
Predicting inpatient flow at a major hospital
using interpretable analytics

Dimitris Bertsimas1, Jean Pauphilet2, Jennifer Stevens3, Manu Tandon3

1 Operations Research Center, Massachusetts Institute of Technology,
Cambridge, MA

2 London Business School, London
3 Beth Israel Deaconess Medical Center, Boston, MA.

Abstract

Problem definition: Turn raw data from Electronic Health Records into accurate
predictions on patient flows and inform daily decision-making at a major hospital.
Practical Relevance: In a hospital environment under increasing financial and oper-
ational stress, forecasts on patient demand patterns could help match capacity and
demand and improve hospital operations. Methodology: We use data from 63, 432 ad-
missions at a large academic hospital (50.0% female, median age 64 years old, median
length-of-stay 3.12 days). We construct an expertise-driven patient representation on
top of their EHR data and apply a broad class of machine learning methods to pre-
dict several aspects of patient flows. Results: With a unique patient representation,
we estimate short-term discharges, identify long-stay patients, predict discharge des-
tination and anticipate flows in and out of intensive care units with accuracy in the
80%+ range. More importantly, we implement this machine learning pipeline into the
EHR system of the hospital and construct prediction-informed dashboards to support
daily bed placement decisions. Managerial Implications: Our study demonstrates that
interpretable machine learning techniques combined with EHR data can be used to pro-
vide visibility on patient flows. Our approach provides an alternative to deep learning
techniques which is equally accurate, interpretable, frugal in data and computational
power, and production-ready.

1 Introduction

In a hospital environment under increasing financial and operational stress, improvement

in care delivery requires “the utilization of advanced data analytics to [...] forecast pa-

tient demand patterns, and match capacity and demand” (Rutherford et al. 2017). In this

regard, combining patient-level information from Electronic Health Records (EHRs) with
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sophisticated predictive analytics can provide welcome visibility on patient flows and inform

hospital operations. Such is the contribution of the present paper: We build an end-to-end

machine learning pipeline and convert raw clinical data from EHRs into a unique patient

representation. Using this rich set of covariates, we predict operationally relevant outcomes

using interpretable machine learning techniques, thus providing insights and explanations

alongside highly accurate predictions. With practical impact in mind, we fully integrate our

models into the EHR system of a large academic hospital and design user-friendly dashboards

to support daily decision-making.

1.1 Related work

Patient representation Despite the richness and increasing availability of data in health-

care, predictive models are not widely deployed in practice, due to the need to create custom

dataset with specific variables for each predictive task. To address this issue, Nguyen et al.

(2016), Miotto et al. (2016), Rajkomar et al. (2018) proposed automatized patient repre-

sentation strategies which analyze EHRs and construct relevant features in an unsupervised

way using autoencoder neural networks. Since these approaches do not require an expert

to manually define features, they are allegedly more scalable. Surprisingly, however, and

to the best of our knowledge, none of these approaches has been integrated within an EHR

system of a real-world hospital despite their excellent predictive power on retrospective stud-

ies, including the most recent one (Rajkomar et al. 2018). In our opinion, they undermined

three major implementation bottlenecks. First of all, the black-box nature of deep learning

models impedes adoption from doctors and caregivers which are not engaged in the modeling

process. Automation alone does not guarantee scalable implementation. In our experience,

involving stakeholders at each point in the process is instrumental in building trust between

clinical and analytical teams and deploying the predictive models in production. Secondly,

deep learning approaches are extremely expensive in terms of data, human and computing re-

sources, and environmental costs (Strubell et al. 2019). Finally, convolutional and recurrent
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neural network are excellent at handling unstructured data such as medical notes. However,

in practice, notes are rarely available in real-time and raise data privacy issues, especially

if third-party computational resources are needed. Consequently, we believe they are better

suited for retrospective clinical studies than production-ready real-time analytics.

Patient flow prediction In this work, we focus our attention on inpatients, namely pa-

tients who are admitted at the hospital and occupy a bed in an inpatient unit. For this

population, patient flows can be divided into two categories: flows out of the hospital, i.e.,

discharges, and flows between units of the hospital.

At a hospital level, a collection of work (Kim et al. 2014, Zhu et al. 2015, Luo et al.

2017, McCoy et al. 2018) applied time-series methods to predict daily discharge volume.

At a patient level, predicting discharge is associated with predicting length of stay. Being

a surrogate for negative clinical outcomes as well as operational performance, length of

stay has received a vivid interest in the academic literature, often in combination with

hospital mortality (see Awad et al. 2017, for a comprehensive rewiew). From a clinical

perspective, prolonged length of stay is associated with negative outcomes for the patient,

such as increased infection risks. From an operational perspective, patient discharges drive

bed availability, which is one of the most critical hospital resources. Thus, accurate length

of stay prediction of inpatients could improve care delivery at a patient level, by highlighting

current discharge barriers or identifying complex cases, and at a healthcare facility level,

through improved resource management and planning. Discharge destination, i.e., where

the patient will be discharged to, is another important component of the discharge process.

Indeed, further case management resources should be allocated to patients requesting a bed

in extended care facilities, while high-mortality-risk patients should be detected early on by

the clinicians. We compiled a list of comparable work from the literature in Table 1.

Regarding patient flows between units, the most critical ones are flows to and out of

intensive care units (ICUs), for ICUs are expensive and limited resources needed by the
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Table 1: Condensed literature review. We selected papers which (a) studied similar out-
comes, (b) put emphasis on prediction rather than causation, (c) were published recently.

Reference Scope Predicted outcome Methodology

Tabak et al. (2014) All inpatients Mortality Linear regression
Van Walraven and Forster (2017) All inpatients Discharge volume Survival analysis
McCoy et al. (2018) Hospital level Discharge volume Time series
Rajkomar et al. (2018) All inpatients Mortality, overall LOS > 7 days Deep learning
Safavi et al. (2019) Surgical inpatients Remaining LOS < 1 day Deep learning

most severe patients. Patients who cannot be admitted to an ICU due to congestion have

to be admitted to a general care bed, leading to increased length of stay and readmission

risk (Kim et al. 2016). Congested ICUs also increase waiting time and congestion in the

rest of the hospital such as in the emergency department (Mathews et al. 2018) or regular

inpatient wards (Long and Mathews 2018). Troy and Rosenberg (2009), Angelo et al. (2017)

incorporates estimates of overall demand for ICU into a simulation framework to inform

strategic capacity sizing decisions. In empirical studies, it is not unusual to divide patients

depending on whether they need an ICU or not. However, in practice, a patient’s need varies

along her stay. In this work, we investigate the question of estimating the probability for

each patient to need an ICU bed in the next 24 hours. To the best of our knowledge, this

specific question has not been studied in the literature yet.

1.2 Contributions and structure

Our contributions can be summarized as follows:

• We propose a simple expertise-driven patient representation framework to capture the

state of each inpatient as she stays in the hospital, competitive with the deep learning

approaches recently proposed in the literature (Nguyen et al. 2016, Miotto et al. 2016,

Rajkomar et al. 2018). Compared to previous work, we use a hospital-centric rather

than patient-centric time scale and only leverage features which are reliably available

after admission, on a daily basis. Consequently, we successfully integrate our patient

representation into a real-world EHR system and now process the data of a 600-bed
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hospital daily.

• From this unique set of features, we apply a broad collection of machine learning

techniques to address four length of stay-related tasks: identify same-day and next-day

discharges and predict more-than-7 and more-than-14-day stays. We then investigate

the question of predicting discharge destination among home, home with services,

extended care facility and death. We also predict the probability for a given patient to

need an intensive care bed in the next 24 hours. For all tasks, we match or surpass state-

of-the-art methods, even without using raw medical notes. Ensemble methods are the

most accurate, but linear models and decision trees provide very good predictive power,

together with actionable insights to practitioners thanks to their interpretability.

