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Abstract21

As COVID-19 continues to spread across the world, it is increasingly important to under-22

stand the factors that influence its transmission. Seasonal variation driven by responses23

to changing environment has been shown to affect the transmission intensity of several24

coronaviruses. However, the impact of the environment on SARS-CoV-2 remains largely25

unknown, and thus seasonal variation remains a source of uncertainty in forecasts of26

SARS-CoV-2 transmission. Here we address this issue by assessing the association of27

temperature, humidity, UV radiation, and population density with estimates of trans-28

mission rate (R). Using data from the United States of America, we explore correlates29

of transmission across USA states using comparative regression and integrative epidemi-30

ological modelling. We find that policy intervention (‘lockdown’) and reductions in indi-31

viduals’ mobility are the major predictors of SARS-CoV-2 transmission rates, but in their32

absence lower temperatures and higher population densities are correlated with increased33

SARS-CoV-2 transmission. Our results show that summer weather cannot be considered34

a substitute for mitigation policies, but that lower autumn and winter temperatures may35

lead to an increase in transmission intensity in the absence of policy interventions or36

behavioural changes. We outline how this information may improve the forecasting of37

COVID-19, its future seasonal dynamics, and inform intervention policies.38
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Introduction39

In late 2019 a novel coronavirus originating in Wuhan City (Hubei, China)1 began to40

rapidly spread through the human population. Since March 2020 this disease, COVID-41

19, has been recognised as a global pandemic by the World Health Organisation2. The42

causative agent, SARS-CoV-2, is a close relative of the 2003 SARS coronavirus1, although43

it appears to have several differences including a higher basic reproduction number344

(R0; the average number of people infected by a carrier at the onset of an epidemic).45

Understanding the factors influencing SARS-CoV-2 transmission is key for understanding46

the current patterns of transmission and for refining predictions of the future spread of47

SARS-CoV-2. Other coronaviruses display seasonal cycles of transmission and up to 30%48

of seasonal ‘colds’ are caused by coronaviruses4. Thus, as many Northern-hemisphere49

countries relax the non-pharmaceutical interventions initially imposed to control COVID-50

19, there is a pressing need to understand whether seasonality will enhance or drive a51

‘second wave’ of COVID-19 outbreaks as they move into autumn or winter5.52

SARS-CoV-2 is an enveloped RNA virus which is structurally (if not phylogenetically)53

similar to other RNA viruses such as influenza, MERS, and HcoV-NL636, that are known54

to display seasonal dynamics due to their physical properties. For example, high temper-55

atures and low humidity can have a negative effect on influenza transmission by reducing56

the efficiency of respiratory droplet transmission7,8. Similar effects are seen in transmis-57

sion of coronaviruses9–11, where high environmental temperatures break down viral lipid58

layers to inactivate virus particles that are in the air or deposited on surfaces10,12. How-59

ever, assessing the role of environment during a disease outbreak is challenging13 because60

human factors such as population density, herd immunity, and behaviour are likely the61

main drivers of transmission14–16. Moreover, the non-pharmaceutical control measures62

and behavioural changes in response to COVID-19 have been unprecedented in the mod-63

ern era. These difficulties have hindered the quantification of the impact of environment64

on SARS-CoV-2 transmission, making it harder to generalise and synthesise observations65

across regions with their differing climates. Despite these caveats, various early studies66
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have already reported effects of environmental variables such as temperature, humidity,67

UV levels, and wind-speed on the transmission of SARS-CoV-217–24. While, in general,68

most studies appear to support increased transmission rates under cool, dry conditions18,69

conflicting results have been observed21,25 and collectively the environmental signal ap-70

pears to be weak5. Much of the variability in these early results is likely due to the use71

of inappropriate response variables (such as cases or fatalities) which fail to capture the72

intrinsic variations in transmission intensity driven by the effects of non-pharmaceutical73

intervention measures5. Furthermore, COVID-19 has taken hold in many places with74

diverse climates and there are obvious examples of high transmission rates under hot,75

humid conditions, e.g. in Brazil26.76

Accurate assessment of the role environmental factors have played so far in the spread77

of SARS-CoV-2 may provide insight into the future seasonality of the disease. This is78

because seasonal outbreaks of viruses are often driven by their responses to favourable79

