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We estimate the basic reproductive number and case counts for 15
distinct SARS-CoV-2 outbreaks, distributed across 10 countries and
one cruise ship, based solely on phylodynamic analyses of genomic
data. Our results indicate that, prior to significant public health in-
terventions, the reproductive numbers for a majority (10) of these
outbreaks are similar, with median posterior estimates ranging be-
tween 1.4 and 2.8. These estimates provide a view which is comple-
mentary to that provided by those based on traditional line listing
data. The genomic-based view is arguably less susceptible to bi-
ases resulting from differences in testing protocols, testing intensity,
and import of cases into the community of interest. In the analyses
reported here, the genomic data primarily provides information re-
garding which samples belong to a particular outbreak. We observe
that once these outbreaks are identified, the sampling dates carry
the majority of the information regarding the reproductive number.
Finally, we provide genome-based estimates of the cumulative case
counts for each outbreak, which allow us to speculate on the amount
of unreported infections within the populations housing each out-
break. These results indicate that for the majority (7) of the popu-
lations studied, the number of recorded cases is much bigger than
the estimated cumulative case counts, suggesting the presence of
unsequenced pathogen diversity in these populations.
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The novel coronavirus SARS-CoV-2 and the corresponding1

disease COVID-19 continue to spread at an alarming rate.2

As of the 27th of August 2020, close to 9 months after its initial3

identification, over 24 million confirmed cases and nearly seven4

hundred thousand deaths have been reported globally. (1).5

In order to understand the global threat this pandemic6

poses, it is necessary to accurately quantify the underlying7

transmission dynamics of the virus and, in particular, its basic8

reproductive number (2). This information is used to deter-9

mine the likely future trajectories of individual outbreaks, and10

to retrospectively assess the impact of containment measures.11

Inference of the transmission dynamics is traditionally achieved12

using line list data (3) comprised of case confirmation times,13

locations and patient details, and this approach is being widely14

applied (4–7) by various groups around the world seeking to15

understand the current pandemic.16

In particular, the EpiForecasts platform (8) is reporting17

frequently-updated results based on these methods as new18

line list data becomes available. While details vary between19

countries, these analyses indicate that the median estimates20

for the basic reproductive number for the populations studied21

in this report lie between 1.5 and 3. Our own monitoring22

of the reproductive number is updated daily using the latest23

confirmation, hospitalization, death, and excess death data24

with a focus on European countries (9) leading to similar25

results.26

Despite the wide-spread application of such methods, the 27

estimates produced by line list data alone are inherently sus- 28

ceptible to several biases and limitations (10–12). Firstly, the 29

presence of pools of undiagnosed infected individuals, together 30

with changes in testing methods and the extent to which test- 31

ing is happening at all, can lead to misleading characterizations 32

of the epidemic. Secondly, it is often impossible to discriminate 33

between import cases and those attributable to local transmis- 34

sion based on line list data. This has the potential to produce 35

overestimates of local transmission rates. Estimating rates 36

and directions of transmission between geographic regions is 37

similarly impeded. Thirdly, on their own, these data do not 38

provide information about the state of outbreaks before the 39

first recorded case. 40

Characterizing transmission dynamics is critical to the suc- 41

cessful design of public health interventions. Thus, finding 42

ways around potential biases and limitations when quantifying 43

transmission dynamics is crucial. Fortunately, early testing 44

efforts have been paralleled by significant efforts to sequence 45

SARS-CoV-2 genomes from the initial outbreak and subse- 46

quent pandemic in “real time”. Many of the groups responsible 47

for sequencing SARS-CoV-2 genomes have generously chosen 48

to make them available immediately to the public research 49

community via the GISAID platform (13). These data have 50

been successfully used for the development of testing assays 51

(14) and for learning about the molecular structure of the 52

virus (15, 16). Importantly, the continued and widespread 53

sequencing efforts has also enabled — in combination with 54

phylodynamic methods (17, 18), independent, and potentially 55
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more robust, estimates of very early transmission dynamics.56

