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Abstract 26 
 27 
Background: Most Bluetooth-based exposure notification apps use three binary classifications 28 
to recommend quarantine following SARS-CoV-2 exposure: a window of infectiousness in the 29 
transmitter, ≥15 minutes duration, and Bluetooth attenuation below a threshold. However, 30 
Bluetooth attenuation is not a reliable measure of distance, and infection risk is not a binary 31 
function of distance, nor duration, nor timing. 32 
 33 
Methods: We model uncertainty in the shape and orientation of an exhaled virus-containing 34 
plume and in inhalation parameters, and measure uncertainty in distance as a function of 35 
Bluetooth attenuation. We calculate expected dose by combining this with estimated 36 
infectiousness based on timing relative to symptom onset. We calibrate an exponential dose-37 
response curve on the basis of the infection probabilities of household contacts. The conditional 38 
probability of current or future infectiousness, conditioned on how long post-exposure an 39 
exposed individual has been free of symptoms, decreases during quarantine, with shape 40 
determined by the distribution of incubation periods, proportion of asymptomatic cases, and 41 
distribution of asymptomatic shedding durations. It can be adjusted for negative test results 42 
using Bayes Theorem. 43 
 44 
Findings: We capture a 10-fold range of risk using 6 infectiousness values, 11-fold range using 45 
3 Bluetooth attenuation bins, ~6-fold range from exposure duration given the 30 minute duration 46 
cap imposed by the Google/Apple v1.1, and ~11-fold between the beginning and end of 14 day 47 
quarantine. Imposing a consistent risk threshold for the probability of infection can recommend 48 
quarantine with weaker Bluetooth signal, even when not recommended for the entirety of the 49 
infectious period. 50 
 51 
Interpretation: The Covid-Watch app is currently programmed either to use a threshold on 52 
initial infection risk to determine 14-day quarantine onset, or on the conditional probability of 53 
current and future infectiousness conditions to determine both quarantine and duration. Either 54 
threshold can be set by public health authorities. 55 
 56 
Funding: University of Arizona 57 
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Research in Context: 59 
 60 
Evidence before this study 61 
 62 
Epidemiological models suggest a benefit from smartphone-based automatic notification of 63 
exposure to Covid-19 infected individuals. Google and Apple have rolled out a privacy-64 
preserving API with which apps can offer such notifications based on the degree of Bluetooth 65 
attenuation of a signal issued by an infected individual, its duration, and its timing relative to 66 
symptom onset in and test date for that infected individual. Apps deployed so far have focused 67 
on approximating close contact definitions of 15 minutes and a given distance such as 1 meter 68 
or 2 meters. However, Bluetooth attenuation is not a reliable measure of distance, and infection 69 
risk is not a binary function of distance, nor duration, nor timing. 70 
 71 
Added value of this study 72 
 73 
We integrate all sources of information (including our own new experiments on the relationship 74 
between distance and Bluetooth attenuation) to provide a measure of infection risk that is as 75 
accurate as possible given the data on exposure that is available to an app based on the 76 
Google/Apple system. We also provide a method to calculate the probability of current or future 77 
infectiousness, which is a function not only of initial infection risk, but also of the number of 78 
symptom-free days since exposure, and any negative test results. 79 
 80 
Implications of all available evidence 81 
 82 
Our risk scoring system can guide quarantine recommendations in exposure notification apps, 83 
targeting them to individuals who are the most likely to be infected. It can also recommend 84 
release from quarantine on the day that the probability of current or future infectiousness falls 85 
below a threshold, leading to different quarantine durations for different individuals. 86 
 87 
  88 
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Background  89 
 90 
Manual contact tracing followed by quarantine of known contacts is a critical method for 91 
containing or mitigating the spread of communicable diseases. It is, however, extremely 92 
resource and time-intensive and relies on case recall of contacts. New technologies can 93 
supplement this approach.1 Manual contact tracing can be effective for COVID-192–4, however, 94 
a significant challenge is the extremely short window of time between an infected individual 95 
presenting for testing and the contacts that they infected beginning to shed infectious virus.5,6 96 
Automatic exposure notification approaches based on Bluetooth proximity have the potential to 97 
achieve many of the benefits of contact tracing, while also providing more rapid notification, 98 
greater privacy7,8, more objective recall of contacts including those whose identity is unknown to 99 
the case, and greater scalability.5,9 The two approaches of contact tracing and exposure 100 
notifications are complementary and may directly interact e.g. when those receiving digital 101 
exposure notifications are referred to human contact tracers for the information and support 102 
needed for quarantine adherence and further investigation.10  103 
 104 
Apps have access to data on timing, duration, and Bluetooth attenuation. Determining the 105 
threshold for entering quarantine based on probability of infection should yield better results 106 
than from combining three binary thresholds for duration, distance, and the infectious period of 107 
the transmitter. A threshold for exiting quarantine based on the conditional probability of current 108 
or future infectiousness could also be used. Both would help optimize the reduction in disease 109 
transmission per day of quarantine recommended. 110 
 111 
Here we lay out a framework for doing so using the decentralized protocol of the Google/Apple 112 
Exposure Notification (GAEN) Application Programming Interface (API). When a user reports 113 
positive infection status, the GAEN v1.1 framework (Figure 1) allows apps to assign a 114 
“Transmission Risk Level” to each day that they might have been shedding, and to 115 
communicate this level to the receiver’s phone via a Temporary Exposure Key (TEK). On the 116 
receiver’s device, the GAEN framework records Bluetooth attenuation as a rough estimate of 117 
distance, and the duration of exposure. 118 
 119 
The risk of infection depends on viral dose,11 which in turn depends on the shedding rate of the 120 
infected individual, and on the duration and distance of the interaction. As days go by without 121 
onset of symptoms, the probability of future infectiousness decreases, because the probability is 122 
conditioned on lack of symptoms for an increasing stretch of time. We parameterize calculations 123 
of both probabilities using both past literature and new experiments and illustrate what different 124 
risk thresholds imply for quarantine recommendations. We are piloting and evaluating the Covid 125 
Watch app using portions of this scheme on the campus of the University of Arizona. 126 
 127 
 128 
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  129 
 130 
Figure 1. Assessment of the probability of infection following a single exposure. The calibration 131 
work is reported in this manuscript, and the procedures on the Transmitter’s and Receiver’s 132 
phones are part of the Covid Watch app. 133 
 134 
 135 
Methods  136 
 137 
The overall approach to calculating infection risk is summarized in Figure 1. Parameter values 138 
and their descriptions and sources are summarized in Supplementary Table 1 for calculations 139 
performed by the app and in Supplementary Table 2 for parameters we used during calibration. 140 
 141 
The GAEN v1.1 framework records exposure durations only up to 30 minutes, in order to protect 142 
anonymity of COVID-positive patients by limiting the risk that users will be able guess the 143 
source of their exposure, while still meeting contact definitions that invoke minimum exposure 144 
duration of 15 minutes. Durations can be recorded separately within three bins of attenuation, 145 
thus allowing a total of 90 minutes if the attenuation varies in the necessary manner over the 146 
exposure. We calculate a weighted sum of the three durations, using the weights to capture the 147 
differences in expected dose (number of inhaled particles over an exposure time). Note that 148 
GAEN v1.5 lifts the duration cap but restricts our ability to record levels of infectiousness. We 149 
focus here on GAEN v1.1, but our scheme can be adapted for later versions. 150 
 151 
We measured Bluetooth attenuation under GAEN v1.1 for a range of distances, phones, and 152 
scenarios of possible signal interference with the potential to affect the attenuation – distance 153 
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relationship (Supplementary Materials Section 1).12 We rebalanced this dataset to form a 154 
pseudo dataset that is more representative of the distribution of barriers and scenarios in the 155 
real world (Supplementary Materials Section 1). 156 
 157 
From this pseudo dataset, we first sample a datapoint that falls within the attenuation bin in 158 
question. If this is a zero-risk barrier scenario, we assign an infection risk of 0. Otherwise, we 159 
record the distance 𝜌𝜌 in meters. Note that our method is not based on mapping thresholds in 160 
distance to thresholds in Bluetooth attenuation, but instead on resampling from the probability 161 
distribution of distance as a function of attenuation. 162 
 163 
We feed this distance into a microbial exposure model that estimates the airborne spread of 164 
viral particles from an emitter’s mouth following a Gaussian plume formation, and their 165 
subsequent inhalation by contacts (Supplementary Materials Sections 2 and 3). We use a 166 
Monte Carlo approach to sample angle, exhalation rate of the transmitter, cross-section of the 167 
transmitter’s open mouth, and inhalation rate of the exposed individual, to obtain a mean 168 
dose/time for that attenuation bin. For distances ≤ 1 meter, we assume face to face interactions, 169 
consistent with distances measured for “interpersonal” interactions.13 We choose thresholds 170 
between attenuation bins, and relative risks for time spent in each bin (Supplementary Materials 171 
Section 4).  172 
 173 
We use an exponential dose-response curve, which is derived from the assumption that each 174 
host is susceptible and that each virus has an independent probability of survival and 175 
subsequent initialization of infection.11 In our case, this probability 𝑘𝑘, multiplied by a constant 𝐶𝐶 176 
to convert from arbitrary units to number of viruses, sets the parameter 𝜆𝜆 = 𝑘𝑘𝑘𝑘 in the equation 177 
 178 