(seasonal) changes in weather27. Most epidemiological forecasts make use of some variant80

of the Susceptible–Infected–Recovered (SIR) framework and/or focus on the impacts of81

government-level mitigation (e.g. Kissler et al. 28 , Walker et al. 29). Few epidemiological82

models incorporate environmental impacts and, when they do, they assume COVID-1983

responds in a manner identical to related coronaviruses because we lack data on SARS-84

CoV-2’s environmental (and thus seasonal) responses (e.g. Baker et al. 18). This is85

despite theoretical demonstrations of the potential role of environment in driving future86

seasonality of SARS-CoV-222,30 and the empirical evidence in structurally-similar viruses87

outlined above. Efforts to incorporate climate into COVID-19 forecasting have focused88

on regression-type models of cases and fatalities (e.g. Araujo and Naimi 17), which are89

unreliable when diseases are in the growth/expansion phase31. Furthermore, such models90

conflate environmental controls on occurrence with other drivers such as public health91

interventions (e.g., the effects of lockdown measures to contain the pandemic)31 as both92

are changing similarly through time. Such models are unlikely to yield useful insights93

and may be misleading to policymakers13. To address this knowledge gap, there is a need94

for a true synthesis of environmental modelling with well-established epidemiological95
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approaches.96

Here we investigate the role of environment in the transmission of SARS-CoV-2 by incor-97

porating environmental factors into an existing epidemiological framework that has been98

applied globally32–34, and to the USA in particular35. The USA is a large country with99

great variation in climate across which case and policy intervention data are comparable,100

permitting us to disentangle the role of environmental drivers in SARS-CoV-2 transmis-101

sion. We begin by exploring associations between the environment (temperature, hu-102

midity, UV radiation, and population density) and transmission intensity independently103

estimated before and during stay-at-home orders (henceforth termed “lockdown”). We104

used the basic reproduction number (R0) for our pre-lockdown transmission intensity105

estimates, and the time-varying reproduction number (Rt, the reproduction number, R,106

at a given time, t) averaged across an appropriate time-window for our during-lockdown107

estimates. After confirming a potential role for the environment, we verify and more108

accurately quantify the relative roles of temperature and population density by integrat-109

ing them into an existing semi-mechanistic epidemiological framework35. While we find110

strong evidence that temperature and population density are associated with SARS-CoV-111

2 transmission, we emphasise that our findings also re-confirm that the major drivers of112

transmission rates are public policy and individual behaviour. Through our use of exist-113

ing, robust sources of forecasts and models, our findings can be easily incorporated into114

workflows already used by policymakers, as we detail here.115
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Results116

When analysed jointly, the R0 of all USA states are fairly well predicted by all explanatory117

variables included in the regression model (i.e. population density, temperature, absolute118

humidity and UV radiation), with an overall model adjusted r2 of 58% (supplementary119

table S1). However, UV radiation is a very weak predictor of R0, while temperature120

and absolute humidity show sufficiently strong correlations with each other (r = 0.85)121

that we cannot disentangle their contributions to R0 due to high inflation of variances122

(supplementary table S1). This is further demonstrated through principal components123

analysis, where temperature and absolute humidity fall along the same principal compo-124

nent axis (supplementary figure S1). We therefore focused on temperature as the best125

fitting climate variable (assessed by Pearson’s r, supplementary table S2).126

When regressed against temperature and log10-transformed population density only, we127

find that R0 significantly increases with population density and decreases with tempera-128

ture (fig. 1; both p < 0.001, table 1). We see a stark difference, however, when analysing129

Rt during lockdown (defined as the mean Rt recorded over the 14 day period following a130

stay at home order): much less of the variation in Rt is explained by the regression model131

(adjusted r2 = 18%), vastly lower model coefficients for explanatory variables (i.e., much132

lesser correlations; supplementary table S3, but note that population density is still a133

significant predictor), and much lower Rt estimates overall (paired t39 = 21.1; p < 0.001;134

figure 1b). Additionally, if we regress the combined R0 and Rt estimates against tem-135

perature and population density, using lockdown as a binary interaction term, we find136

a significant interaction between lockdown and temperature (p < 0.001, supplementary137

table S5), i.e. lockdown mediates the effects of climate on transmission.138

The strong correlates of population density and temperature on R0 across the United139