Phylodynamic methods couple epidemiological models with57

models of sequence evolution, allowing us to estimate trans-58

mission dynamics based on the relationships between SARS-59

CoV-2 genome sequences. Several studies have already made60

use of SARS-CoV-2 sequence data in a phylodynamic context.61

For example, Lai et al. (19) inferred early dynamics of the62

global effective reproductive number, using all available se-63

quences at the date of publishing, obtaining an R0 estimate64

of 2.6, with a 95% credible interval [2.1, 5.1]. In contrast, Volz65

et al. (20) focused on a specific Wuhan-associated outbreak66

cluster and used a compartment model to also infer a basic67

reproductive number of 2.6, but with a 95% credible inter-68

val [1.5, 5]. Genomes have also been coupled with extremely69

detailed agent-based models to infer the probable sources of70

infection for specific COVID-19 cases within the Australian71

population (21).72

In this paper we go further and infer the basic reproductive73

number (R0) for each of 15 distinct outbreaks distributed74

among 10 countries and the Diamond Princess cruise ship using75

phylodynamic methods. We use Bayesian model averaging76

to quantify the evidence for distinct R0 values as opposed to77

groups of outbreaks sharing R0 values. Finally, we provide78

Bayesian estimates of cumulative case counts over time for79

each of the outbreaks as ensembles of possible trajectories.80

Results81

We used the NextStrain (22) platform to identify outbreak82

clusters for which sequence data exist, and selected only those83

sequences sampled prior to or just after the introduction of84

strong public health interventions in the associated locations85

(see Methods). (The Diamond Princess outbreak is an excep-86

tion to this protocol, as the interventions were put in place87

immediately on the date corresponding to the first sequenced88

sample.)89

We then applied a Bayesian phylodynamic framework (17),90

to co-infer R0 along with the probability of a infected person91

being included in our dataset, and the underlying phylogenetic92

trees for these clusters. This inference was done under the93

assumption of constant transmission rates (i.e. a constant rate94

birth-death process) for each cluster, with the sole exception of95

the Diamond Princess, where we allowed for the transmission96

rate to shift at the time of the onboard quarantine.97

Figure 1 illustrates the posterior distributions for R0 as-98

sociated with each of the outbreaks, together with the prior99

distribution for comparison. Interestingly, rather than a con-100

tinuum of values, our analysis seems to isolate several distinct101

modes. The median posteriors for the majority of outbreaks lie102

between 1.4 and 2.9. However, the R0 values inferred for the103

two outbreaks associated with Iceland, the Welsh outbreak, a104

Washington State (USA) outbreak and the Diamond Princess105

outbreak have posterior median values ranging between 4 and106

7. We used a Bayesian model averaging scheme to quantify107

the number of significantly distinct R0 values among all out-108

breaks, and found support for four distinct values (see figure109

S1 for the posterior distribution). The corresponding posterior110

distributions for the outbreak-specific R0 values generated by111

this model are shown in figure S2. A comparison of the pre-112

and post-quarantine effective reproductive number estimates113

for the Diamond Princess outbreak is shown in figure S3, and114

shows a significant drop in transmission rate following the im-115

plementation of isolation measures. The proportion of infected 116

individuals sampled for sequencing in each outbreak was also 117

inferred as part of this analysis and these results are shown in 118

figure S4. 119

Fig. 1. Posterior distributions for reproductive numbers for outbreaks considered in
this study. Solid horizontal lines represent median values; the dashed horizontal line
represents the threshold between exponential growth and decline of outbreak.

Birth-death phylodynamic results are dependent not only 120

on the genomic data, but also on the distribution of sample 121

collection dates. In fact, we find that in this instance, the 122

sample collection dates carry most of the information regarding 123

R0. We demonstrated this by running an additional set of 124

phylodynamic analyses in which the genomic sequences were 125

treated as unknown. Additionally, we applied both a simplistic 126

linear regression approach (see Methods) and an established 127

traditional approach (12) to the cumulative sequence counts. 128

The results of these alternative analyses are summarized in 129

figure S5 and—in many cases—show relatively close agreement, 130

albeit with slightly less certainty in the estimates than those 131

shown in figure 1. 132

Given this dominating effect of the sampling times, it is 133

natural to consider how sensitive our results are to the as- 134

sumption that the sampling rate and reproductive number 135

are fixed over the time period of each outbreak. We thus 136

performed a separate set of analyses in which these quantities 137

were allowed to change at a point at the center of the sampling 138

window of each outbreak (excluding the Diamond Princess 139

outbreak). The resulting R0 estimates, presented in figure S8, 140

show no major change in the results compared with those in 141

figure 1, with the exception of the Netherland (1) and WA 142

States (1) outbreaks which suggest higher R0 values. In order 143

to investigate how much our results are impacted by the prior, 144

we repeated the fixed-rate analyses with a broader prior on 145

R0. This broad prior did not qualitatively change the results 146

compared to our main analysis (figure S9). 147

Inferred cumulative case count trajectories for the Wash- 148

ington State and Diamond Princess outbreaks are shown in 149

figure 2 alongside the daily number of confirmed cases as re- 150

ported by the Center for Systems Science and Engineering at 151

Johns Hopkins University (23), to which we have applied a 10 152

day offset in order to account for the estimated delay between 153

infection and case confirmation (9). In the cases where two 154

outbreaks are associated with the same location, the inferred 155

case counts are combined. Similar case count trajectories for 156
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the remaining populations are provided in figure S6. The157

posterior distributions for case counts at the time of the most158

recent genome sample are shown for all populations in figure 3.159

(a)