• While the machine learning methods we apply are not novel, we would like to emphasize

the fact that their practical implementation in a real-world context still raises non-

trivial questions, to which we provide a less theoretical but more pragmatic answer.

For instance, we extensively discuss how to split the data into training and validation

sets (Section 2.5) or how to convert individual risk scores (between 0 and 1) into binary

predictions and hospital-level estimates (Appendix D).

• Our work illustrates that emphasis on modeling and interpretability does not hinder

predictive accuracy nor scalability. On the contrary, the variety of predictive tasks

we cover, together with high level of accuracy, demonstrates that an expertise-driven

patient representation framework can be equally powerful and versatile as neural net-

work approaches. In addition, it leads to more interpretable features, achieves higher

engagement from the clinicians and care providers, and requires less data and compu-

tational resources. As a result, we were able to conduct the project from initial data

exploration to production-level deployment in less than twelve months.

• Finally, we empirically evaluate the operational impact of the deployment of our tool

on hospital operations. In particular, we investigate the impact on patient admissions
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from the Emergency Department. Among others, a difference-in-differences analysis

reveals a 4% reduction (p-value < 0.01) in off-service placements thanks to our machine

learning-informed dashboard.

The rest of the paper is organized as follows: In Section 2, we present the data and

outcomes of interest, describe the patient representation we designed with physicians and

outline our data analysis methodology. In Section 3, we report and compare the predictive

power of five machine learning techniques on retrospective data. More importantly, we

implement our modeling framework and machine learning algorithms into the EHR system

of a large academic medical center. We discuss implementation issues, operational benefits,

and empirical performance in production in Section 4.

2 Data description and methodology

In this section, we describe the data, our patient representation and the machine learning

methodology we applied for our retrospective study.

2.1 Study population

We gather data from the EHRs of inpatients admitted at BIDMC between January 2017 and

August 2018. We excluded patients admitted into psychiatry, obstetrics and newborns, as

well as observation patients who did not stay overnight. The final cohort consists of 63, 432

unique admissions (41, 726 unique patients), whose demographics and relevant variables are

summarized in Table 2. The dataset contains patient demographics, provider orders, ICD10

diagnosis codes from previous and current admissions, medications, blood laboratory values,

vital signs and key scores (e.g., pain scale, mobility score). Institutional review board at

BIDMC approved the study with waiver of informed consent.
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Table 2: Summary statistics for the study population in the training and validation (Jan
2017- Apr 2018) and test (May 2018 - Aug 2018) data set.

Training and validation Test
(n = 50, 467) (n = 12, 965)

Demographics
Age, median (IQR), years 64 (23) 65 (24)
Female sex, no. (%) 25,196 (49.9%) 6,537 (50.4%)
Homeless, no. (%) 54 (0.1%) 7 (0.1%)
Not english speaking, no. (%) 5,066 (10.0%) 1,340 (10.3%)
Body mass index, median (IQR) 27.40 (8.52) 27.40 (8.52)
Pre-existing comorbidities, median (IQR) 0 (5) 0 (6)

Previous hospitalization in the last 6 months, no. (%)
0 hospitalization 33,341 (66.1%) 8,543 (65.9%)
1 hospitalization 8,869 (17.8%) 2,362 (18.2%)
2+ hospitalizations 8,157 (16.2%) 2,060 (15.9%)

Patient type, no. (%)
Inpatient 31,875 (63.2%) 8,179 (63.1%)
Observation 11,926 (23.6%) 3,120 (24.1%)
Same day admission 6,666 (13.2%) 1,666 (12.8%)

Discharge destination, no. (%)
Expired (Death) 1,113 (2.2%) 290 (2.2%)
Extended care facility 9,001 (17.8%) 2,283 (17.6%)
Home 22,672 (44.9%) 5,780 (44.6%)
Home with services 12,590 (24.9%) 3,382 (26.1%)
Missing 5,091 (10.1%) 1,230 (9.5%)

Primary outcomes
LOS, median (IQR), days 3.12 (4.42) 3.12 (4.54)
Overall LOS ≥ 14 days, no. (%) 3,209 (6.4%) 844 (6.5%)
At least 1 night in ICU, no. (%) 8,092 (16.0%) 2,025 (15.6%)

2.2 Modeling and patient representation

Previous approaches (Rajkomar et al. 2018) considered a patient-centric time scale. For each

patient, the clock starts at admission and a prediction can be made in the following 12 or 24

hours. On the contrary, we adopt a hospital-centric time scale, where predictions are made

on a fixed schedule (daily at 11:59pm in our study) for all inpatients. In our view, this fixed

schedule mimics the reality of inpatient management and better captures the periodicity of

hospital operations. We define an observation as the state of a patient at the end of each

day. For instance, if a patient stays for 5 days at the hospital, she generates 5 observations:

one on admission day, one on day 2, and so on. Consequently, the final dataset contains

323, 274 unique observations.
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Based on previous work in the literature and discussions with medical staff, we define

a rich set of 600+ covariates to describe each observation. These covariates capture the

specific condition of the patient (e.g., diagnosis, medications, lab results), her general health

state (e.g., BMI, type of diet, level of activity and autonomy) and socio-economic factors

(e.g., insurance type, marital status). Most variables are counting operations (e.g., number

of blood bank orders submitted in the past day or since admission). For lab results and

vitals, we compute daily average, amplitude and trend. We provide an exhaustive list of the

data sources and features in Appendix A.

From a scalability perspective, we implement this patient representation natively in SQL

so as to easily integrate it into the database infrastructure of the hospital. We are currently

working with a second hospital to replicate our approach and assess the degree of similarities

between database architectures of different EHR systems. In this regard, we hope standard-

ized format for medical data, such as FHIR (Mandel et al. 2016), will disseminate across

institutions and that proprietary systems will become less opaque, for the benefit of the

entire industry.

2.3 Missing data

Most of the data consists of records of events (e.g., record for surgeries, medical orders,

medications) and therefore can not be missing. Some variables, such as homelessness indi-

cator, are mostly missing and equal to “Yes” otherwise, so we consider missing as its own

category ( “No” in this case). For each patient, lab results and vital signs are imputed using

linear interpolation when possible, given their times series nature. Finally, we impute the

remaining missing values using an optimization-based imputation method (Bertsimas et al.

2018).

For production deployment, we favor tree-based methods for they can handle missing

data by applying conditional mode imputation: At each split, a rule is applied to decide

whether to go on the right or left side of the tree. If information required to compute
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the rule is missing, one decides to go in the direction where the majority of the training

observations went. For instance, at Leaf 1 in Figure 2, a prediction is made based on the

value of the daily platelet level of the patient. Conditionally on being in that part of the tree,

we historically observed 89 patients with platelet level lower than 200.5, and 109 patients

with higher platelet levels. Without any information on the platelet level for a particular

patient, we will then assume her platelet level is higher than 200.5, as for the majority of

past patients.

Note that, apart from regression, all methods in our study are tree-based methods. How-

ever, while CART (Breiman et al. 1984) and Optimal Trees produce (Bertsimas and Dunn

2017) a single decision tree, gradient boosted trees (Friedman 2001) and random forest

(Breiman 2001) combine predictions from multiple trees, hence losing in interpretability.

2.4 Relevant outcomes

We answer four length of stay-related questions. For resource planning purposes, predicting

same-day or next-day discharges provides visibility on future bed availability. Accordingly,

we build models to predict whether the remaining length of stay was less than 1 or 2 days.

From a clinical perspective, it is also useful to identify long-stay patients, i.e., patients whose

overall length of stay exceeds 7 or 14 days. Since early detection of long-stay patients can

be crucial, we build classification models using only the first four days of each admission to

answer those two questions. In other words, if a patient stayed more than four days in

total, only the four observations corresponding to the first four days of the admission are

kept in the training data. As a result, although the predictive models can be applied at any

stage during hospitalization, they are specifically tailored for the beginning of the stay.