States were echoed in our climate-driven Bayesian modelling of daily variation in Rt.140

Posterior medians of the scaled coefficients of (log10-transformed) population density and141

daily temperature were 0.68 and −0.48, respectively. These coefficients were strongly142

supported (both Bayesian probabilities > 99.9%), and suggest that greater population143
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density is approximately 1.4 times a greater driver of higher transmission than colder144

temperature (0.68
0.48
≈ 1.4). Changes in mobility (such as those induced by stay-at-home145

measures) have the potential to mitigate these impacts of both population density and146

temperature (figure 3). Our model suggests that even quite large variation in underlying147

transmission driven by either variation in temperature through time, or in population148

density across space, can be mitigated by reductions in mobility (see also supplementary149

figure S2). Critically, however, the posterior distributions are skewed, particularly for150

population density: high population density may be difficult to mitigate except through151

large mobility reductions (as shown by the credibility intervals in figure 3). We emphasise152

that other transmission mitigation decisions, such as hand-washing, mask-wearing, and153

physical distancing, were not assessed in our model. We highlight that the posterior154

estimates of environment and average mobility were correlated (Pearson’s r = 0.30 for155

temperature and r = −0.32 for population density). This likely results from correlated156

changes in mobility and temperature through time, and makes the estimated mobility157

reductions in figure 3 conservative (i.e., we potentially report larger mobility reductions158

than would be necessary to mitigate environmental effects).159

Table 1: Population density and temperature are drivers of R0 at state-level
in the USA. Multiple r2 = 0.6037, adjusted r2 = 0.5822, F2,37 = 28.18, p < 0.001.
Scaled estimates are coefficients when predictors are scaled to have mean = 0 and SD
= 1. Scaling our explanatory variables means our coefficients are measures of the relative
importance of each variable. In contrast to our epidemiological modelling, temperature
is a greater driver of pre-lockdown R0 than population density (log10-transformed). * =
p < 0.05

Scaled Estimate Std. Error t value p-value
(Intercept) 2.5600 0.0494 51.80 < 0.001*

Temperature -0.2801 0.0516 -5.43 < 0.001*
log10(Pop density) 0.1921 0.0516 3.72 < 0.001*
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(a) (b)

Figure 1: R0 is affected by the environment, but the impact of lockdown is
greater. (a.) R0 plotted against temperature (averaged across the two weeks prior
to the R0 estimate) and log10-transformed population density (people per km2) for each
USA state (grey points). Surface shows the predicted R0 from the regression model (table
1). Temperature has a negative effect on R0 at state-level in the USA, whilst population
density has a positive effect (table 1). (b.) The mean Rt for the two weeks following
a state-wide stay-at-home mandate (i.e., during lockdown) plotted against average daily
temperature for the same period and log10-transformed population density. The effects
of temperature and population density are much weaker in the mobility-restricted data
and R is reduced overall. The same colour scale, given in the centre of the figure, is used
across both sub-plots.

(a) (b)

Figure 2: The relative importance of temperature and population density as
drivers of pre-lockdown R0. (a.) Heatmap of the regression model R0 predictions,
with USA state-level R0 point estimates overlaid. High population densities and low
temperatures drive increases in SARS-CoV-2 R0. This is a 2D representation of the
regression plane in fig. 1a, using the same colour-scale. (b.) Residuals from a linear
regression of R0 against log10-transformed population density (“Corrected R0”), plotted
against temperature. This illustrates that, when considering population density alone,
R0 is overestimated in cold states and underestimated in warm states. After accounting
for population density, there is a significant effect of temperature upon R0 (see table 1).
In both figures, points are highlighted with standard two-letter state codes; MN and FL
refer to Minnesota and Florida, respectively, and are referred to in the discussion.
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Figure 3: Average mobility reductions required to mitigate differences in pop-
ulation density and temperature. This figure shows the percent reduction in average
mobility (measuring retail, recreation, grocery, pharmacy, and workplace trips) needed to
compensate for a given temperature (brown) or population density (blue) driven increase
in Rt. These calculations assume a ‘background’ R0 of 1 and a baseline ‘background’
mobility (defined as ‘0’ by Google36). Solid lines represent the median mobility reduc-
tion required, dashed and dotted lines the 75% and 90% posterior credibility intervals
respectively.
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Discussion160