(b)

Fig. 2. Inferred cumulative case count trajectories for (a) Washington State, USA, and
(b) the Diamond Princess cruise ship. They are shown together with the corresponding
recorded case counts (diamonds) in each population as recorded by Dong, Du and
Gardner (23), which are offset by 10 days to account for the delay between infection
and case confirmation (9). Note that these inferences concern only those cases
associated with the specific outbreak from which the sequence data are drawn, as
detailed in the discussion section. The true cumulative case counts may have been
much higher. (Inference for remaining outbreaks are shown in figure S6.)

Discussion. Our central result is that prior to strong public160

health interventions, the majority (10) of the outbreaks studied161

seem to have grown at rates with median R0 values ranging162

between 1.4 (Spain) and 2.8 (China).163

The specific case of the Diamond Princess is interesting, as164

the details of this outbreak are well known and, at least for165

the time period affecting our analysis, the population involved166

was strictly isolated (i.e. we can say with a high degree of167

certainty that no immigration or emigration occurred). In this168

case, we believe the high pre-intervention R0 estimate reflects169

a real elevated infection rate caused by unchecked transmission170

within the relatively confined on-board environment.171

The remaining outbreaks to which higher R0 values are172

attributed are limited to those with the shortest sampling173

windows (see figure S7). Given the strong role played by174

sample times in these inferences, it is therefore possible that175

these values are the result of bias due to sampling model176

misspecification, and that this problem is exacerbated by the177

Fig. 3. Estimates of cumulative case counts obtained from phylodynamic analyses,
with diamonds indicating recorded counts obtained from Dong, Du and Gardner (23),
offset by 10 days to account for the delay between infection and case confirmation (9).
The counts are for the date of the final genome sample considered in each population.
We note that we have likely analyzed only a subset of the total number of outbreaks
which were circulating in each country.

short sampling windows involved. The sampling model used 178

for these outbreaks assumes that samples accumulate at a rate 179

proportional to the number of infectious cases for the duration 180

over which samples are available. We showed that allowing 181

for a single shift in sampling rate and R0 during the outbreak 182

did not result in much lower R0 values for these remaining 183

outbreaks. 184

Another potential source of upward bias on R0 is the process 185

of outbreak selection. We necessarily restrict our attention to 186

outbreaks for which sufficient data exist to provide statistical 187

signal. This restriction may have the effect of selecting for 188

steeper outbreak trajectories. Since the birth-death models 189

under which we perform the inference do not account for this 190

conditioning, these steeper trajectories will be interpreted as 191

evidence for larger R0, even when the increased gradient is 192

simply the result of demographic noise in the growth of the 193

epidemic. Including appropriate conditioning in phylodynamic 194

inference to guard against this kind of bias will be the focus 195

of future research. 196

Given that most of information content in the genome 197

sequence data analyzed seems to come from sampling times, it 198

is natural to wonder whether the phylodynamic approach offers 199

additional insights on these outbreaks. The obvious answer 200

to this challenge is that, genomic data allowed us to identify 201

outbreaks in the absence of contact tracing data, which is 202

often not available for study. Furthermore, even though the 203

impact of the phylogeny within each identified outbreak on the 204

inferred epidemic parameters was negligible, the application 205

of phylodynamic methods yield information about the total 206

number of cases through time, including those which have 207

gone undetected. 208

We emphasize, however, that extreme care must be taken 209

when interpreting both these inferred and clinically confirmed 210

case counts as representative of the true underlying case load. 211

Firstly, our inferences correspond to the number of cases 212

associated only with the specific outbreaks from which the 213

genomic data originate. It is entirely possible that additional 214

outbreaks, from which we do not have genetic data, occurred 215

within a given population during the time periods considered. 216
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These cryptic outbreaks could contribute to the confirmed217