𝑃𝑃(infection) = 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆,                               179 
 180 
where expected dose 𝐷𝐷 comes from a shedding rate multiplied by a weighted sum of time spent 181 
within 3 attenuation ranges. An exponential dose-response curve is superior to the approximate 182 
beta-Poisson for some other viruses (http://qmrawiki.org/content/recommended-best-fit-183 
parameters, accessed 09/07/2020). These viruses include adenovirus, enterovirus, poliovirus, 184 
and SARS-CoV-1. 185 
 186 
Our weighted sum of durations and our estimates of shedding rates 𝑆𝑆 in the Results are both in 187 
arbitrary units. We therefore fit 𝜆𝜆 to obtain infection probabilities that are compatible with 188 
household spread. Asymptomatic infection and low test sensitivity can both deflate estimated 189 
household infection risks, while indirect chains of infection via a third household member can 190 
inflate them. A meta-analysis by Curmei et al.14 attempted to correct for these complications and 191 
estimated a secondary attack rate of household contacts of 30%. We assumed exposure is 192 
equivalent to 8 hours with the maximum shedding rate in the lowest attenuation and calculated 193 
𝜆𝜆 for this dose that would result in a 30% infection risk. 194 
 195 
Our scheme can be used either to 1) set a threshold on the initial probability of infection to 196 
trigger 14-day quarantine, or 2) set a threshold for the probability of current or future 197 
infectiousness to determine both who should quarantine and for how long. Our method for 198 
calculating the probability of current or future infectiousness, conditioned on lack of symptoms 199 
so far and incorporating the possibility of asymptomatic infection, is described in Supplementary 200 
Materials Section 5. The parameters used are summarized in Table 1. This method can be 201 
extended to inform the timing of testing and the effect of a negative test result on a 202 
recommended duration of quarantine (Supplementary Materials Section 6). Note that strictly 203 
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speaking when using this latter threshold, our “quarantine” recommendations are, through their 204 
treatment of the possibility of undiagnosed asymptomatic infection, a combination of quarantine 205 
and isolation.  206 
 207 
Our scheme, by expressing exposures in terms of probabilities of infection and infectiousness, 208 
naturally lends itself to combining risks over multiple exposures (Supplementary Materials 209 
Section 7). 210 
 211 

