accurate matching of
source data to an individual. This protocol uses unique identifiers to match them to
existing identifiers in the UHG Clinical Discovery Database to determine whether the
individual already exists in the platform. A unique identification number is generated
for each individual so that data from multiple sources can be linked back to that
identification number. Individuals that fail to meet the matching criteria are excluded
from the UHG Clinical Discovery Database to reduce the risk of erroneous linkage of
records. Those whose claims do not fulfill basic standardized data structure
requirements described previously are also excluded. During this, all member
protected data are stored in a separate database that is only accessible by a
designated engineering team. In addition to a persistent identifier being generated for
each member, a de-identified primary key is also generated. The de-identified primary
key is recycled every 6 months, at which time each member is assigned a new
de-identified primary key. Data that are made available for research through the UHG
Clinical Discovery Database use the de-identified primary key as the link across data
tables. All protected information has been removed, ensuring any research performed
is limited to retrospective analysis of de-identified data and accessed in accordance
with Health Insurance Portability and Accountability Act regulations.

A.4 Sufficiency of Basic Data
As described above, individuals lacking enough data to be assigned a unique primary
key are excluded from the UHG Clinical Discovery Database, as are patients whose
claims did not fulfill basic data structure requirements. In a given month in 2019, the
UHG Clinical Discovery Database contained one or more claims from 5 million
Medicare Advantage enrollees and 20 million commercially-insured individuals.
Further information on data sufficiency for the research performed in this manuscript
can be found in Figure 3.

A.5 Adequacy of Possible Derived Data
To reduce the risk of introducing error to standardized, structured claims data,
derivation of source data within the UHG Clinical Discovery Database is minimal.
The Data Integration team loads, formats, and join the data to appropriate dimension
tables. Dimension tables are combined with raw claims information to limit the
number of times external tables need to be referenced. Researchers may request
derived fields within data tables prepared specifically for a project. This process is
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managed by the Data Enrichment team, who creates data dictionaries to accompany
derived fields. Tables containing derived data are stored separately from raw source
data.

A.6 Design of Computer Editing Methods
Access to modify/edit source data is restricted to a subset of data specialists. Each
step in the data flow has a restricted list of individuals able to perform any type of
editing to the database, and access level varies by team (Data Integration, Data
Enrichment). Researchers using the Clinical Discovery Database may not edit any
source data or enrichment data. They are instead given access to “sandbox” locations
where they may request editing access for the data tables used in their analyses.

A.7 Quality Control
In addition to the quality control mechanisms described during the matching
procedures to reject non-linkable or inappropriately structured data, a COVID-19
data source-specific layer of quality control is also present, given the rapidly evolving
situation. SARS-CoV-2 lab tests included in the UHG Clinical Discovery Database
exclude custom local codes or codes that are not present in the LOINC organization’s
guidance for mapping SARS-CoV-2 and COVID-19 related LOINC terms. Test
information provided via the LOINC code compliments the test type (antibody,
RT-PCR, etc)̇ as well as the result value (detected, not detected, not given/cancelled).
Suspected COVID-19 inpatient cases are manually reviewed daily by health plan
clinical staff via clinical notes to determine an individual’s COVID-19 status. Each
case is then manually flagged as either negative, confirmed, presumed positive, or
needs clinical review. If a case is confirmed, it is not reviewed again. If a case is listed
as negative or unknown, it is periodically reviewed for changes in the record. All
others are reviewed and updated daily.

A.8 Differences Across Groups
While the data for Medicare Advantage and commercially insured enrollees is
processed in a similar manner, these groups are substantially different. First, there are
systematic differences in patient characteristics, most remarkably the older age and
the higher prevalence of all comorbidities. These differences are tabulated in the UHG
Clinical Discovery Database, there are restrictions from individual employers on these
use of data for research. Therefore, commercial insurance claims that are available for
analyses are a subset of the overall commercially insured population.

A.9 Data Sharing
The data are proprietary and are not available for public use but can be made
available to editors and their approved auditors under a data use agreement to confirm
the findings of the current study.
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