Here, by combining epidemiological models and outputs with spatial climate data, we161

show that environment (specifically cold, but also the correlated low-humidity conditions)162

can enhance SARS-CoV-2 transmission across the USA. Critically, however, these envi-163

ronmental impacts are weaker than that of population density which is, itself, a weaker164

driver than policy intervention (i.e., lockdown). Below, we suggest that the accuracy of165

forecasts of SARS-CoV-2 transmission, in particular across seasons, could be improved166

by incorporating temperature, as well as population density, in a robust, reproducible167

manner as we have done here.168

The role that environment plays in transmission169

Across these state-level USA data, we found a significant negative effect of temperature170

on SARS-CoV-2’s R0 and a significant positive effect of population density. An important171

caveat to this, however, is the collinearity between temperature, absolute humidity, and172

to a lesser degree, UV levels. The strong correlations between these environmental drivers173

mean that we are unable to discern the effects of each in a single model and therefore we174

focus on temperature as the most reliable environmental predictor. After accounting for175

the effect of population density on transmission (table 1), temperature’s effect is striking176

(figure 2). We also tested the effects of our predictor variables on Rt for times where177

strict lockdown measures were in place. When these mobility restrictions are in place, we178

observe no significant effects of temperature on Rt, i.e. the effects of lockdown dampen179

any environmental effects so as to make them inconsequential (figure 1b; supplementary180

table S3). Furthermore, under lockdown conditions the overall transmission rates are181

vastly reduced. Through our epidemiological modelling approach we are able to account182

for these effects (as mobility changes are explicitly incorporated), and find that higher183

population densities and lower temperatures drive increased Rt. Moreover, the formula-184

tion of our epidemiological model ensures that under high mobility reductions, changes185

in environment have little effect on Rt, mirroring our regression findings (see Methods186
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and supplementary figure S2).187

The precise physiological mechanisms for temperature-dependant inactivation in SARS-188

CoV-2 are still not known, but animal models for influenza have shown that increased189

viral transmission at lower temperatures can be due to effects on the host7,8. In animal190

models, this is proposed to be due to the combined effects of higher titres of viral particle191

shedding and greater viral stability in nasal passages of those housed in cooler condi-192

tions8. In addition to host effects, the persistence time of the virus outside of the body193

is expected to be negatively affected by higher environmental temperatures, which cause194

viral inactivation via breakdown of their lipid layers10,12. We emphasise that both the195

direct host effects, and the potential effects of environment on viral stability, are likely196

moderated (if not mitigated) by indoor heating37, although the same may not always be197

true of humidity. Contact rate is related to population density16, and so it is unsurprising198

that population density was a significant factor in our analysis (figure 1a). We stress that199

temperature was not a driver of transmission under lockdown and the effects of popula-200

tion density were lessened (figure 1b): outdoor conditions and population density matter201

little for indoor transmission.202

There are important methodological caveats to our findings. Dynamics and reporting203

between USA states are known to be variable38, introducing a level of uncertainty to our204

findings. Furthermore, lockdown measures were (and continue to be) quite heterogeneous205

across the USA, with different states displaying different levels of response to COVID-206

1939. Through our epidemiological modelling approach we are able to account for these207

different state-level responses using google mobility data. We can also observe other208

potential confounding factors in these analyses. Across the USA, the north-eastern states209

in the vicinity of the major transport hub of New York City (e.g., NY, NJ, ME, PA, RI,210

and CT) tend to have generally higher R0 than predicted, whilst west-coast states (e.g.,211