 212 
Figure 2. Expected dose and corresponding probability of infection for a 30-minute exposure, 213 
estimated using our Monte Carlo procedure as a function of distance from an infected individual. 214 
The discontinuity at 1 meter indicates our assumption that this distance threshold indicates face-215 
to-face interaction. Faded points show doses and infection risks that would be estimated if a 216 
face-to-face or non-face-to-face interaction assumption were consistent across distances. The 217 
bolded points indicate what we assumed in our framework. Note that Bluetooth information likely 218 
contains more risk information regarding whether an interaction was face-to-face than it does 219 
about risk as a function of the distance at which either a face-to-face or a non-face-to-face 220 
interaction takes place. The WHO close contact definition invoking 1 meter also invokes face-to-221 
face interaction.15 The same is true, only with 2 meters, for European guidance (available at 222 
https://www.ecdc.europa.eu/en/covid-19-contact-tracing-public-health-management, accessed 223 
on 7/1/2020).16 The Centers for Disease Control and Prevention (CDC)’s definition departs from 224 
this in omitting reference to face-to-face when referring to interactions occurring within 6 feet 225 
(available at https://www.cdc.gov/coronavirus/2019-ncov/php/public-health-226 
recommendations.html, accessed on 7/1/2020).17  227 
 228 
 229 
 230 
 231 
 232 
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Results 233 
 234 
Our Gaussian plume model of microbial exposure produces the relationship between distance 235 
and infection risk shown in Figure 2. Training on both this and our distance-attenuation 236 
measurements (as summarized in Methods), we chose the 3 attenuation bins of ≤ 50dB (close 237 
range), 50-70dB (medium range), and >70 dB (far range), with weights 2.15, 0.79, and 0.19, 238 
respectively. Using these weights, we calibrate 𝜆𝜆 = 3.50 x 10-6 (see Methods) to obtain an 239 
infection probability of 0.30 for household contacts. Note that the best way to calibrate both 240 
weights and λ would be after the app is rolled out, with manual contact tracers compiling 241 
exposure characteristics and relating them to the rate of subsequent infection. While Eq. 5 242 
calculates the function of an expectation rather than an expectation of a function, treating 243 
variance in dose amounts to using an “effective” value of 𝜆𝜆 (Supplementary Materials Section 244 
8). 245 
 246 
Bluetooth attenuation thus only distinguishes a 2.7-fold difference in dose and hence risk 247 
between close and medium range, and only 11-fold between close and far range. In contrast, 248 
informed both by TCID50 data18 and by epidemiological evidence19, we assign a 10-fold higher 249 
risk to exposures to individuals during peak shedding than during the margins of the infectious 250 
period (Supplementary Materials Section 9, illustrated in Figure 3A). The magnitude of shedding 251 
(transmission risk value) has received less attention than attenuation and exposure duration and 252 
is not to our knowledge widely used by other GAEN apps. 253 
 254 
Apps can measure duration far more accurately than distance, but the GAEN v1.1 duration cap 255 
of 30 minutes, combined with the use of 5 minute or similar windows, mean that only ~6-fold 256 
differences in the risk from low-attenuation exposures are captured in this way, or up to 8.6-fold 257 
when stochastic variation in attenuation over time also shows up at lower attenuations, or much 258 
longer in GAEN v1.5 where there is no cap on duration. 259 
 260 
The relatively low predictive power of Bluetooth attenuation gives rise to diagonal patterns in the 261 
quarantine recommendations in Figure 3B. These diagonal patterns mean that quarantine will 262 
sometimes be recommended following prolonged exposure to a high shedder, even if the 263 
interaction took place at well beyond the estimated 2 m. distance. However, these exposures 264 
are not risk-free either, in particular if taking place in an indoor environment, especially in cases 265 
with heavy breathing, such as exercise environments20 or choir rehearsals,21 where aerosols 266 
may mix throughout the room and also deposit on surfaces. The diagonal pattern reflects the 267 
compelling evidence that exposure timing and duration also significantly contribute to infection 268 
risk. We therefore sometimes recommend quarantine recommendation even when Bluetooth 269 
attenuation, which is a poor proxy for distance, is not low. However, Bluetooth attenuation is 270 
nevertheless critical to concluding that an interaction occurred at all. 271 
 272 
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 273 
Figure 3. Examples of quarantine recommendations using a threshold for infection risk (B) vs. 274 
for current or future infectiousness (C). Shaded cells indicate that a 30-minute interaction is 275 
insufficient to trigger quarantine. A) Transmission risk levels 1-6 are used to capture the 10-fold 276 
range of relative infectiousness on different days as a function of timing relative to symptom 277 
onset. Evidence from both transmission pairs and TCID50 measurements is reviewed in the 278 
Supplementary Materials Section 9. B) The minimum length interaction needed to trigger 14-day 279 
quarantine is a function both of Bluetooth signal attenuation and of Transmission Risk Level. 280 
Approaches that neglect the latter correspond to a single row of 15 minutes, and potentially a 281 
second row of 30 minutes. C) Number of quarantine days recommended following a 30-minute 282 
interaction.  283 
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So far, we have estimated the probability of infection from an exposure. Each day that passes 284 
without symptoms provides more information to make infection less likely, and eventually also to 285 
increase the probability that shedding from an asymptomatic infection has ended. To calculate 286 
the probability of current or future infectiousness on a subsequent day, conditional on no 287 
symptoms until that day, we apply a discount factor based both on time elapsed without 288 
symptoms and also any negative test results (Supplementary Materials Sections 5 and 6). We 289 
multiply the probability of infection from an exposure by this discount factor to determine the 290 
remaining risk of infectiousness from a given exposure.  291 
 292 
Traditional quarantine guidelines are binary (either 14 days from date of last exposure, or no 293 
quarantine required). However, a consistent approach to risk, combined with a desire to impose 294 
quarantine days in the most efficient manner possible to combat disease spread, suggests that 295 
individuals should quarantine for longer following a higher-risk exposure (Figure 4A) (although 296 
see Supplementary Materials Section 5 for a caveat with very high doses). This approach 297 
calculates the number of days post-interaction that would be needed to drop below a given 298 
threshold of probability of current or future infectiousness. Exposure scenarios of 30 minutes are 299 
illustrated in Figure 3C.  300 
 301 
We used a 0.13% threshold in Figure 3C, because it recommends a 14-day quarantine for 15 302 
minutes in close range with a high shedder. Such an interaction has a 1.12% infection risk, 303 
which falls below a 0.13% probability of current or future infectiousness after 14 days of 304 
quarantine during which no symptoms appear. Note that this initial infection risk is broadly 305 
compatible with the attack rate reported in Taiwan (1.0%, 95% CI: 0.6-1.6%) for those 306 
interacting with infected individuals in the first 5 days of symptom onset,22 which is similar to the 307 
1.9% attack rate (95% CI 1.8%–2.0%) reported in South Korea.23  308 
 309 
Current advice treats the larger risk of longer exposure the same, making a 0.13% threshold 310 
more conservative because it is calculated to generate a 14-day quarantine for a minimal 311 
duration of exposure. However, this is offset by our assuming maximal shedding in calculating 312 
this benchmark example. In other words, while this threshold approximates the risk tolerance of 313 
current advice, the details of who is recommended for quarantine and for how long will be 314 
different in our quantification of total risk than it would be if we were to combine independent 315 
binary thresholds for infectious period of transmitters, duration of exposure, and distance to 316 
produce a quarantine duration of uniform length. This leads to more consistent treatment of risk 317 
to yield the greatest benefit in terms of transmission prevented per day of quarantine 318 
recommended. Shorter quarantines might significantly reduce the harms imposed by 319 
quarantine,24 and increase compliance25 (although see McVernon et al26). Quarantining for 14 320 
days post-exposure may be exceptionally challenging for essential workers, individuals without 321 
sick leave, or those who would endure significant financial hardship due to lost income. 322 
 323 
The assumed fraction of asymptomatic infections affects the discounting of risk. The 324 
symptomatic fraction is discounted according to the distribution of incubation periods from 325 
exposure to symptom onset, while releasing the asymptomatic fraction from quarantine is not 326 
safe until not only onset, but also shedding is over (Supplementary Materials Section 5). Our  327 
calculations so far assume that 20% of infections are asymptomatic. If we instead assume that 328 
50% infections are asymptomatic, e.g. in a young age group, even a 15-minute contact 329 
registered as low attenuation and with peak shedding in the transmitter would require a 16-day 330 
quarantine to meet a 0.13% threshold (Figure 4B). However, if an individual were to test 331 
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negative during their quarantine, their conditional probability of current or future infectiousness 332 
would drop, shortening their quarantine to 13 days for a test with 70% sensitivity (Figure 4C). 333 
 334 
 335 