We then investigate discharge destination prediction, formulated as a four-class classifi-

cation problem (between Home, Home with services, Extended Care Facility, Death), with

a focus on hospital mortality and extended care facility specifically.

Finally, we predict whether a patient will need an ICU bed in the next 24 hours.
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We would like to highlight the fact that some response variables are subjective and may be

endogenously determined by physicians. Length of stay, in particular, is first and foremost a

result of decisions made by physicians and inefficiencies at the hospital. As a result, machine

learning models should not be used as a recommendation engine. At best, they can learn

how long a patient will stay, accounting for common protocols and current inefficiencies, not

how long she should stay. Yet, predicting these quantities, as subjective as they may be, is

valuable to hospital managers. Indeed, predictive tools provide estimates on the status of

each patient that can then be used as a coordination tool between units, between physicians

and other services at the hospital. In complex systems like hospitals, lack of information

sharing and irregularities in information reporting are responsible for many of the current

inefficiencies, which technologies like machine learning can address.

2.5 Model evaluation and statistical analysis

Patients are split based on their admission date into train (Jan - Dec 2017, 60%), validation

(Jan - Apr 2018, 20%) and test (May - Aug 2018, 20%) sets. Our evaluation process thus

mirrors real-world implementation, where a machine learning model is trained on past data

and later applied to future patients. Consequently, we believe our estimates of out-of-sample

performance are more realistic than with random training, validation, and test sets. In

addition, the common practice of splitting the data at random produces three data sets that

are statistically similar, hence leading to overly optimistic performance assessment (see Riley

2019, and references therein). This distinction ought to be kept in mind when comparing

our performance with other approaches. Models are trained on the train and validation

sets, using the validation set to calibrate hyper parameters and avoid overfitting (holdout

method). We provide some background information and implementation details about the

machine learning algorithms used and their corresponding hyper parameters in Appendix B.

Observations in the train set are weighted according to their class prevalence to account for

unbalanced outcomes. We report accuracy metrics computed on the test set only. We assess
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performance of classification models by calculating the area under the receiver operating

curve (AUC). 1,000 bootstrapped samples were used to calculate 95% confidence intervals.

2.6 Computing resources

Data preprocessing is done on our partner hospital database, natively in SQL. Train and test

of the predictive models are done in Python 3.5.2 and Julia 1.0.1 on a MacBook Pro with 2.5

GHz Intel Core i7 CPU and 16GB of RAM. In other words, our approach is technologically

affordable for the vast majority of medical institutions.

3 Predictive accuracy on retrospective data

In this section, we report and comment on the predictive power of five machine learning

methods. More detailed results are reported in Appendix C.

3.1 Predicting imminent discharges

For operational purposes, identifying imminent discharges helps predict future hospital cen-

sus and bed availability. As in Van Walraven and Forster (2017), we apply a two-stage

procedure: We first train machine learning models to estimate the probability of each patient

being discharged and assess their performance in terms of AUC. To predict daily discharge

volume, we then adjust these probabilities based on the day of the week and sum them over

all patients at the hospital. We detail this two-stage procedure in Appendix D. We also

refer to Appendix D for details on how we convert predicted probabilities - of discharge for

instance - into binary predictions.

With all methods, we detect same-day discharges with very high accuracy (AUC above

80%), with random forest being the most accurate method in our study (95% CI: 0.839-

0.847). As a result, we can predict daily number of discharges with a median absolute error

(MAE) of 6.2 beds only (IQR: 2.8 beds - 14.5 beds), corresponding to an out-of-sample R2
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of 0.841. Using a gradient boosted trees, we predict next-day discharges with an AUC of

0.822 (0.819-0.826).

Comparison with similar studies is always difficult because of different patient population

and accuracy metrics. Yet they provide interesting reference points. For surgical patients

only, Safavi et al. (2019) developed a deep-learning approach which predicted 24-hour dis-

charges with an AUC of 0.840 (± 0.08), which is comparable with the accuracy we reach,

yet on a wider inpatient population. Though on a different inpatient population, their work

surpassed in accuracy the random forest model from Barnes et al. (2016). Recently, Van

Walraven and Forster (2017) use non-parametric models to predict the daily number of hos-

pital discharges with accuracy roughly comparable to ours (median relative error: 1.4%; IQR

-5.5% to 7.1%). McCoy et al. (2018) forecasted discharge volume in two hospitals using time-

series algorithm with a mean absolute error of 11.5 and 11.7 beds respectively (R2 = 0.843

and 0.726 respectively).

3.2 Anticipating long stays

Long stay patients are typically patients with more complex medical or social conditions and

consume a large amount of hospital resources so that identifying them early in their stay

could be extremely beneficial. As in Rajkomar et al. (2018) we identify patients with an

overall length of stay above 7 days. They reported accuracy 24 hours after admission, which

approximately corresponds to prediction after two days at the hospital with our modeling

choice. In our two works, the logistic regression model already performs well: we reach

an AUC of 0.827 (0.820-0.834) after one day and 0.807 (0.798-0.816) after two days, which

was comparable with their adaptation of the logistic model from Liu et al. (2010) (95% CI

0.80 - 0.84). Having implemented a similar linear benchmark, we are thus optimistic about

the comparability of our results. Gradient boosted trees achieves 0.830 (0.822 - 0.837) after

one day, 0.820 (0.816-0.825) overall, which is comparable with their deep learning approach,

without medical notes.
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Table 3: Summary of the results on predicting length of stay (overall and remaining) for
logistic regression (LR), CART decision trees (CART), optimal trees with parallel splits
(OT), random forest (RF) and gradient boosted trees (GBT). MAE = Median Absolute
Error. MRE = Median Relative Error. Full results are reported on Table 12

LR CART OT RF GBT
Classification: remaining length of stay < 1 day

AUC 0.826 0.807 0.810 0.843 0.839
MAE in # daily discharges, no. 8.6 6.0 6.4 6.2 7.8
MRE in # daily discharges, % 8.7 6.0 6.5 5.8 7.6
Out-of-sample R2 0.730 0.868 0.847 0.841 0.804
Classification: remaining length of stay < 2 days

AUC 0.809 0.786 0.790 0.815 0.822
Classification: overall length of stay < 7 days

AUC 0.818 0.775 0.776 0.813 0.820
AUC at day 1 0.827 0.795 0.797 0.828 0.830
AUC at day 2 0.807 0.752 0.752 0.800 0.804
Classification: overall length of stay < 14 days

AUC 0.826 0.777 0.777 0.820 0.794

Similarly, we train models to detect overall length of stay above 14 days, a threshold

more relevant to our partner hospital, and reach a 0.826 AUC (0.820-0.833) using logistic

regression.

3.3 Predicting discharge destination

Discharge destination can sometimes be as important as time-to-discharge itself. As pre-

sented in Table 3, we are able to accurately classify patients between the four potential

discharge destinations with a weighted AUC around 77% for decision trees and 83% for

ensemble methods.

Two destinations require the utmost attention: Extended care facility, because they

trigger additional case management effort, and death. We build one-versus-all classifiers for

those destinations specifically and reach an AUC of 0.855 (0.852-0.858) and 0.962 (0.959-

0.964) respectively.