WA, CA, and OR) have lower R0 than predicted (fig 2a). While this type of effect could be212

due to preemptive protective measures taken by states prior to COVID-19 outbreaks, we213

likely mitigated this by removing states that initiated non-pharmaceutical interventions214
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before our first time-step (see methods). A further confounding factor may be seen if215

temperature affects human behaviour, thus making it difficult to disentangle the effects216

of climate from changes to mobility. We do find a link between the average mobility and217

temperature coefficients in our Bayesian modelling, suggesting a degree of collinearity,218

however (perhaps surprisingly), we see no direct correlations between daily temperature219

and recreational mobility trends for parks (see supplementary information). Again, this220

highlights the importance of human behaviour as a confounding factor in analyses of221

environmental drivers on SARS-CoV-2 transmission. Future work should consider finer-222

grained population density, as well as the presence of major transport hubs in a given223

region.224

Policy relevance of our findings225

Our results comparing SARS-CoV-2 transmission rate before and during lockdown sup-226

port the idea that the major driver of transmission is public health policy32,40,41 (see figure227

1). Once stay-at-home measures were implemented across the USA, we can find no mean-228

ingful signal of temperature on transmission. This provides two important, and timely,229

insights for policy-makers: summer weather is no substitute for mitigation, and policy can230

prevent transmission in the winter. At the coarse scale of USA states, population den-231

sity is a greater driver of transmission intensity than temperature in our epidemiological232

modelling (log10(population density) ≈ 1.4× larger scaled coefficient than temperature).233

It should be considered whether thresholds for adaptive and/or intermittent lockdown234

might be more precautionary (i.e., lower) in colder, more densely-populated regions.235

However, we strongly suggest that this should neither be in order to allow other regions236

to actively relax restrictions, nor conducted without further examination of finer-scale237

disease dynamics. When making decisions about the relative importance of climate and238

population density, it is important to account for the magnitude of variation in the two239

variables. Temperature varies widely across the US, and that differences in transmission240

rates between states (contrast, for example, Minnesota and Florida in figure 2) may vary241

due to climate does not imply that more modest climate differences within a state drive242
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differences through time or across space. Regardless, our analysis is too spatially coarse243

to address such variation. Even quite large variations in climate are more straightforward244

to mitigate than population density differences (figure 3), and so we suggest that regions245

with higher population density should continue to be monitored carefully. Finally, we246

emphasise that population density and temperature are well-known to be strongly cor-247

related across USA states (see also figure 2); this does not affect our model fitting of248

coefficient estimates, but it does affect their interpretation. A more densely-populated249

state is also likely to be warmer, and so we suggest that both factors (and others, such250

as mobility) should be taken into account when trying to a priori estimate a region’s251

transmission rate.252

These results have strong implications for modellers considering the potential impacts253

of seasonality on the virus. Such work has already considered the role that seasonality254

might play by assuming responses of structurally similar and/or related diseases are255

adequate proxies for SARS-CoV-218. These assumptions are broadly correct, but here256

we parameterise and quantify the magnitude of this effect for SARS-CoV-2. Our findings257

suggest that previously unexplained variation among regions’ transmission, such as in258

our independently-estimated R0 data, can be accounted for by environmental factors.259

Further, our results support a role for daily temperature changes in transmission, but, we260

emphasise, do not conflict with other studies suggesting that seasonal forecasting plays261

a secondary role to mitigation and/or number of susceptible individuals. Such studies18262

assumed SARS-CoV-2 responds to climate to broadly similar extents that we find here.263

What our results do suggest, however, is that future forecasting work should consider the264

use of the environment to enhance predictions of disease spread. In countries such as the265

USA with continental climates that swing between extremes of heat and cold, we suggest266

policy-makers should assume that transmission will increase in winter (and potentially267

autumn/fall). The timing of the seasons are broadly predictable, and so this is an area268

in which policy could be proactive, not reactive.269
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Conclusion270

There is no single cause of, or solution to, the current COVID-19 pandemic, and all drivers271

must be placed in perspective. Here we suggest that both environment, and daily weather,272

may play a role in the transmission of SARS-CoV-2. The major driver of transmission,273

and our best method of controlling it, is public policy, as this and many other studies274

have shown40,41. The role of environment in transmission has become controversial, in275

part because of the application of models to case prevalence, rather than fundamental276

epidemiological parameters such as R that we model here. We call for more researchers277

to work directly with epidemiologists to identify those components of epidemiological278

modelling that can be informed by outside specialists’ areas of expertise. By working279

together, we can efficiently increase epidemiological research capacity to better combat280

and control this pandemic.281
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Methods282