 336 
Figure 4. Applying a consistent risk tolerance for current or future infectiousness causes 337 
quarantine duration to be a function of initial risk, of the tolerated degree of risk, of the fraction of 338 
infections that are assumed to be asymptomatic, and of any negative test results. A) Initial 339 
infection risk is 1.12% following 15 minutes of close contact with an individual around the time of 340 
symptom onset. With a 20% asymptomatic fraction, a 14-day quarantine is recommended under 341 
a 0.13% risk threshold, but only a 7-day quarantine under a 0.5% threshold. Following a lower 342 
risk exposure with 0.2% infection risk, quarantine would be 5 days with the stricter threshold, 343 
and there would be no quarantine with the less strict. B) Quarantine must be longer to mitigate a 344 
high likelihood of asymptomatic infection in the exposed individual. C) A negative test result, 345 
shown here as taking place on Day 5, can shorten quarantine, in particular mitigating the risk of 346 
asymptomatic infection. We apply Bayes theorem with 70% sensitivity and 100% specificity. 347 
Note that widespread availability of testing would allow much stricter risk thresholds to be used. 348 
Day 0 is included in the total quarantine times. 349 
 350 
Discussion  351 
 352 
Here we quantify relative risk of infection using experiments to inform the noisy distance-353 
attenuation relationship, and Monte Carlo simulations to inform both this and other sources of 354 
variability and uncertainty that affect risk. We roughly calibrate relative infection risk to absolute 355 
probability of infection based on limited information from the infection probability of household 356 
contacts.  357 
 358 
Errors in calibration are likely but will generally not affect the rank order of risks. For example, 359 
adjusting the risk threshold of 0.13% for quarantine will have similar effects to adjusting the 360 
value of λ. Knowledge of absolute vs. relative risk does have some effect once some saturation 361 
in risk begins to occur, little of which will occur unless much longer durations are recorded. 362 
 363 
With 20% cases being asymptomatic and no testing, the risk of current or future infectiousness 364 
falls ~11-fold over the first 14 days of quarantine. Under GAEN v1.5, risk will sometimes differ 365 
more between two individuals entering quarantine than when comparing the same individual 366 
before vs. after a 14-day quarantine. For this reason, our scheme could recommend 367 
quarantines longer than 14 days. Variation in quarantine length is to be expected – if total risk is 368 
scored consistently, some quarantines will be longer and others shorter, in order for residual 369 
infection probability, conditional on time elapsed without symptoms, to fall below a threshold.  370 
 371 
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The Covid Watch app is currently programmed either to use a threshold on infection risk to 372 
determine 14-day quarantine onset, or on risk of current and future infectiousness to determine 373 
both quarantine and duration. Either threshold can be set by public health authorities flexibly in 374 
the light of external factors such as level of community transmission, jurisdictional comfort with 375 
uncertainty related to digital exposure notifications, and current public health science and 376 
recommendations. Communities that have achieved containment might choose to set a stricter 377 
threshold, testing individuals once or twice to lower their risk following each negative test.  378 
 379 
Communities with high prevalence might raise the threshold if it seems likely that the number of 380 
quarantine recommendations being issued by the app will cause it to fall out of use. Note that 381 
the maximum possible initial infection risk in our v1.1 scheme is 3.23%; relaxing the 30-minute 382 
cap on durations, while maintaining infectiousness information, would be necessary in order to 383 
get resolution among higher risks. The effects of this problem are partly ameliorated by using 384 
the variable quarantine duration approach (Figure 3C). When a threshold is set well below the 385 
probability that a randomly chosen member of the population is currently infected, it should be 386 
recognized that individuals agreeing to download and comply with the recommendations of the 387 
app are implicitly agreeing to adhere to higher standards than those implied by the current 388 
absence of a general stay-at-home order. At the time of writing (September 5), the rate of 389 
current infection is ~1% in Arizona.27  390 
 391 
When the infection risk of the average person in the population is high, we believe that the best 392 
solutions are population-level restrictions and closures. Under these circumstances, a GAEN 393 
app might still have utility for essential workers. However, a GAEN app could be an inferior but 394 
still useful option should the political will for population-level restrictions not exist. 395 
 396 
As the conditional probability of current or future infectiousness (conditioned on the exposed 397 
individual being asymptomatic) falls throughout their quarantine period, messaging can also 398 
change. E.g., during the initial high risk days, users might be offered concrete resources such 399 
as grocery delivery, or the option to quarantine in a specialized facility in order to protect other 400 
household members, before transitioning to self-quarantine once risks falls. Even with self-401 
quarantine, an app might identify the days on which staying home is the highest priority (I.e. 402 
days where the potential infectivity may be highest). Messaging considerations are discussed in 403 
Supplementary Material Section 10. 404 
 405 
We caution that our derived relationship between Bluetooth attenuation and infection risk is 406 
extremely approximate and model-dependent. We have more confidence in our settings of 407 
Transmission Risk Levels for symptomatic cases, but very little for asymptomatic cases. These 408 
parameters need to be calibrated with real world data on app users who report their app-409 
recorded exposures to manual contact tracing efforts, who then track which users go on to test 410 
positive, and who are therefore able to mine the data to quantify the quantitative relationship 411 
between exposure details (duration, attenuation, Transmission Risk Level) and probability of 412 
infection. Transfer of this data to manual contact tracers’ contact management databases is 413 
critical to improve the targeting of quarantine recommendations to those at highest risk of being 414 
infected, which will make most efficient use of each day of quarantine recommended to reduce 415 
transmission. 416 
 417 
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Short of this, more quantitative data on infectivity would be extremely valuable. Our 418 
determination of shedding duration partly relies on the prospective sampling of all individuals in 419 
a skilled nursing facility28, where many patients subsequently got sick. Daily samples during 420 
similar outbreaks could be used to quantify how shedding varies both among individuals and as 421 
a function of time relative to symptom onset. TCID50 data would be ideal, but even Ct values 422 
can be valuable for this purpose. However, the fact that the settings we originally chose based 423 
on infectivity data agreed with later and improved epidemiological approaches19,29 is 424 
encouraging.  425 
 426 
Without extended durations, our default calibrations will not recommend quarantine (Figure 3B) 427 
or extended quarantine (Figure 3C) for lower Transmission Risks. However, with the duration 428 
cap lifted in a GAEN v1.5 or later, 43 minutes in the ≤50 dB range, 1.92 hours in the 50-70 dB 429 
range, or 7.93 hours in the >70 dB range with an individual of transmission risk level 2 would be 430 
required. However, GAEN v1.5 does not quantify infectiousness, and GAEN v1.6 re-introduces 431 
only two levels of infectiousness. Limited durations and infectiousness information have been 432 
driven by privacy concerns, but this must be weighed against the significant ethical 433 
considerations in favor of efficient allocation of quarantine.30 In Supplementary Section 10, we 434 
suggest an alternative method to preserve anonymity, which is to conceal all exposure details 435 
from the user’s view. When using variable quarantine duration, this also effectively conceals the 436 
date of exposure. 437 
 438 
Our framework can be used not only to guide recommendations for who should quarantine and 439 
for how long, but also to allocate associated resources including quarantine facilities, grocery 440 
delivery and other social support, and priority for access to scarce tests. Both manual contact 441 
tracing and digital exposure notification require rapid testing to be effective. Given limited tests, 442 
targeting those at highest risk of infection will do the most good in finding new positive cases 443 
who are early enough in the course of infection for these approaches to stem transmission the 444 
most.  445 
 446 
Data Availability: Supplementary Data Table 1 provides the alpha test data used to calibrate 447 
our weights. 448 
 449 
Code Availability: Code and necessary data are accessible under a Creative Commons 450 
license at https://github.com/awilson12/risk_scoring 451 
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Supplementary Table 1. Parameter values used by app to calculate risk 43 
Parameter Description Distribution or Point Value References 

𝑆𝑆 Viral shedding rate in arbitrary 
units that are proportional to 
viral copies/m3 

101 5 days pre- or 8-9 days post-symptom onset 10-fold range 
informed by 

TCID50 measures1, 
timing informed 

by1–4 
 

101.2 6-7 days post-symptom onset, or asymptomatic within 2-
4 days of test 

101.4 4 days pre- or 5 days post-symptom onset, or 
asymptomatic within 1 day of test 

101.6 3 days pre- or 4 days post-symptom onset 
101.8 2 days pre- or 3 days post-symptom onset 
102 1 day pre- to 2 days post-symptom onset 

𝑇𝑇low, 𝑇𝑇med, 𝑇𝑇high Duration of exposure Durations for Bluetooth attenuations ≤50dB, between 50dB and 
70dB, and >70dB are multiplied by weights 2.15, 0.79, 0.19, 

respectively 

This study 

λ Probability that one viral particle 
establishes infection × 
conversion from arbitrary units 

3.50 x 10-6 Calibrated from 
secondary attack 
rate of household 
contacts = 30%.5 

Fraction of 
asymptomatic 
infections 

Higher values lead to longer 
quarantine 

20% for a population, but depends on age 6 

Incubation period Days until symptom onset  Probabilities for {0,1,2…} days = {0,4E-05, 0.011842, 0.088541, 
0.181965, 0.207344, 0.174797, 0.123761, 0.081488, 0.051057, 
0.031469, 0.018734, 0.011235, 0.006786, 0.00422, 0.002518, 
0.001626, 0.000978, 0.000592, 0.000364, 0.000231, 0.00014, 
0.000093, 0.000062, 0.00004, 0.000025, 0.000017, 0.000011, 
0.000008} 

7 

Asymptomatic 
shedding duration  

We assume that asymptomatic 
shedding begins 3 days before 
what would have been the day of 
symptom onset if symptomatic, 
or else immediately upon 
infection, whichever occurs 
later, and that shed viral particles 
are nonviable beyond 12 days  

Cumulative probabilities for days 
{5,6,7…}={0.054054054,0.094594595,0.12162162,0.148648649, 

0.189189189,0.21621621,0.256756757,1} 

8,9 

Risk threshold Set by public health agency, 
cognizant of limitations in 
current calibration of λ 

Benchmark of 0.5% for probability or infection or 0.13% for 
probability of current or future infectiousness 

This study 
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Supplementary Table 2. Parameter values used by us to calibrate parameter values in Table 1 45 
Parameter Description Distribution or Point Value References 

𝑋𝑋 Exhalation rate (m3/day) Normal(16.3, 4.15), left-truncated at 9 10 
𝐴𝐴 Cross-sectional area of the mouth. 