For extended care facility, the AUC after the first two days is already above 85%, which

would enable anticipating administrative bottlenecks early in the stay.
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Table 4: Summary of the results on predicting discharge destination for logistic regression
(LR), CART decision trees (CART), optimal trees with parallel splits (OT), random forest
(RF) and gradient boosted trees (GBT). Full results are reported on Table 13

LR CART OT RF GBT
Discharge Destination

Weighted AUC 0.561 0.781 0.769 0.837 0.837
Mortality (with DNR indicator)

AUC 0.934 0.946 0.940 0.962 0.951
Mortality (without DNR indicator)

AUC 0.855 0.836 0.838 0.905 0.848
Extended Care Facility

AUC 0.832 0.804 0.800 0.850 0.855
AUC at day 1 0.858 0.81 0.805 0.869 0.873
AUC at day 2 0.846 0.803 0.806 0.861 0.868

For hospital mortality, our approach outperforms previous studies (Tabak et al. 2014)

and even competes with the deep learning model from Rajkomar et al. (2018) (95% CI: 0.92

- 0.96). We notice that the most predictive factor was the presence of a Do Not Resuscitate’

document in the patient’s EHR. One might argue that this feature is too related with the

output of interest to be included in the model. To this end, we also train models which did

not include this variable and still demonstrate around 90% AUC.

3.4 Predicting intensive care need

Finally, the vast majority of patient flows between units corresponds to a change in level

of care, that is flows into or out of intensive care units. Accordingly, we predict whether

a patient will need ICU in the next 24 hours. As reported in Table 5, we reach an overall

AUC above 95% with all methods. This high degree of predictability is due to the presence

of standardized protocols which make some patient trajectories more deterministic. For

instance, cardiac surgical patients are often admitted to an ICU after surgery.
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Table 5: Out-of-sample AUC for predicting ICU need using logistic regression (LR), CART
decision trees (CART), optimal trees with parallel splits (OT), random forest (RF) and
gradient boosted trees (GBT).

LR CART OT RF GBT
Need ICU in the next 24 hours

AUC 0.972 0.968 0.968 0.976 0.977
(95% CI) (0.97-0.974) (0.965-0.97) (0.965-0.971) (0.974-0.978) (0.975-0.979)

3.5 Discussion and limitations

As far as predictive accuracy is concerned, ensemble methods, namely random forest and

gradient boosted trees, are the best performing methods. Yet, simple linear regression is

already within 4% from the best performing method. Predicting long stays seemed notably

harder than predicting imminent discharges, which could be explained by the fact that

patients need to reach fairly standardized milestones in order to be discharged while complex

cases are a very diverse population.

In our opinion, the value of machine learning is to be found elsewhere than plain accu-

racy. Linear regression and ensemble methods, like neural networks, can only provide a list

of variables ranked by their relative importance. For instance, Table 6 presents the five most

important variables for predicting whether the overall length of stay will be above 7 days

using a random forest. Table 11 in Appendix C reports a detailed analysis (with coefficient

estimates and robust standard errors) of a linear logistic regression model for predicting

same-day discharges. In particular, this information is not patient-specific and does not cap-

ture non-linear effects. Decision trees, on the other hand, explicit the underlying mechanisms

guiding the prediction, while demonstrating satisfactory accuracy. For each patient, a tree

provides not only a prediction, but also the path leading to that prediction, which informs

both statistical modeling and the care provider: Figure 1 displays the optimal tree predicting

hospital mortality with a 0.942 AUC. From this tree, we were able to pinpoint the major

predictive power of the Do Not Resuscitate variable and question the use of this variable in

our final model. On a similar note, Figure 2 displays particular leaves of the tree predicting
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Table 6: Top 5 variables selected by the random forest classifier for predicting whether a
patient will stay more than 7 days on overall.

Rank Variable Description

1 orders count cum Number of orders placed since admission
2 lab orders Number of lab orders placed in the last 24 hours
3 mars count Number of MARS documentation written in the last 24 hours
4 abn b Number of abnormal blood results received in the last 24 hours
5 orders types cum Number of unique order types placed since admission

long-stay patients, highlighting some clinical (low platelet level, high systolic blood pres-

sure) as well as operational (low discharge volume on Friday-Sunday) barriers to discharge.

Of course, those leaves are only valid considering the whole path which leads to them, so

conclusions based on those observations should not be drawn too quickly. Interpretability is

also a useful tool to avoid bias (Gianfrancesco et al. 2018).

Our study has several limitations. For now, our analysis is single-center only and we are

working with a second hospital to adapt and validate the benefits of our approach. Second,

any statistical model is only as good as the data it is trained on. Consequently, when

predicting time-to-discharge, our models incorporate operational inefficiencies. In presence

of undesirable readmissions or administrative delays, it is unclear whether length of stay

alone is a relevant outcome to consider. Yet, from an operation standpoint, length of stay

remains a key metric and interpretability of the models allow clinicians to read predictions

with a pinch of salt. In addition, our approach brings a valuable piece to the overall length

of stay vs. readmission risk trade-off. Thirdly, operational deployment of machine learning

methods on EHR data requires advanced electronical data collection and management, and

reduces the scope of usable information, such as medical notes.

4 Deployment in production

In this section, we present how we implement our machine learning pipeline into the EHR

system of the hospital and integrate our predictions in daily decision-making. We also report

out-of-sample performance in production and discuss practical implementation issues such
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Figure 1: Decision tree predicting inpatient mortalityThe method identifies 6 relevant vari-
ables. dnr ind: Indicates whether the patient signed a Do Not Resuscitate form (Y/N)
orders count cum: Number of medical orders placed for the patient since admission. abn b:
Number of abnormal blood tests received within the past 24 hours. hosp svc: Hospital
service the patient is in. days inicu: Number of days spent in the ICU since admission.
bilirubin measured: Indicates whether bilirubin level is measured (0: not measured, 1:
measured and normal level, 2: measured and abnormal level). 
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Figure 2: Look-up at a decision tree for predicting whether a patient will stay more than
7 days on overall. Class 0 corresponds to long stays, while class 1 corresponds to less-
than-7-day stays. Leaf 1 suggests that patients with low platelet level (platelet level

< 200.5 k/µL) experience longer stays. Leaf 2 identifies patients with higher-than-normal
systolic blood pressure (sys bp last > 123.4mmHg) as more likely to experience long
stays. Leaf 3 confirms that end of the week (when day of the week is Friday, Saturday or
Sunday) is less prone to discharges.
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as model decalibration and retraining.

4.1 Implementation bottlenecks

Besides predictive power, our work demonstrates the value of careful modeling and inter-

pretability. Rajkomar et al. (2018) proposed a generic data processing pipeline to alleviate

the burden of data cleaning and modeling, which they consider as the major implementation

bottleneck. Our experience has been different.

Their pipeline, though viable for a retrospective study, requires immoderate computing

power and daily available medical notes. We show that, even without text notes, a tailored

modeling can incorporate clinical expertise from physicians, nurses and case managers to

reach comparable performance and increased engagement. Since our model updates pre-

dictions on a fixed schedule (every day at 11:59 pm), it can easily be synchronized with

operations on the floors (shifts, doctor rounds) as well as with the IT schedule for data

backups and updates.

Furthermore, as opposed to tree-based methods, deep learning approaches are not inter-

pretable by design. Rajkomar et al. (2018) use attribution methods to highlight the elements

from a patient’s EHR which impacted prediction. This visualization procedure required re-

training a model on a restricted version of the data, so the depicted model differs from the

one making the predictions. On the contrary, decision trees are easy to understand, even

by medical staff who are not trained in machine learning. Actually, the hospital only im-

plemented models based on a single decision tree (CART or OT)1 for they did not view

the gain in accuracy worth the loss in interpretability. However, single-decision-tree meth-

ods are notoriously unstable to perturbations in the data, due to the discrete nature of the

splits. Such instability can seriously question their interpretability appeal in practice. To

assess robustness and stability of the trees produced, we follow the approach of Zimmermann

(2008). Namely, we conduct a 10-fold cross validation and compare the depth of the trees

1For ease of implementation and user-friendliness of the commercial package, we used OT trees over
CART in the actual implementation.
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Figure 3: Average depth of the tree selected over 10 random training/validation splits of the
data, as the size of the data set (in month) increases. Error bars correspond to ± 1 standard
deviation. The prediction task considered is next day discharges, rLOS < 1 day.

obtained on each fold. A method can be called stable if the best depth selected on each fold

independently remains constant. As depicted on Figure 3, as the size of the data increases,

the method stabilizes: namely the average best depth selected on each fold stabilizes around

5.5 with 6 months of data and more, and the dispersion around the mean shrinks and de-

creases from 3.7 with 3 months of data down to 0.7 with 6+ months. Consequently, with 16

months of data in the training and validation sets, we are confident in the robustness of the

trees obtained in this manner. Yet, we acknowledge the fact that other hyper parameters

or semantic stability could be used to quantify stability of decision trees (see Mirzamomen

and Kangavari 2017, and references therein). Trading-off stability and interpretability of

decision trees remains an active and practically relevant area of research (Last et al. 2002,

Mirzamomen and Kangavari 2017, Wang et al. 2018).