We explored the association between environmental covariates and SARS-CoV-2 trans-283

mission intensity using two approaches. First, we took existing state-level estimates of284

R0 and during-lockdown Rt for the USA35, and regressed them against environmental285

data in order to test for potential pre- and during-lockdown patterns. In the second286

approach, we modified and fitted the existing semi-mechanistic epidemiological model287

used to generate the R0 and Rt estimates above, and fitted it to the observed death288

time series whilst explicitly incorporating the effects of the most important aspects of289

environment (temperature and population density) on the virus. This second model290

makes use of daily weather observations and provides a rigorous framework to quantify291

the drivers of SARS-CoV-2 transmission across the USA. The first approach mitigates292

potential biases arising from the autocorrelation of the initiation of lockdown and the293

cessation of winter in the USA in the second approach, since our independent regression294

focuses on initial transmission (i.e., R0). Below, all software packages given in italics295

are R packages (version 3.6.3)42 unless otherwise specified. Code to reproduce our anal-296

yses, download source data, and update models with new data as it becomes available,297

are given in both the supplementary materials and at our team’s GitHub repository298

(https://www.github.com/pearselab/tyrell).299

Data collection300

We collated global population density data from the Center for International Earth Sci-301

ence Information Network (CIESIN) 43 , and hourly temperature (T ), relative humid-302

ity (RH) and surface UV radiation (in J m−2) estimates for 2020 from the Copernicus303

Climate Change Service 44 . All the above data were at the same spatial resolution of304

0.25x0.25◦. The amount of water vapour air can hold increases with temperature and,305

since in other viruses the absolute humidity (AH) of air can drive transmission more306

than relative saturation37,45, we calculated absolute humidity from our data using the307

the Clausius–Clapeyron relation and the ideal gas law22,45:308
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AH = 1000 · e0 · e
L
Rv

( 1
T0

− 1
T
) ·RH

Rv · T
(1)

Where AH (g m−3) is the absolute humidity, T (K) the temperature in a given cell, RH309

the relative humidity in a given cell (expressed as a percentage), e0 the saturation vapor310

pressure (6.11mb) at reference temperature T0 (which we set as 273.15K), L the latent311

heat of evaporation for water (2257 kJ kg−1), and Rv the gas constant for water vapour312

(461.53 J kg−1K−1).313

We used the Climate Data Operators program46 to compute daily means for each of our314

climate variables. Finally, we averaged the value of each covariate (median) across the315

state-level administrative units given by GADM shapefiles47 (the 50 USA states, plus316

Washington DC).317

Independent validation of the impact of environment on R0318

To validate the impact of the environment on R0 we used an existing dataset of SARS-319

CoV-2 transmission rate estimates for each of the states of the USA35. We used the320

basic reproduction estimates (R0, before the implementation of any non-pharmaceutical321

interventions) as a fundamental measure of virus transmissibility in each state.322

In these data, R0 is estimated as Rt=0 where t = 0 occurs 30 days prior to the first 10323

cumulative deaths recorded for each state32,35. The date upon which R0 is estimated324

therefore differs between states. To account for these temporal differences, we took the325

means of our daily climate variables across the 14 days prior to t = 0 for each state326

as an approximation for the conditions under which each population first experienced327

COVID-19. To test the impact of the environment on R0, we performed multiple linear328

regression on R0 with temperature, absolute humidity, UV radiation, and population329

density as predictors. To compare environmental effects on the reproduction number un-330

der mobility restriction measures (i.e., lockdown), we took the average (mean) Rt across331

the 14 days following a state-wide stay-at-home mandate and regressed these against332
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the environmental predictors averaged across the same time period. We used 14 days333

again here for consistency with our environmental comparison to R0. Although mobility334

restrictions may differ in magnitude between states, these effects are incorporated into335

the estimates for the Rt parameter. In 7 states (Arkansas, Iowa, North Dakota, Ne-336