Used to calculate the breath 
velocity, 𝑈𝑈 from 𝑋𝑋  

Uniform(23, 59) (cm2) 11 

𝐼𝐼𝑦𝑦 “Lateral intensity” of plume 
deviation  

Uniform(0.08, 0.25) 12 

𝐼𝐼𝑧𝑧 “Vertical intensity” of plume 
deviation 

Uniform(0.03, 0.07) 

𝐼𝐼 Inhalation rate (m3/day) Normal(16.3, 4.15), left-truncated at 9 10 
𝜌𝜌 Distance Sampled from attenuation-distance dataset to inform weights.  This study 
φ Angle between the z-axis and the 

xy-plane 
Used while informing weights. If 𝜌𝜌≤ 1m, φ= π/2,If 𝜌𝜌 > 1m,φ 

randomly sampled from Triangular(min= π/4, mode= π/2, 
max= 3π/4) 

1 m. cutoff for face-
to-face interaction 

informed by 13 
θ Angle between x and y axes  Used while informing weights. If 𝜌𝜌≤ 1m, θ = 0,If 𝜌𝜌 > 1m, θ 

randomly sampled from Uniform(0, 2π) 
1 m. cutoff for face-
to-face interaction 

informed by 13 
 46 
 47 

1.0 Experiments on Distance-Attenuation Relationship 48 

Using a developer version of the Covid Watch app, we called the API multiple times with different attenuation 49 
thresholds in order to achieve resolution of 3dB in the 30dB-99dB range. The API appears to round up durations to 50 
5-minute increments, each with its own attenuation value; we consider each of these to be a datapoint. Our tests 51 
were all short, e.g. a 12-minute test would yield 3 datapoints. 52 

There were 7 testers and 14 phones, representing a variety of models, all of iPhones – handset type and orientation 53 
can affect signal.14 49 measurements were taken with specific phone orientations, while for the remaining 986 the 54 
devices were side-by-side and facing upwards if not otherwise specified by the barrier type (e.g. pocket). 203, 222, 55 
199, 374, 17, 20 measurements were at 0.5m., 1m., 1.5m., 2m., 3m., and 5m., respectively. We also used the 28, 28, 56 
29, 27, and 16 zero-risk barrier measurements at 0.5m., 1m., 1.5m., 2m., and “N/A”, respectively. Note that 57 
improvements made in GAEN v1.5 are expected to improve our ability to estimate distance as a function of 58 
attenuation. While useful, we note that new experimental data would be required for recalibration. The imbalanced 59 
nature of the collected data, with few long distance measurements and no Android measurements, reflects the fact 60 
that the decision was made to recommence once v1.5 was available, whose calibration will be both qualitatively and 61 
quantitatively different. 62 
 63 
1163 out of the total 1558 datapoints were used for attenuation weight and attenuation threshold setting, with 64 
exclusions of data described in Figure S1. The 1163 non-excluded datapoints are supplied in Supplementary Dataset 65 
1. Of the included 1035 attenuation measures that involved infection risk, 747 did not include a deliberate barrier, 66 
while 288 includes barriers such as pockets, backpacks, nearby laptop, and human body. 925 measures were taken 67 
inside homes, 49 were taken inside an elevator, and 61 outside.  68 
 69 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.07.17.20156539doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156539
http://creativecommons.org/licenses/by/4.0/


 
   
 

5 
 

 70 

Figure S1. Attenuation data cleaning 71 

*A few attenuation values were implausibly low, always representing one such increment per device per series of 72 
attenuation values corresponding to a single test. We believe this is because these testers used the dropdown menu to 73 
turn off Bluetooth rather than going to Settings, and this only disables existing Bluetooth connections, causing an 74 
anomalously strong signal to be recorded during the period in which the test was being set up. We manually 75 
annotated these, totaling 144 datapoints, and excluded them from further analysis, yielding 1414 datapoints.  76 

**Distance is not needed for the 128 datapoints taken in the presence of a risk-blocking barrier (e.g. closed car doors 77 
or walls), so points marking “N/A” for distance were not excluded for any of these. 78 

 79 
 80 
 81 
To rebalance the distance measurements, we created a pseudo-dataset with different multiples of the data collected 82 
at each of the distances. To inform the desired distribution of distances, we analyzed the time-weighted pairwise 83 
distance in traffic flow simulations of a classroom.15 These indicate a roughly uniform distribution over possible 84 
distances, with a reduction in close contact due to attempts to adhere to social distancing rules. Since close contact 85 
might be more common in other settings, and distances beyond 5m. can also register Bluetooth signal, we made 5, 5, 86 
6, 3, 132, and 168 copies of the non-zero-risk data at distances of 0.5m., 1m., 1.5m., 2m., 3m., and 5m, respectively, 87 
yielding a data ratio of 1015 : 1100 : 1194 : 1122 : 2244 : 3360 (as a rough approximation of a target ratio of 88 
1:1:1:1:2:3) prior to the sampling described below. To this, we added 4 copies of the zero-risk barrier measurements, 89 
so that they made up 4.85% of the total pseudo-dataset.  90 
 91 
Our calibration code holds shedding rate and exposure duration constant at 50 arbitrary units/m3 and 30 minutes, in 92 
order to isolate the effect of distance on differences in dose between attenuation buckets. 93 
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2.0 Estimation of Exposure Concentrations 94 
 95 
It is well-acknowledged that both distance from an infected individual and duration of “close proximity 96 
interactions”16 are important parameters in estimating the probability of infection of those exposed.17–20 However, 97 
there is little quantitative information about the relationship between distance and risk of infection. Chu et al. 98 
(2020)18 quantified risk in terms of answers to binary survey questions about whether the respondent came within 99 
distance X of an infected person. They found that the value of the threshold distance X in the survey question 100 
predicts the degree to which the answer predicts risk, but this relationship cannot easily be converted into one 101 
between actual distance and risk.  102 
 103 
For this reason, we instead model the dose inhaled at different distances. Exhaled breath is a likely source of 104 
infection.21,22 Accordingly, we model a Gaussian plume23 of virus-containing aerosols originating from the emitter’s 105 
face at (0,0,0). The x axis represents the direction that the transmitter is facing and breathing toward with breath 106 
velocity 𝑈𝑈 (m/s). Diffusion causes spread away from y=0 or z=0. The viral concentration is then 107 
 108 

𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑄𝑄
𝑈𝑈

1
2𝜋𝜋𝜋𝜋𝑦𝑦𝜎𝜎𝑧𝑧

𝑒𝑒
−𝑦𝑦2

2𝜎𝜎𝑦𝑦2𝑒𝑒
−𝑧𝑧2

2𝜎𝜎𝑧𝑧2    (1) 109 
 110 

𝑄𝑄 = 𝑆𝑆𝑆𝑆                 (1.1) 111 
 112 
𝑈𝑈 = 𝑋𝑋/𝐴𝐴    (1.2) 113 

 114 
where 𝑄𝑄 is virus emitted per second and is equal to the product of shedding rate, 𝑆𝑆, (in arbitrary units proportional to 115 
copies/m3) and an exhalation rate, 𝑋𝑋, (taken from measured inhalation rates in m3/s), yielding arbitrary units 116 
proportional to copies per second being generated (eq 1.1). We sample our exhalation rates from a normal 117 
distribution of inhalation rates with a mean and standard deviation of 16.3 and 4.15 m3/day, respectively. These were 118 
informed by the 16-21 year old range from Table 6-1 in the Exposure Factors Handbook (2011).10 To avoid negative 119 
exhalation rates, this distribution was left-truncated at 9 m3/day, the smallest fifth percentile of inhalation rates for 120 
males and females in age ranges overlapping with the 16-21 year old range.10 The velocity of breath 𝑈𝑈 (m/s) was 121 
determined by dividing the exhalation rate (m3/s) by the cross-sectional area of an open mouth 𝐴𝐴 (m2), which is the 122 
area over which air is assumed to be exhaled at the plume source. The cross-sectional area was informed by a 123 
uniform distribution with minimum and maximum cross-sectional areas measured for an open mouth with a “large 124 
bite” configuration, ranging from 23 to 59 cm2.11 Note that for a steady-state plume assuming a continuous output of 125 
virus, the effects of the exhalation rate (volume of air per second) on amount of virus emitted, and on the velocity 126 
with which they disperse, cancel out. For an abrupt exhalation such as a cough, rather than steady state, a higher 127 
exhalation rate would affect viral airborne concentration. 128 
 129 
For interactions ≤ 1m, we assumed two people interacting are directly in front of each other along the x-axis (φ = π 130 
/2, θ=0). For interactions beyond the close range (>1m), we sample θ from a uniform 360 degrees (min=0, max=2π), 131 
and the angle between the z axis and the xy-plane, φ, was randomly sampled from a triangular distribution (min=π/4, 132 
mode=π/2, max=3π/4). We then convert from spherical units to (x,y,z) to apply Eq. 1. We assumed that scenarios 133 
where the person exposed was behind the emitter (x<0) resulted in a zero dose. 134 
 135 
To capture the shape of the plume, we use:  136 
 137 