4.2 Machine learning-enhanced dashboards

Once machine learning models are deployed in production in the EHR system, we build

interactive dashboards to communicate the output of the model to practitioners.

We work with the office of bed management and design a dashboard where all the hospital
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Figure 4: Screenshot of the capacity prediction tool built for the office of bed management.
The dashboard displays a list of all the hospital wards with census level, expected number
of discharges and expected number of ICU patients by the end of the day.

wards are listed alongside the census level and estimates for daily discharges and ICU patients

(Figure 4). This information is available every morning at 7 am. This is a critical time for

patient flow management because bed requests from the emergency department accumulate

during the night and most of the discharges will happen only later in the day. With this

decision-support tool, practitioners have visibility on the discharge level to be expected for

the day and make informed bed assignment decisions. Figure 5 compares the predicted and

observed discharge volume in the Summer 2018 (end of the test set) and illustrates how

accurately our tool can be used to anticipate daily discharge patterns.
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Figure 5: Comparison of actual and predicted discharge volume between mid-May 2018 and
mid-July 2018.

4.3 Operational impact

In this section, we design and conduct an experiment to assess the operational impact of the

tools we develop as rigorously as possible. Since our models are predictive only, we are not

making any precise recommendation and do not translate predictions into precise guidelines

on how to improve patient flows. Instead, we are relying on the assumption that practitioners

will make better informed, hence better decisions. We confront this assumption here with

empirical evidence from our partner hospital and its operations with and without our tool.

We deploy the decision-support tool in May-June 2019. On 15 out of those 42 days

(weekends and holidays excluded), the nurse in charge of the office of bed management used

the tool and reported its prediction, alongside estimates obtained from individually asking

resource nurses for predictions on their respective floor. For these 15 days, we can compare

the accuracy of our model with the estimates obtained from the resource nurses, on predicting

overall discharge volume. Results are presented in Table 7. Machine learning models provide

estimates that are significantly more accurate than resource nurses (median relative error of

11.5 vs. 16%). However, the error level achieved by optimal classification trees (11.5%) are

noticeably higher than the levels reported in our retrospective study in Section 3, Table 3

(6%). This under-performance is due to decalibration of the model over time and can be
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fixed by retraining the model regularly on more recent data. We investigate this procedure

further in the next section. In addition to accuracy, machine learning models are easier and

more consistent than resource nurses. Indeed, collecting estimates from nurses require time

to manually inquire each of them, an effort that bed management officers usually do not

have time to do. In addition, nurses report predicted discharge volume as intervals2 whose

width greatly vary based on their individual experience. On that regard, practitioners value

quantitative models for their predictability and constant behavior.

Table 7: Predictive error of the machine learning models vs. resource nurses on hospital
discharge volume, during the treated days. Error is measured in terms of relative error
compared with actual discharge volume

Method 1st quartile Median 3rd quartile

Resource nurses 5.3% 16.0% 20.3%
ML model (OCT) 8.9% 11.5% 13.3%

Regarding operational metrics, we analyze boarding of patients from the Emergency

Department (ED) to the main hospital. We focus on the management of ED patients for

their are the priority of the office of bed management, who is in charge of placing these

patients into inpatients units and who constitutes our targeted end-user. In particular, we

are interested in improvements in terms of boarding delays, i.e., the time a patient waits

between request for an inpatient bed and admission to an inpatient ward, and off-service

placement, i.e., whether the patient is admitted to a unit corresponding to the medical

specialty she needs.

To assess the impact of our approach, we perform a difference-in-differences analysis (see

Lechner et al. 2011, for a review): We compare daily boarding of ED patients in April 2019

(before the introduction of the dashboard) with July 2019 (after intervention). However,

difference in these metrics between April and July 2019 could be due to monthly seasonality.

To account for this limitation, we use 2018 data as the control group. More precisely, we

assume that the difference in behavior between April and July would have been similar in

2In Table 7, we compare the output from the machine learning model with the middle of the interval
provided by each nurse.
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2018 and 2019 without the introduction of our solution (parallel trends assumption). In

our regression, we also control for day-of-the-week and hour of the day. We summarize the

output of our difference-in-differences analysis in Table 8. Notably, we observe that our

intervention reduces the proportion of off-service placement by 4% (p-value 0.0095 < 0.01).

Table 8: Difference-in-differences analysis of boarding delays and off-service placement be-
tween April and July 2019. We use April and July 2018 as control data. The variable “2019
indicator” captures the changes in activity between 2018 and 2019, “July indicator” cap-
tures the monthly seasonality between April and July, and “2019 indicator × July indicator”
captures the effect of our intervention. We report estimates for each coefficient (with robust
standard errors) and level of significance.

Boarding delay Off-service placement
Coefficient p-value Coefficient p-value

2019 indicator 0.231 (0.122) < 0.1 0.053 (0.012) < 0.001
July indicator 0.442 (0.115) < 0.001 0.032 (0.011) < 0.01
2019 indicator × July indicator -0.120 (0.174) -0.043 (0.017) < 0.01

Controls: day-of-the-week, hour of the day

Observations: 5, 126

To affranchise our result from the parallel trends assumption, we also conduct a more

granular analysis during the implementation period, i.e., May-June 2019. As previously

mentioned, nurses at the office of bed management reportedly used the dashboard on 15

out of 42 days. We refer to these days as the “treatment group”. Assignment to treatment

was mostly driven by system development and maintenance to improve the dashboard, and

can therefore be considered as independent from hospital’s activity level. However, we ac-

knowledge the fact that nurses might have used the dashboard without reporting (leading

to mislabeling between control and treatment group) and that failure to use/report can be

correlated with hospital’s activity (leading to correlation between treatment assignment and

outcome of interest). We verify that treated and control days are reasonably comparable:

Median number of ED visits in the treated and control group is 159 (IQR: 146.5-167.0) and

154.5 (IQR: 148.2-163.5) respectively; median census is 712 (IQR: 699-721) and 698.5 (IQR:

688.5-717) respectively.

We analyze inpatient admissions from the ED during this period. To account for season-
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ality in patients arrivals and hospital operations, we stratify these 2,117 patients based on

the time when they request for a bed. Specifically, we construct 120 groups based on the day

of the week and hour of the day and exclude 4 groups which contained control patients only.

We compute average response to treatment/control within each group and report summary

statistics of the average treatment effect across strata in Table 9. We consider two outcomes:

boarding delay and off-service placement. For these two metrics, we observe an improvement

in the majority of cases (nonpositive median treatment effect). These observations remain

valid if we consider as “treated” a day where the tool was used and the prediction was rea-

sonably accurate (within 16% of the truth). Such empirical evidence supports our working

assumption: practitioners are most of the time able to leverage more accurate estimates on

hospital discharges to improve patient management. Yet, implementing a predictive analyt-

ics tool in a real-world medical environment over which we have little control makes rigorous

empirical investigation challenging. In particular, assignment to treatment is ultimately up

to nurses on the floor and inherently noisy. Treatment assignment and the limited number

of patients constitute, in our opinion, the main limitation of this empirical validation, com-

pared with the difference-in-differences analysis. Further work in a more controlled setting

could provide a more robust estimate of the benefit from our tool.