case counts but would be absent from our phylodynamic infer-218

ence. Secondly, the confirmed case numbers themselves can219

only provide a lower bound on the true number of cases in220

a population. Taken together, these points imply that the221

larger of the phylodynamically-inferred case counts and the222

corresponding confirmed case counts provide a lower bound223

on the true number of cases within each population.224

We highlight in this paper the importance of SARS-CoV-2225

genomes for quantifying transmission dynamics. In particular,226

we provide estimates for the basic reproductive number which227

are complementary to classic epidemiological studies. Our228

phylodynamic analyses of SARS-CoV-2 genomes confirm the229

R0 estimates for Wuhan (5) and provide estimates for 15230

outbreaks around the world for which classic epidemiological231

methods are problematic due to the difficulty of disentangling232

introductions from local transmissions. Going forward, we233

are convinced that SARS-CoV-2 genomes will become useful234

for quantifying changes in transmission rates (for instance,235

using the BDSKY model of Stadler et al. (17)) and become236

essential for evaluating the importance of local transmission237

versus imports (for instance, using the multi-type birth-death238

model of Kühnert et al. (24)). The latter is in particular239

important after the end of lock-down measures which we240

currently experience in many European countries. Indeed, for241

patients whose infection is not traceable, it is the genomes242

which contain valuable information for linking them into the243

transmission chain and thus quantify transmission dynamics.244

Materials and Methods245

Outbreak identification and sample selection. The birth-death mod-246

els we employ assume that genome samples are taken uniformly at247

random from the infectious population during the early, exponential248

growth phase of each outbreak. Since our analysis is necessarily249

retrospective rather than prospective, we devised two strategies250

to approximate such a sampling scheme using publicly-available251

samples from GISAID (13). For sparsely-sampled, un-sampled, or252

clearly non-uniformly sampled outbreaks (Italy, Iran, and China be-253

fore the quarantine of Wuhan, respectively), we included sequences254

from cases that were exposed in the region of interest and sub-255

sequently traveled abroad, where they were then diagnosed and256

sampled. (The sequences attributed to the Iranian outbreak, for257

example, are all travel cases isolated and sequenced in Australia258

(25).) For more densely-sampled outbreaks (France, Iceland, the259

Netherlands, Spain, Wales, and Washington State, USA), we an-260

alyzed samples that were exposed and sampled within the region261

of interest. For these outbreaks, we considered only samples that262

clustered together with other samples from the same region in a263

phylogenetic tree of the global pandemic (22). This was done in264

order to sample primarily within-region transmission events.265

Sample acquisition and curation. We downloaded all sequences avail-266

able on GISAID (13) on April 1st, 2020. After quality-filtering this267

sequence set, we aligned the sequences, built a phylogenetic tree,268

and identified regional outbreak clusters within the tree. Sequence269

quality-control, alignment, and tree building were all performed270

using the Nextstrain pipeline adapted to SARS-CoV-2 (26).271

We first filtered the available sequences to exclude sequences272

shorter than 25,000 base pairs, sequences with imprecise sampling273

dates, known re-samples of the same case, low-quality sequences (as274

determined by Nextstrain), and all but one sequence from known275

epidemiologically-linked cases. We note that our knowledge of which276

samples come from epidemiologically-linked cases (as identified by277

Nextstrain and gleaned from media reports) is far from exhaus-278

tive. Whenever we were able to access this information we used279

it to exclude non-randomly sampled sequences, but in many cases280

the relevant information was either not collected or not readily 281

accessible. 282

Alignment and outbreak detection. After these filtering steps, we 283

aligned the remaining sequences to a reference genome generated 284

from an early COVID-19 patient in Wuhan (GenBank accession 285

number MN908947) (27). SNPs in the first 130 sites, last 50 sites, 286

and at sites 18529, 29849, 29851, and 29853 were masked from the 287

alignment because they are likely sequencing artifacts (26). 288

We built a maximum-likelihood phylogenetic tree using this 289

alignment. We then picked clades from this tree where sufficient 290

(≥ 9) samples from the same region clustered together. We assume 291

that these clusters represent primarily within-country transmission 292

events rather than introductions from abroad. 293

Exceptionally for the Itay, Iran, and China outbreaks we addi- 294

tionally identified samples from cases that were presumably exposed 295

to the virus in these regions but were sampled abroad (travel cases). 296

The data set for Italy included sequences from both non-travel and 297

travel cases, while those for China and Iran were composed exclu- 298

sively of sequences from travel cases. This exposure information 299

comes from metadata available on GISAID and Nexstrain, as well as 300

information provided by sequencing centers and in media accounts. 301

Sample set truncation. To limit sampling to the early, exponential 302

growth phase of each regional outbreak, we truncated sampling 303