𝜎𝜎𝑦𝑦 = 𝐼𝐼𝑦𝑦𝑥𝑥    (2) 138 
 139 
𝜎𝜎𝑧𝑧 = 𝐼𝐼𝑧𝑧𝑥𝑥     (3) 140 

 141 
Assuming moderately stable conditions, 𝐼𝐼𝑦𝑦  and 𝐼𝐼𝑧𝑧 were randomly sampled from uniform distributions with 142 
minimums and maximums of 0.08-0.25 and 0.03-0.07, respectively.12  143 
 144 
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We note that inhalation and exhalation rates are both likely important to risk. For example, one infected dance 145 
instructor spread COVID-19 to 7/26 other instructors at a four hour workshop,24 representing a similar risk as for 146 
household contacts, despite the presumption that most were at >2 m. distance for most of this time. Limited air 147 
circulation or increased respiratory rates are important factors that cannot be captured in the current GAEN 148 
approach, but the four-hour duration of the workshop could be, combined with considerable uncertainty in the 149 
relationship between Bluetooth attenuation and distance, in order to correctly capture the high risk of such a 150 
scenario. 151 
 152 
While wind velocity and relative humidity are important factors for determining droplet and fine aerosol dispersion 153 
and deposition,25,26 as is mask usage, these are uncertain factors that are not recorded by the app, especially 154 
considering that interactions may occur indoors or outdoors. By not accounting for deposition, and by assuming that 155 
masks are either not worn or not worn effectively, we will tend to overestimate dose at greater distances, and in the 156 
presence of masks. This will implicitly lower the app-imposed risk tolerance of individuals who comply with public 157 
health guidelines that recommend masks and physical distancing, and who might therefore also be more inclined to 158 
comply with quarantine recommendations. The 2-meter rule was based on the assumption that most transmission is 159 
via droplets (large aerosols) for which deposition occurs over this distance. However, there is increasing evidence 160 
for transmission via smaller aerosols,27–31 supporting our assignment of some risk to greater distances, reflecting 161 
short- to medium-distance airborne transmission. 162 
 163 

3.0 Inhalation Dose per Interaction 164 
 165 
An inhaled dose of viral particles due to person-to-person interactions was estimated based on the duration of the 166 
interaction (minutes) (𝑇𝑇), the concentration of virus in the air at this {x,y,z} coordinate during the interaction 167 
(arbitrary units of viral particles/m3) 𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧), and inhalation rates (m3/minute) (𝐼𝐼),  168 
 169 

𝐷𝐷 = 𝑇𝑇 ∙ 𝐼𝐼 ∙ 𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧)                    (4) 170 
 171 
Inhalation rates were randomly sampled from the same distribution as exhalation rates but allowing for a different 172 
value per iteration. As with exhalation rates, we left-truncated the distribution to avoid negative inhalation rates and 173 
therefore negative doses. Figure 2 shows the expected dose as a function of distance, with a discontinuity at 1m. 174 
arising from our assumption that this distance or below indicates face-to-face interaction. 175 

4.0 Setting attenuation bin thresholds and corresponding weights 176 
 177 

To select the threshold values (a, b) demarcating 3 attenuation bins, we optimized the differences in mean dose 178 
between two randomly sampled attenuation measurements. Specifically, we maximized the value of  179 
 180 

𝑑𝑑(𝑎𝑎, 𝑏𝑏) = �2𝑝𝑝𝐴𝐴𝑝𝑝𝐵𝐵(𝐴𝐴 − 𝐵𝐵)2 + 2𝑝𝑝𝐵𝐵𝑝𝑝𝐶𝐶(𝐵𝐵 − 𝐶𝐶)2 + 2𝑝𝑝𝐴𝐴𝑝𝑝𝐶𝐶(𝐶𝐶 − 𝐴𝐴)2 181 
 182 
where 𝐴𝐴,𝐵𝐵 and 𝐶𝐶 are the average doses 𝐷𝐷 from Eq. 4, averaged across Monte Carlo sampling described above, 183 
corresponding to bins [0, a], (a, b], and (b, +), and 𝑝𝑝𝐴𝐴, 𝑝𝑝𝐵𝐵, and 𝑝𝑝𝐶𝐶  are the probabilities that an attenuation will fall 184 
within that bin in our pseudo dataset. 185 
 186 
We examined multiple local maxima of this distance measure before choosing a partition pair. We also investigated 187 
alternative versions of a distance metric and alternative rebalancing schemes, to confirm that this is a relatively 188 
robust partition pair.  189 
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5.0 Probability of Current or Future Infectiousness  190 
 191 
To calculate residual risk of infection as a function of initial risk plus time since exposure, we use the probability 192 
distribution of incubation periods from Lauer et al.7, available at 193 
https://iddynamics.jhsph.edu/apps/shiny/activemonitr/. Note that it is possible that incubation periods are even more 194 
dispersed than reported here32; this would lengthen quarantine recommendations.  195 
 196 
To calculate risk of current or future infectiousness, we assume a fraction of symptomatic vs. asymptomatic cases 197 
and take an average of the discount factors applying in each case. Across a population, 20% of infections are 198 
estimated to be asymptomatic.34 Younger users are more likely to be asymptomatic33, so the fraction of 199 
asymptomatic cases could be personalized on the basis of user age if that information is collected on a voluntary 200 
basis. For the symptomatic cases, we discount according to the probability of subsequently developing symptoms, 201 
given that symptoms have not appeared yet.  202 
 203 
For the asymptomatic cases, we combine the incubation periods from Lauer et al.7 with a distribution of shedding 204 
durations. Long et al.8 report slightly longer shedding durations for asymptomatic than symptomatic shedding, but 205 
other studies34–38 for which we were unable to obtain the data, report the opposite, or no difference. Shedding 206 
declines in magnitude post symptom onset and is considered by the CDC to have reached negligible levels by 10 207 
days post symptom onset. We assume that asymptomatic shedding begins 3 days before what would have been the 208 
day of symptom onset if symptomatic, or else immediately upon infection, whichever occurs later.  209 
 210 
Using this assumption, we calculated the probability distribution of the day that shedding ends, given both the 211 
distribution of incubation periods and a distribution of shedding durations. For the latter, we combine the 212 
asymptomatic and symptomatic shedding durations of Long et al. but on the basis of CDC advice for isolation, we 213 
truncate the distribution so that all shedding periods longer than 12 days are recorded as exactly 12 days.  214 
 215 
Note that low dose exposures, e.g. to asymptomatic individuals, may result in longer incubation periods,32 216 
suggesting that low initial risk scores should have longer rather than the shorter quarantines we calculate using this 217 
method. We currently ignore this by assuming that risk scores primarily capture uncertainty in the likelihood of 218 
infection with a minimal dose, and not variation in the infecting dose once above the minimal. To see how this 219 
assumption arises from our model, note that the exponential dose-response curve we use assumes that each virus has 220 
an independent probability of initiating infection. Under the resulting Poisson distribution for the number of viruses 221 
responsible for the initial infection, then even for the 30% infection rate of household contacts, the probability that 222 
infection is initiated with two or more viruses is only 5%, and with three or more viruses is only 0.6%. However, the 223 
higher variance in dose explored in Figure S2 could make initiation with multiple viruses common enough to matter 224 
for high infection probabilities. In this case, our simplifying assumption might require overly long quarantines 225 
following very high risk exposures. However, unless the variance is extreme, it might not significantly distort 226 
estimated probabilities among the range of lower risk exposures. We note that lognormal distributions of incubation 227 
periods with substantial variance occur even in the absence of variation in dose, due both to variance in within-host 228 
replication rate and to the stochastics of establishing infection in the first cells.39 229 