Table 9: Operational impact of the adoption of our machine learning-based dashboard on
patient admission in May-June 2019. We compute Average Treatment Effect (ATE) over
116 strata, based on day of the week and hour of the day, for two operational metrics.

Response Median ATE [IQR] P(ATE < 0) P(ATE > 0) E[ATE|ATE < 0] E[ATE|ATE > 0]

Boarding delay (in hours) -0.18 [-2.02 ; 1.21] 55% 45% -2.26 2.36
Off-service placements 0.00 [-0.10; 0.11] 38% 39% -0.15 0.18

Furthermore, we believe that predictive tools could be built on top of such prediction

engines to convert our predictive tool into actionable recommendations, improve patient

management further, and lead to even greater impact.
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Figure 6: Running average (7-day window) of the absolute error in discharge prediction over
a year.

4.4 Model maintenance

Now that machine learning models are deployed in production and inform decision-support

tools, natural questions arise at an organization level on how to maintain and update such

models over time. From an applied machine learning perspective, two questions need to be

answered: how often should the model be retrained? And how does the amount of training

data impact predictive accuracy?

Regarding the first question, we have run the models in production for a year and report

the relative error in daily discharges over time (Figure 6). Empirically, we observe that (a)

the model does not capture well exceptional events such as holidays, as demonstrated by the

high error level around the end-of-the-year holiday season for instance, (b) the relative error

increases roughly by +1 percentage point every three months (b) the error levels are in par

with out-of-sample performance on the test set until December 2018, i.e., 8 months after the

end of the training + validation set.

To assess the “marginal value of data”, that is how increasing the size of the training set

impacts prediction accuracy, we adopt the following methodology: We consider the patients

admitted between January and August 2019 as a test set and we train machine learning
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Figure 7: Running average (7-day window) of the absolute error in discharge prediction over
a year.

models from a training and validation set consisting of m contiguous months ending in

December 2018, where m varied from 1 to 24 (2 years). We report out-of-sample AUC for

a CART decision tree and a random forest model as m increases for same-day discharges

prediction on Figure 7. As expected, predictive power is an increasing and concave function

of the training period size. For this particular task, it seems that around 14 months of

data is needed to reach full accuracy, which luckily coincides with the size of our training +

validation set for our original retrospective study (16 months).

Based on these observations, we advise to our partner hospital to retrain the models

biannually, updating the training data with observations from the past semester while keep-

ing the training period size roughly constant. Naturally, these guidelines are problem- and

institution-specific but these ex-post performance analyses constitute best practices that we

passed on to our partner organization and that are required for any sustainable and effective

analytics strategy.
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5 Conclusion

In this study, we demonstrate how tailored modeling can be used in combination with in-

terpretable machine learning techniques to provide accurate predictions on critical aspects

of patient flows. To the best of our knowledge, our study is first of its kind to (a) address

the length of stay and discharge destination prediction task for such a generic inpatient pop-

ulation with a unified data modeling and processing, (b) achieve state-of-the-art accuracy

with a broad collection of models, including interpretable ones, (c) be fully integrated into

the EHR system of a major hospital, thus demonstrating how powerful analytics can con-

cretely impact care delivery. Yet, further work is needed to ensure and validate that accurate

predictions translate into improved quality of care.
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A Construction of the patient representation

In this supplement, we describe the features we created from the raw EHR data to model
the state of each patient.

We divide the variables into two categories:

1. static variables, which are not supposed to change as the patient stays at the hospital,

2. dynamic variables, which are daily updated.

A.1 Static variables

Static variables represent a patient’s socio-economic situation, as well as existing conditions.
We assume these variables do not evolve over a patient’s stay. We acknowledge that this
assumption might not always hold in practice. For instance, for certain conditions, weight
can drastically change over one’s stay. In addition, some data such as insurance information
might not be available and entered in the EHR system directly at admission.

Static variables are obtained from three sources, namely

• Admission data,

• ICD10 codes from previous admissions (billing data),

• Initial Patient Assessment information (completed on the day of admission),

and consist of

• Admission data

– Patient’s type and source

– Hospital service responsible for the patient

– Age

– Gender

– Weight, height, BMI

– Insurance indicators

– Homelessness indicator

– Income category based on ZIP code

– English-speaking indicator

– Information about previous admission in the past year (frequency, previous length
of stay)

• ICD10 codes from previous admissions (billing data)

– Indicator for each comorbidity, based on Elixhauser comorbidity software https:

//www.hcup-us.ahrq.gov/toolssoftware/comorbidity/comorbidity.jsp
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– Indicator of chronic condition, by body system, based on the CCI classification
https://www.hcup-us.ahrq.gov/toolssoftware/chronic_icd10/chronic_icd10.

jsp

• Initial Patient Assessment information (completed on the day of admission)

– Living situation (alone, family, group setting)

– Indicators of autonomy level (ability to use bell, autonomy in activities of daily
life, difficulty ambulating or swallowing)

A.2 Dynamic variables

The dynamic variables we consider are:

• From general admission data

– Number of days the patient already spent at the hospital during this admission,

– Daily number of admission/discharges at a hospital/ward level,

– Daily number of (long-stay) patients at a hospital/ward level,

– Current day of the week,

– Current service the patient is in. This variable is used to identify off-service
patients,

– Indicator of whether the patient is currently in an ICU,

– Number of days spent in the ICU so far,

– Number of days spent with the same attending,

• From vital sign measurements

– We monitor heartrate, respiratory rate, temperature, O2 saturation, diastolic/systolic
blood pressure, pain level, activity level, RASS score.

– For those vital signs, we report last value at the end of the day, average daily
value and trend based on past 4 measurements.

• From lab result information

– We only include blood results for they are widely performed for all inpatients.

– We count the number of lab measurements at an abnormal value.

– For platelet count, white cells count, hematocrit, chloride, sodium, potassium,
RDW, RDW SD and urea nitrogen, we report the last value, the last slack com-
pared to the normal range and the slope based on previous measurements.

– For bilirubin, glucose, PTT, sedimentation rate, troponin, albumin and INR, we
create a discrete variable taking values 0/1/2: 0 if the quantity has never been
measured for the patient; 1 if the quantity has been measured and currently at a
normal level; 2 if the quantity has been measured and currently at an abnormal
level.
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• From medical orders

– We divide orders into types: Blood bank, Cardiology, Consultation, Critical Care,
General Care, Lab, Neurology, Nutrition, Obstetrics, Radiology, Respiratory, IV.
Observe that each order can be a new order or a change/termination of a previ-
ously placed order.

– For all order types, we daily count the number of orders placed (counting +1 for
new and -1 for discontinuing orders) and the number of order changes.

– For some types, namely IV, TPN, Blood bank, we perform those counting oper-
ations at a sub-type level as well.

• From pharmacy data

– We group medications based on the AHFS Pharmacologic-Therapeutic Classifi-
cation (first two digits of the AHFS code).

– Within each group, we compute the number of medications the patient was cur-
rently taking, the number of medications the patient started/stoped taking on
each day and the time (in days) she had been taking these medications for.

• For diagnosis codes

– We use the number of ICD10 codes reported since admission as a measure of a
patient’s severity.

– We group ICD10 codes based on their letter and 1) compute the proportion of
codes within each category to identify the type of illness, 2) compute the gini
score of the distribution of code letters to measure clinical complexity.

• From the OR schedule

– Future surgery: we compute and report the inverse of the time-to-next-surgery.
This quantity equals 0 if no surgery is scheduled.

– Past surgeries: we count the surgeries the patient has had since admission (by
number and duration). We report the inverse of the time-to-last-surgery as well.

• From documentation and notes

– Without using raw information from the documentations or notes about the pa-
tient, we record the number of documents/notes entered about the patient on
each day, to measure the level of “activity” around each patient.

– We also compute the inter-day difference to capture variation in activity.