based on the dates of major public health interventions (Table S1). 304

We retained only samples collected before or on the date of theses 305

public health interventions, with the exception of the Iran, Iceland, 306

and Spain outbreaks. For these outbreaks, we extended the time 307

cutoff so that the sample size was not prohibitively small. (The 308

extension for Iran was 11 days, for Iceland it was 2 days, and the 309

cutoff for Spain was extended by 1 day, as shown in Table S1.) Since 310

the transmission events leading to sampled cases likely happened at 311

least a few days before sampling, these cutoffs should, for the most 312

part, be conservative. 313

Phylodynamic analyses. 314

Main analyses. Sequence alignments were analyzed jointly as part of 315

a single Bayesian phylodynamic analysis using the BDSKY package 316

(17) of BEAST 2 (28), using a single HKY+Γ substitution model 317

with a strict clock rate fixed to 8 × 10−4 substitutions/site/year 318

(following Nextstrain (22)). The tree T (c) corresponding to each 319

outbreak cluster c was assumed to be produced by a birth-death pro- 320

cess with reproductive number R(c)
0 , sampling proportion s(c) and 321

become uninfectious rate δ. In each case, the sampling proportion 322

for the outbreak was assumed to be zero before the first included 323

sample for that outbreak. In the special case of the Diamond 324

Princess outbreak, a second (effective) R0 value was associated with 325

the days following the on-board intervention. All R0 values were 326

assumed to be independent and given a LogNormal(0.8, 0.5) prior. 327

The time between the start of the birth-death process associated 328

with each outbreak and the time of the most recent sample for the 329

same outbreak was given a LogNormal(−2, 0.8) prior. The value of 330

the become uninfectious rate δ was fixed to 36.5, equivalent to an 331

expected time until becoming uninfectious for each individual of 10 332

days. (This is in line with the estimates of the latent and infectious 333

periods provided by Li et al. (4), and follows the assumptions used 334

by Sciré et al. (9).) 335

A second analysis was run with an identical model configuration 336

to the first analysis, aside from its use of Bayesian model averaging 337

to quantify the number of distinct R(c)
0 values needed to describe 338

the outbreaks. This was done by applying a Dirichlet process prior 339

(DPP) to the vector ~R0 = [R(c1)
0 , R

(c2)
0 , . . . , R

(c15)
0 ]. Following the 340

prescription of Dorazio (29), a Gamma hyperprior was applied to 341

the intensity parameter of the DPP such that the implied prior 342

distribution for the number of unique elements of ~R0 was as close to 343

uniform as possible. The base distribution of the DPP was chosen 344

to be LogNormal(0.8, 0.5). The prior for each the sampling propor- 345

tion was chosen to be Beta(1, 4), which prioritizes low sampling 346

probabilities without completely excluding higher probabilities. 347

Sensitivity analyses. We ran two additional analyses to determine 348

the sensitivity of our conclusions to the model assumptions. Firstly, 349

to test the robustness with respect to changes in the R0 priors, 350
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we ran a separate analysis using a Unif(0,10) prior for each R(c)
0351

parameter. Secondly, we ran an analysis in which both R(c)
0 and352

s(c) were allowed to change once during each outbreak, at a time353

midway between the first and last sample assigned to that outbreak.354

Sample-date only analyses. In order to assess the relative impact of355

the sequence data on these R(c)
0 estimates, another joint phylody-356

namic analysis was performed using the same setup as the first, but357

without any sequence data.358

Additionally, a simple regression inference of the R(c)
0 was con-359

ducted by assuming that the number of active infections associated360

with each outbreak grew according to the deterministic function361

N(c)(t) = exp[δ(R(c)
0 − 1)t]. This implies that the logarithm of the362

cumulative number of samples grows linearly at the rate δ(R(c)
0 −1),363

which we then fit to the empirical cumulative sample numbers from364

each outbreak.365

In order to test the robustness of the phylodynamic estimates366

of the outbreak-specific R(c)
0 values, we applied EpiEstim (12) to367

the same sample time distributions used for the regression analysis.368

In these analyses, R(c)
0 was assumed to be constant through time369

in each outbreak. A serial interval of mean 4.8 days and standard370

deviation 2.3 days was used (30).371

Case count trajectory inference. Inference of cumulative case count372

trajectories was achieved by applying the particle filter algorithm im-373

plemented in EpiInf (31) to the outbreak-specific tree and parameter374

posteriors produced by the corresponding BDSKY analyses.375

Data availability. The sequences used in this study are distributed376

via GISAID (https://gisaid.org). The acknowledgements table377

available at https://github.com/tgvaughan/R0-manuscript-materials/blob/378

master/sequences/GISAID_Acknowledgement_Table.csv lists the acces-379

sion numbers for the sequences associated with each cluster, together380

with the names of the institutions and authors who generously con-381

tributed the sequences.382

The BEAST 2 XML files used to perform the phylodynamic383

analyses, together with the R scripts used for post-processing, are384

available from https://github.com/tgvaughan/R0-manuscript-materials/.385
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