6.0 Negative Test Results and Recommending a Day for Testing 230 
 231 
Incorporation of negative test results can help exclude asymptomatic infection and hence allow for earlier release. 232 
From Bayes Theorem, and taking the false positive rate as negligible, a negative test result changes the probability 233 
of infection from 𝑝𝑝 to 𝐸𝐸𝐸𝐸

(1−(1−𝐸𝐸)𝑝𝑝)
, where 𝐸𝐸 is the false negative rate. This could be taken as 0.3 40,41 or made 234 

dependent on the timing of the test relative to exposure,42 which would require distinct application to each of 235 
multiple exposures. 236 
 237 
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Kucirka et al.42 report a false negative rate as a function of the timing of a PCR test relative to symptom onset, but 238 
most of the data is post-symptom onset, with only a single patient’s data informing false positive rates prior to 239 
symptom onset. If sufficient data on false negative rates pre-symptom onset became available on a larger number of 240 
patients, it could be combined with the distribution of incubation periods to calculate the false negative rate as a 241 
function of time since exposure. Before use as 𝐸𝐸 in Bayes Theorem above, it can be adjusted in a form of 242 
survivorship analysis; if testing is conditional on no symptoms to date, then the ratio of pre-symptomatic : 243 
asymptomatic individuals in the reference group will depend on time since exposure. Time-dependent false negative 244 
rates could then be used to recommend an optimal day for testing. For example, we could choose the days on which 245 
the probability of obtaining positive test results is highest.  246 
 247 
We calculated this probability as the sensitivity on that day × the conditional probability of infection on that day 248 
given no symptoms to date. Given exposures on multiple days, the sum of this product can be computed to choose a 249 
date for testing. Alternative criteria for optimization could also be devised, e.g. explicitly prioritizing highly exposed 250 
individuals whose calculated quarantine in the absence of a test would exceed 14 days, or assigning a value to 251 
testing immediately after quarantine begins, in the service of rapid tracing of that individual’s contacts should they 252 
test positive. 253 

7.0 Multiple Exposures and Total Risk 254 
 255 
GAEN v1.1 will not record either a single long exposure or multiple exposures from a single individual beyond the 256 
30 minutes cap for each of three attenuation bins, although this has changed in v1.5. However, it will record 257 
exposures happening on different days (considered to change at midnight UTC) as independent exposures. To 258 
calculate total risk, we combine the probabilities 𝑝𝑝𝑖𝑖  of each exposure 𝑖𝑖, each discounted as described in the section 259 
above, as 1 −∏ (1 − 𝑝𝑝𝑖𝑖)𝑖𝑖 .  260 
 261 
Figures 3 and 4 illustrate scenarios of a single exposure. When there are multiple exposures, quarantine durations are 262 
determined with respect to total risk. The risk threshold for initiation and completion of quarantine are the same. In 263 
other words, risk is treated in an internally consistent fashion to achieve the maximum possible benefit from a given 264 
number of recommended quarantine days across a population. When fixed quarantine durations are used, exposure 265 
must be significant on a single day, from which the 14 days are then calculated, and risks are not integrated across 266 
multiple days.  267 

8.0 Variance in Dose 268 
 269 
Our dose response curve is actually the probability of infection as a function of the expectation of dose, rather than 270 
dose. To consider the effect of variance in dose, we note that while 𝐸𝐸�1 − 𝑒𝑒−𝜆𝜆𝜆𝜆� is analytically intractable with 271 
respect to a lognormally distributed dose, there is a viable saddle point approximation described by Rojas-272 
Nandayapa (2008) While Eq. 5.6 in Rojas-Nandayapa contains a typo, we use the method given to derive 273 
 274 
1 − 𝐸𝐸�𝑒𝑒−𝜆𝜆𝜆𝜆� = 1 − � 1

�1+𝐿𝐿𝐿𝐿(𝜃𝜃𝜎𝜎2𝑒𝑒µ)
𝑒𝑒𝑒𝑒𝑒𝑒 �𝐿𝐿𝑊𝑊

2�𝜃𝜃𝜎𝜎2𝑒𝑒µ�+2𝐿𝐿𝐿𝐿�𝜃𝜃𝜎𝜎2𝑒𝑒µ�
2𝜎𝜎2

��,    (6) 275 
 276 
where 𝐿𝐿𝐿𝐿(𝑥𝑥) is the Lambert-W function.  277 
 278 
Using this approximation, or the associated importance sampling method (Asmussen et al., 2016) which yields 279 
similar results, we can compare the shape for the dose response curves and consider whether an “effective” 𝜆𝜆 will 280 
perform acceptably. Ct counts in Long et al. (2020) have a standard deviation ~4, representing an upper bound of a 281 
16-fold difference in viral load, because a difference of 1 Ct in PCR measures represents at most a 2-fold difference 282 
in underlying viral load, and because individuals are not sampled at exactly comparable times with respect to the 283 
timecourse of shedding. However, variance in dose from causes other than infectiousness, e.g. the intimacy of 284 
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contact, is not included. With a standard deviation representing a 16-fold difference, we find that by using a value 285 
3/10th of 𝜆𝜆 =  3.50 𝐸𝐸 − 06, we can super-impose the two curves up to 20% infection probability (Figure S2). 286 
 287 

 288 
Figure S2. Although our dose-response curve takes the function of an expectation, for low infection probabilities the 289 
effect of this is to change the interpretation of the value of 𝝀𝝀, which is 3.50 x 10-6 when using Eq. 5 but 0.3 times this 290 
value when using Eq.6 with a distribution of log-dose with standard deviation corresponding to a 16-fold difference 291 
in dose. 292 