B Background on machine learning tasks

In this section, we provide some background information about the machine learning tech-
niques used in our analysis. This appendix is intended as a light introduction to the main
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concepts of machine learning we will refer to during our analysis. For a more detailed in-
troduction, we refer to Chapters 3 and 4 in Bishop (2006) and to Rokach and Maimon
(2008).

B.1 Empirical risk minimization framework

We are in presence of a supervised learning task where we have access to past observations of
input data xi ∈ Rp, i = 1, . . . , n and their associated output yi, i = 1, . . . , n. In a regression
setting, the outputs are continuous, e.g., yi ∈ R, while in a classification setting, they take
discrete values only, e.g., yi ∈ {±1}. The goal is to predict the output y as a function of the
input x. The “best” predictor f(x) is computed from data by solving an empirical empirical
risk minimization problem

min
f∈F

1

n

n∑
i=1

`(yi, f(xi)), (ERM)

i.e., we seek the function f , among a prescribed class of learners F , that leads to predictions
f(xi) close to the true responses yi, as captured by the loss function `(·, ·). For regression,
the most commonly used loss function is the ordinary least square loss `(y, z) = 1

2
(y − z)2.

In binary classification settings with yi ∈ {±1}, taking `(y, z) = log(1 + e−yz) leads to
logistic regression. For tractability purposes, the optimization problem (ERM) is reduced
to a finite-dimensional problem by considering a parametric class of learners F of the form
F = {f(·;θ) : θ ∈ T }, where θ is a finite-dimensional vector of parameters to calibrate.
Hence, minimizing over f ∈ F is equivalent to minimizing over θ ∈ T . For example, in
linear regression, we consider linear functions of the form f(x;θ) = x>θ, i.e, F = {x 7→
x>θ : θ ∈ Rp}.

The outlined approach, however, might lead to over-fitting. Namely, the optimal pa-
rameter value for θ might perfectly explain past observations but perform poorly on newly
observed data. To alleviate this issue and achieve higher out-of-sample performance, common
practice uses regularization and cross-validation.

Regularization restricts even further the class of learners to T (λ) ⊂ T , where λ is a set
of so-called hyper parameters that define the set T (λ). For example in linear regression,
Tibshirani (1996) introduced the Lasso estimator for which θ is constrained in an `1 sense,
namely T (λ) = {θ ∈ Rp :

∑p
j=1 |θj| ≤ λ}.

The standard procedure for finding both θ and λ is cross-validation. For a given data
set D = {(xi, yi), i = 1, . . . , n} and a parameter θ, define the empirical risk of θ on D as

R(θ;D) =
1

n

n∑
i=1

`(yi, f(xi;θ)).

Hold-out cross-validation proceeds as follows:

1. Split the original data set into a training and a validation set, Dtrain and Dval.

2. Define a grid of values for λ, {λ(1), . . . ,λ(M)}.
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Table 10: Summary of the hyper parameters involved in each machine learning model and
that we tune using cross-validation.

Method Hyper parameters

Linear regression (LR) Lasso penalty
Decision tree (CART and OCT) Splitting criterion, Maximal depth of the tree, Minimal number of sample per leaf
Random forest (RF) Number of trees in the forest, Maximal depth of the trees
Gradient-boosted trees (GBT) Number of base learners, Maximal depth of the base learners, Learning rate

3. For every value m = 1, . . . ,M , compute θ?(λ(m)) ∈ arg min
θ∈T (λ(m))

R(θ;Dtrain), and its

out-of-sample performance R(θ?(λ(m));Dval).

4. Pick the value of λ that leads to the best out-of-sample performance R(θ?(λ(m));Dval).

5. Finally, compute θ on the entire data set for the best value of λ = λ(m?)

θ? ∈ arg min
θ∈T (λ(m?))

R(θ;Dtrain ∪ Dval).

Many variants of this procedure exist. For instance, the loss function used for in-sample and
out-of-sample validation can be different depending on the prediction task. Usually, the data
is randomly split between training and validation sets, however, deterministic split might
not be recommended in cases where the data exhibit known trends (see Riley 2019, for a
discussion). When the amount of data is limited, estimation of out-of-sample performance
in Step 4 can be improved by splitting the data into training and validation in k different
ways. Step 3 is performed for each of these k splits and out-of-sample performance in Step
4 is averaged over the k candidate validation sets. k-fold cross-validation implements such
a strategy. In k-fold cross-validation, if k = n, the validation sets are comprised of a single
data point and the method is known as leave-one-out cross-validation.

For our analysis, we perform hold-out cross-validation and split the data according to
admission date instead of randomly, so as to mimic real-world implementation and capture
non-stationarity if any. We assess out-of-sample performance of classification models on the
validation set by the area under the receiver operating curve (AUC), while the loss function
for training is the logistic loss.

B.2 Examples of machine learning techniques

In this section, we review the machine learning techniques we apply in our study. In particu-
lar, we emphasize the class of learners F they correspond to, how they are parametrized, and
the hyper parameters we tune using cross-validation. We summarize these hyper parameters
in Table 10.

Linear regression Linear regression considers linear predictions of the form f(x;θ) =
x>θ, where θ ∈ Rp. To avoid over-fitting, we consider the Lasso estimator introduced by
Tibshirani (1996). In its original formulation, the Lasso estimator satisfies the constraint
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∑p
j=1 |θj| ≤ λ where λ is the Lasso parameter. Equivalently, the `1-norm of θ can be penal-

ized in the objective of (ERM) instead of being hardly constrained, which is the formulation
used in most available implementations.

xj < tj?

Left child Right child

Yes No

Figure 8: Typical split of a decision tree

Decision trees (Breiman et al. (1984) and Rokach and Maimon (2008) Chapters
1-7) A decision tree is defined as a succession of splits similar to the one represented on
Figure 8. Each split is defined by a variable j ∈ {1, . . . , p} to split on and a threshold value
tj. To compute a prediction for a particular data point x, we read the first split “xj < tj?”
and, depending on the answer, go down to the left or right child subtree. We do so until we
reach a terminal node, also called a leaf. A prediction is then obtained by taking the average
output yi over all training samples within the same leaf. As a result, decision trees can be
parametrized by a finite-dimensional parameter vector θ that encodes for the feature and
threshold of each split. Common hyper parameters that we tune are the maximal depth of
the tree (we test all values between 5 and 20) and the minimal number of training samples
at each leaf (between 50 and 300). Optimizing over the set of decision trees is a hard
combinatorial problem and numerous numerical strategies have been investigated in order
to do so, at least approximately. Quinlan (2014) proposed an iterative method to greedily
add splits that maximize a given split criterion and then prune the final tree to simplify
it and avoid overfitting. Breiman et al. (1984) designed a similar greedy approach where
the complexity of the tree is not enforced by pruning but instead penalized in the objective
function explicitly (CART). Bertsimas and Dunn (2017) formulated the problem of decision
tree learning as a large mixed-integer optimization problem and proposed an efficient local-
search heuristic to solve it approximately (OCT). We compare the last two approaches in
our numerical experiments for their implementation is easily available, they achieve good
predictive accuracy, and do not rely on a pruning step, which generate higher instability
in the splits. Yet, due to the discrete nature of the splitting rule, calibration of a decision
tree always suffers from instability with respect to the training data (Breiman et al. 1996).
This deficiency seriously challenges the interpretability appeal of decision trees in practice
and constitues a vivid reserch topic (Last et al. 2002, Zimmermann 2008, Mirzamomen and
Kangavari 2017, Wang et al. 2018). All these methods require a criterion to choose the best
split, typically the Gini impurity or information gain, which we also consider as an hyper
parameter.