braska, Oklahoma, South Dakota, and Wyoming) no state-wide stay-at-home mandate337

was declared. In a further 4 states (Alaska, Hawaii, Montana, and Utah), t = 0 occurred338

after non-pharmaceutical interventions had already been instated. These 11 states were339

therefore excluded from the independent validation analyses.340

Integrative modelling of the impact of environment on SARS-341

CoV-2 transmission342

To further assess the potential impact of environment on SARS-CoV-2 transmission, we343

modified the semi-mechanistic Bayesian model35 that generated the R0 and Rt estimates344

used above to incorporate both population density and daily temperature (the best fitting345

climate variable; see results), as follows:346

Rt,m = (µ+ct,mC+pmP )·2InvLogit(−
∑

(Xt,m,kαk)−Xt,m,1α
region
r(m) −Xt,m,2α

state
m −ε) (2)

Where µ captures overall transmission common to all states, c the coefficient for temper-347

ature (Ct,m; in degrees C) at time (t) in state m, p the coefficient for population density348

(Pm) of state m (log10-transformed people per km2). We standardised ct,m and pm to have349

a mean of 0 and standard deviation of 1, in order to make their absolute magnitudes mea-350

sures of the relative importance of each term and thus facilitate their comparison. We351

placed strong, conservative priors on these new model terms, specifically:352

ct,m, pm ∼ Normal(0, 0.5) (3)
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353

µ ∼ Normal(3.28, 0.5) (4)

For µ, this is the same as the prior used in the original (non-climate) model35 (but see354

our caveat below about this term). The other terms are unchanged from their original355

definitions given in Unwin et al. 35 , and we briefly describe them below. InvLogit is356

the inverse logit transformation applied to a series of hierarchically-nested terms (αk,357

αregion
r(m) , and αstate

m ) multiplied by Google mobility data36 (Xt,m,k) with a weekly AR(2)358

autocorrelated error term for each state (ε; see Unwin et al. 35 for more details). Xt,m,k are359

three US-wide measures of the impact of changing mobility across states (a daily proxy360

for lockdown intensity) on ‘average’ across retail and recreation, grocery and pharmacy,361

and workplace trips (Xt,m,1), in ‘residential’ areas (Xt,m,2), and using public ‘transit’362

(Xt,m,3). We focus on the vector αk, whose three entries assess the impact of mobility363

comparably across the country (and thus are each analogous to c and p). The terms364

αregion
r(m) and αstate

m address differences in average mobility across eight broad geographic365

regions [the Great Lakes, Great Plains, Rocky Mountains, Northeast Corridor, Pacific366

North-West, South Atlantic, Southern Appalachia, and the South (‘TOLA’); indexed by367

r(m)] and for transit across individual states (m), respectively. While we attempted to368

address comparable hierarchically-nested temperature responses in this model, we felt369

the correlation between changes in Xt,m,k and ct,m were inducing fitting problems and370

so opted for a model simpler (and so more conservative) in its novel components. In371

this model formulation, temperature and population density essentially contribute to a372

latent transmission rate, which is then mediated by the mobility terms to produce the373

realised Rt. Although an interaction between mobility and environment (as found in our374

regression modelling, see Results) is not explicitly modelled, this formulation produces375

results analogous that finding, i.e. when mobility reductions are high (“lockdown”),376

environment has little effect on the realised Rt (see supplementary figure S2).377

We emphasise that the model presented here differs from the original model by fitting378

a common µ across all states, instead of allowing each state to have a different baseline379
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µ that was hierarchically drawn from a common parameter (itself termed µ in Unwin380

et al. 35). This difference ensures identifiability of our model parameters, since the (la-381

tent, and hierarchically pooled) state-wise means are strongly driven by both population382

density and environment that are now included in the model (see results). Our model,383

which was directly adapted from the code in Unwin et al. 35 , was fit using rstan 48 with384

5 independent chains (each with 3,000 total iterations and a warm-up of 1,000). Full385

model coefficients and outputs are given in the supplementary materials (supplementary386

table S6); posterior predictive checks were performed to ensure that the predicted Rt387

values for each state through time were realistic and sensible and all chains had mixed388

and converged.389
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