9.0 Transmission Risk Levels  293 
 294 
Transmission risk level in the GAEN API is a proxy for the magnitude of viral shedding and can be set by the app 295 
on the basis of a simple questionnaire administered to users reporting a positive diagnosis. We use this to inform 296 
expected shedding 𝑆𝑆. 297 
 298 
The first question we ask to inform transmission risk levels is, "What day did your symptoms start"? A curve fit to 299 
known transmission events suggests peak transmission the day before symptom onset, and essentially no 300 
transmission more than three days before symptom onset.43 However, this might be confounded with behavioral 301 
changes with symptom onset, with ascertainment bias in terms of which transmission events are easiest to document, 302 
with onset of mild symptoms being overlooked and the later onset of more severe symptoms instead being reported, 303 
with possible errors in the direction of transmission given the variability of incubation periods, and with assumptions 304 
regarding the shape of the curve. Worse, the analysis appears to have significant technical flaws.4  305 
 306 
A second source of information is quantitative polymerase chain reaction (PCR). However, this may reflect non-307 
infectious viral remnants, especially late in the course of disease, where the proportion of culture-positive PCR 308 
results tends to decrease.1,2 However, this decline is also expected from a simple dose-response curve, where the 309 
probability of culture-positivity decreases as the amount of shedding decreases late in infection, i.e. the decline in 310 
infectivity might be quantitative rather than qualitative. 311 
 312 
While informed by the two sources of data above, we focus the most on data in which virus was successfully 313 
cultured from patient samples, as a clear indication of infectivity. Arons et al. 2 took prospective samples throughout 314 
a nursing home, and were able to culture virus from six days before symptom onset until nine days after symptom 315 
onset, with little quantitative trend in shedding rate conditional on a positive test. In hospitalized patients, Wölfel et 316 
al. 3 were unable to isolate live virus from cultures more than 8 days post symptom onset, despite PCR evidence of 317 
high shedding. In one case report, live virus has been isolated 18 days after symptom onset, but this seems to be an 318 
outlier.44 Bullard et al. 1 quantified both TCID50 and PCR for 7 days post symptom onset, and saw an approximately 319 
10-fold decline in infectious dose. We note that culture methods may not be sensitive enough to capture low 320 
concentrations.2 We nevertheless use this TCID50 data as motivation in assuming a 10-fold dynamic range in 321 
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shedding rates as a function of day relative to symptom onset. More studies measuring infectivity in a quantitative 322 
manner are needed, particularly in populations that represent a broader base of cases of varying ages and health 323 
status. Encouragingly, our settings based on culture data agreed with those from epidemiological modeling after 324 
corrections to the latter were made.4 We slightly tweaked our settings for pre-symptomatic Transmission Risk 325 
Levels to agree with later epidemiological work.45 326 
 327 
A final source of information comes from detailed Taiwanese contact tracing46, who found a 1.0% symptomatic 328 
attack rate (95% CI 0.6-1.6%) for those exposed within five days of symptom onset, and 0% (95% CI 0–0.4%) for 329 
those exposed after. Risk from exclusively pre-symptomatic exposure was 0.7% (95% CI 0.2%-2.4%). German 330 
contact tracing also points to highest transmission risk around the time of symptom onset.47  331 
 332 
We use 6 of the 8 Transmission Risk Levels in the GAEN API to capture this range, evenly spaced on a log scale 333 
between 10 and 100 in arbitrary units, reserving the use of levels 7 and 8 for individuals for testing purposes and any 334 
future functionality. Transmission risk levels could also be manipulated for testing purposes, e.g. to help learn, if 335 
individuals voluntarily enter exposure details into a manual contact tracing database, how transmission risk varies in 336 
the real world, rather than just in TCID50 studies, as a function of a symptomatic status and time. We note that 337 
Transmission Risk Levels have been deprecated in the announced GAEN v1.5, and replaced with only two possible 338 
levels of infectiousness in v1.6. While the functionality of v1.1 should be preserved, we note that usage of 339 
Transmission Risk Levels would need to be standardized across different apps in order to ensure interoperability. In 340 
the description below, we outline not just our use of v1.1, but also the use we would make of six levels of 341 
infectiousness if they were to again be made available in a future API version. The assignments we use in this 342 
framework can of course be improved as more data become available. Our call for more than two levels of 343 
infectiousness comes from the fact that a systematic 10-fold difference in TCID50 has been observed, and that such 344 
a large difference seems to warrant more levels. 345 
 346 
Based on a holistic reading of the four sources of evidence described above, we assign the maximum level of 6 from 347 
one day pre-symptom onset to two days post-symptom onset. Five days before symptom onset we assign level 1, 348 
four days before we assign level 3, three days before level 4, and two days before level 5. Three days after symptom 349 
onset we assign level 5, four days after level 4, five days after level 3, 6-7 days after level 2, and 8-9 days after level 350 
1. Our termination at 9 days is based on current CDC guidance.9 351 
 352 
For users who report a positive test but no symptoms, there is likely a reason they were tested, and so we ask for the 353 
most likely day of exposure, if known. If provided, we assume that shedding did not begin until two days after 354 
exposure, at the earliest. We also ask for the date of sampling for the positive test (which can be reported by the 355 
healthcare provider rather than the app user) and assume peak shedding at around this time. Subject to the constraint 356 
from day of exposure, we assign Transmission Risk Level 3 to dates within with one day of the test, and level 2 to 357 
dates between 2 and 4 days of the test, although as discussed below, one study reports substantially longer shedding 358 
than these 9 days.8 There is some evidence that viral shedding is lower in asymptomatic vs. symptomatic cases,48 359 
while another study indicates the shedding magnitudes may be similar.49 Note that we assume that those with no 360 
symptoms at the time they receive a positive test result are asymptomatic rather than pre-symptomatic – should test 361 
turnaround times be sufficiently fast, it would be useful for users to be able to report symptom onset after the fact 362 
and trigger a change to previously reported Transmission Risk Levels, and we recommend that this functionality be 363 
added, together with restoring a greater number of Transmission Risk Levels, in future versions of the GAEN 364 
framework. 365 

10.0 Considerations in recommending and messaging variable quarantine durations 366 
 367 
The need for consistent guidance to the public is an important consideration for implementing tailored risk scoring 368 
and modified quarantine recommendations. If for the sake of a consistency, a public health authority is not willing to 369 
authorize variable quarantine recommendations, as is currently the case in Arizona, but only 0 or 14 day quarantines 370 
from time of the last individually significant exposure, then the threshold for going into quarantine at all would need 371 
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to become more strict in order to maintain the same overall risk among the population under quarantine. In other 372 
words, retaining the same average probability of current or future infectiousness among the quarantined population 373 
would require some exposed individuals to no longer go into quarantine at all, in addition to others lengthening their 374 
quarantine out to 14 days. With a binary 0 or 14 day quarantine, the amount by which disease transmission is 375 
prevented per day of quarantine will be lower. 376 
 377 
Alternatively, to avoid mixed messaging regarding quarantine even while the app recommends quarantine of 378 
variable duration, one option is to suppress all details about individual exposures from the user’s view, including 379 
their date. This has the additional advantage of decreasing the risk that users will be able to guess who exposed 380 
them, further preserving privacy.  381 
 382 
The app can communicate the risk of infectiousness either as a simple recommendation for which days to 383 
quarantine, or also as a quantitative score in order to “game-ify” the process of quarantine and give users positive 384 
feedback for each day they succeed in remaining at home until risk falls to a lower level. Further research is needed 385 
to assess the most effective messaging strategies. E.g., the app could display both current and projected risk of 386 
infectiousness on a simple scale of 1 to 10, so users can see how that risk will fall with each day of quarantine. This 387 
visualization might change perceptions. E.g., an individual who wants to comply with a 14-day quarantine, but does 388 
not feel able to, might rush out to get groceries before starting their quarantine in earnest, while shedding virus pre-389 
symptomatically. Visualizing projected risk into the future would then give the message that if the exposed 390 
individual can only make do for one more day before leaving the home for essentials, that will help, because if they 391 
do not develop symptoms, their risk will be lower even after a single day longer. Risk communication in an app 392 
could focus on day to day coaxing of this form.  393 
 394 
Conflicting messages can still arise if manual contact tracers trace an individual who also received an exposure 395 
notification. In this case, it is likely that the two recommend different end dates for quarantine. While this is to be 396 
expected from our procedure for recommending variable quarantine durations, we note that even if the app were to 397 
issue 14 day quarantine recommendations only, it could still arise because the individual has been exposed more 398 
than once, on different days, and the manual contact tracer is following up an infected individual who may not have 399 
used the app. Until there is reliable data on app performance, we recommend that the manual contact tracer’s 400 
protocol should override whatever the app says. Should the app turn out to perform well, an alternative procedure 401 
might eventually be to go with whichever protocol recommends the longer quarantine. An intermediate possibility is 402 
for the manual contact tracer to ask for exposure notification details, to determine whether it may be a different 403 
exposure to the one being manually traced. There may also be conflicts in protocols for the timing of testing. 404 
 405 
Note that with symptom onset sometimes as early as two days after exposure, and given the possibility of pre-406 
symptomatic shedding, and the possibility of confusion regarding who infected whom, we currently ignore the 407 
possibility that shedding might not yet have begun. Current testing turnaround times are mostly long, making this 408 
reasonable. However, if same-day tests become more widely available, our approach could be extended to directly 409 
communicate the risk of current infectiousness, rather than as is currently the case, the risk of current or future 410 
infectiousness. A significantly lower risk of infectiousness will be present on the day of exposure and perhaps also 411 
the day after. Delays in going into public to prepare for a long quarantine could inadvertently lead to pushing 412 
individuals past the latent period before they go into public; displaying a full projected timeline of the projected risk 413 
of infectiousness could avert this, at the risk of significantly more complex messaging than “stay home until Friday”. 414 
 415 
We currently consider the harm from the release of any infectious individual to be equivalent to that from the release 416 
of any other. Extensions of our approach could take into account greater harm from someone never quarantined and 417 
hence shedding for the full duration relative to someone released prematurely partway through asymptomatic or pre-418 
symptomatic shedding, for whom a portion of the harm has already been mitigated. This would lead to steeper 419 
discounting and might also prevent the app from occasionally recommending quarantines of less than 5 days when 420 
initial risk is already very near the threshold.  421 
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