Random forest (Breiman (2001) and Rokach and Maimon (2008) Chapter 9)
Random forests were initially proposed by Breiman (2001). At a high level, a random forest
is simply a collection of trees. Each tree produces a prediction and the final prediction is
obtained as the average prediction across all trees in the forest. Using a random selection of
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features to split each node introduces randomization in the training process of each tree and
leads to desirable error rates (Breiman 2001) and consistency results (Scornet et al. 2015).
Observe that the training of each tree is independent of the other trees and can be easily
perfomed in parallel. Number of trees in the forest constitutes the main hyper parameter
to control over-fitting (between 200 and 400 in our grid search). We also tune the maximal
depth of each tree (between 20 and 80). We let the other parameters - split criterion,
minimal number of samples per split and leaf - to their default value - Gini impurity, 2, and
1 respectively. Each tree in the forest is trained on a bootstrapped sample with replacement
of the training data set and of the same size. When looking for the best split within a tree,
only

√
p features are considered, randomly picked at among the p available at each step of

the algorithm.

Gradient-boosted trees (Friedman 2001) While random forests rely on averaging a
large amount of randomized trees, gradient-boosted trees are an additive method. At each
step in the gradient boosting algorithm, a new tree is built so as to predict the residuals, i.e.,
the fraction of the output that is not explained by the current model. In other words, at each
step of the algorithm, a new tree is added to the collection in order to correct for the mistakes
made my the current collection. The final output is also a weighted sum of the outputs from
each tree. However, while trees in a random forest can be trained independently, trees in
gradient boosting can only be trained sequentially. Trees generated at each step are also
called base learners and should be of low complexity (we cross-validate their maximal depth
between 3 and 7). The total number of trees is another hyper parameter to tune (up to 10).
The most important hyper-parameter is the learning rate, between 0 and 1, which controls
the contribution of each new tree to the overall model. We let other hyper-parameters - split
criterion, minimum number of samples per leaf and split - to their default value - the score
proposed by Friedman (2001), 2, and 1 respectively.

C Extensive comparison of predictive accuracy

In this section, we complement Section 3 by providing a more in-depth assessment of the
predictive power of the five machine learning techniques for predicting length of stay-related
outcomes (Table 12) and discharge destination (Table 13).

For predicting the number of daily discharges, a regression task answered by aggregating
patient-level discharge scores, we report out-of-sample R2 and adjusted-R2 in Table 12. The
adjusted-R2, R2

adj is defined asR2
adj = 1− n−1

n−k−1(1−R2), where n is the number of observations
in the test set (n = 67, 227 here) and k is the number of features used by the model (k ≤ 700
here). For linear regression, k corresponds to the number of covariates whose weights are
non-zero. For the other methods, k counts the features that appear in at least one split.

In Table 11, we report the detailed output (with coefficient estimates and standard errors)
of a linear logistic regression model for predicting same-day discharges (remaining length-of-
say < 1 day). In this model, we only included the 50 most important features, as ranked by
the random forest classifier. We report the coefficient estimates for the 10 most important
ones and use the remaining 40 as controls. As displayed, the regular and robust standard
error estimates display no significant difference.

37



Table 11: Robust standard error analysis for a linear logistic model to predict whether the
remaining length-of-say < 1 day.

Without controls With controls
Estimate Standard Error Robust SE Estimate (Robust SE)

Observation patient indicator 2.6976 (0.0245)*** (0.0259)*** 2.6904 (0.02800)***
Abnormal blood test indicator -0.0418 (0.0012)*** (0.0012)*** -0.0387 (0.0014)***
Lab orders placed in the past 24h, count -0.1289 (0.0037)*** (0.0044)*** -0.1297 (0.0045)***
Orders placed in the past 24h, count -0.0637 (0.0019)*** (0.0019)*** -0.0633 (0.0027)***
Medications under prescription, count -0.0047 (0.0004)*** (0.0004)*** 0.0013 (0.0006)*
Time spent at the hospital -0.0298 (0.0013)*** (0.0014)*** -0.0271 (0.0031)***
Doctors/nurses taking care of the patient, count 0.0425 (0.0024)*** (0.0023)*** 0.0415 (0.0028)***
Hematocrit level 0.0065 (0.0011)*** (0.0010)*** -0.0080 (0.0019)***
Order changes in the past 24h, count -0.0005 (0.0002) (0.0003) 0.0026 (0.0004)***
Ward admissions in the past 24h, count 0.0238 (0.0016)*** (0.0015)*** 0.0052 (0.0018)**

Out-of-sample AUC 0.7771 0.7979

p-value thresholds: ***:< 0.0001, **:< 0.001, *:< 0.01
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D From individual risk scores to hospital-level esti-

mates

In this supplementary section, we detail the two-step procedure we apply to convert indi-
vidual probabilities for each patient to be discharged into estimates of discharge volume at
a hospital level.

For each patient i, a machine learning model provides a score (between 0 and 1). Intu-
itively, this score constitutes an estimate of the probability for patient i to be discharged
today, denoted P̂(discharge for patient i). Consequently, by summing over all current in-
patients,

∑
patient i P̂(discharge for patient i) should be an unbiased estimator of the total

expected number of discharges at the hospital. Unfortunately, depending on the machine
learning method used and due to imbalance in the classes, the returned score might not be
an unbiased estimate of the probability of discharge. Consequently, we use

α
∑

patient i

P̂(discharge for patient i)

as an estimate of the number of discharges, where α is a correction factor, calibrated on
the training set as the relative difference between the observed number of discharges and∑

patient i P̂(discharge for patient i) as in Van Walraven and Forster (2017).
Competitively, one can apply a “threshold-then-sum” approach where each patient is

predicted as a discharge if her score exceeds some threshold t and then compute the expected
number of discharges as the sum of predicted discharged patients, i.e.,∑

patient i

I
[
P̂(discharge for patient i) > t

]
.

To obtain an unbiased estimate, t is chosen so that the number of false positives and false
negatives on the training set are equal3.

We compare empirically these different aggregation strategies and report median absolute
error in the daily number of discharges in Table 14. We make three observations out of these
results: First, summing the raw scores returned by the machine learning models lead to
useless estimates on the total number of discharges. Indeed, to handle class imbalance,
observations are weighted according to their class prevalence. Weighting creates bias in the
risk probabilities, bias which affects the training loss so as to be less sensitive to the imbalance
in labels. However, once the model is trained, output scores conserve this bias and should
be thus used carefully. A correcting factor or a “threshold-then-sum” approach is needed.
Secondly, the correcting factor approach seems globally more accurate than “threshold-then-
sum”. Note that this observation depends on the machine learning technique and is specific
to the predictive task at hand. Finally, we also explore strategies where the correcting factor
α or the threshold parameter t depends on the day of the week. Indeed, discharge volume
is strongly impacted by day of the week - discharges are usually low on Sundays and high

3Note that this is not the convention used by the commercial implementation of Optimal Classification
Trees (Interpretable AI 2020). As depicted in Figures 1-2, they choose t equal to empirical proportion of
positive cases on the training population.
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Table 14: Median Absolute Error in the daily number of discharges for logistic regression
(LR), CART decision trees (CART), optimal trees with parallel splits (OT), random forest
(RF) and gradient boosted trees (GBT), for various aggregation strategies.

Aggregation method LR CART OT RF GBT∑
patient i P̂(discharge for patient i) 99.9 109.7 10.2 20.5 7.8

α
∑

patient i P̂(discharge for patient i) 10.8 13.1 11.2 9.1 8.0∑
patient i I

[
P̂(discharge for patient i) > t

]
16.0 18.0 16.0 76.5 8.5

αdow

∑
patient i P̂(discharge for patient i) 8.6 6.0 6.4 6.2 7.8∑

patient i I
[
P̂(discharge for patient i) > tdow

]
14.5 17.0 15.0 76.5 10.5

on Mondays - but this variable is not a first-order predictive feature in our individual risk
models. Therefore, we account for this dependency in the aggregation strategy and obtained
significant improvement, especially for the correction factor strategy. We use the latter in
our implementation.
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