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Abstract4

In the United States, schools closed in March 2020 due to COVID-19 and have begun reopening5

as of August 2020, despite continuing transmission of SARS-CoV-2. To determine the impact6

of school reopening with varying levels of operating capacity and face-mask adherence, we used7

an agent-based model calibrated to and validated against multiple data types from the state of8

Indiana, USA. In our model, transmission can occur in schools, workplaces, community settings,9

and households, all of which are structured in a realistic way according to state geography10

and demography. Using this model, we quantified the burden of COVID-19 on K-12 students,11

teachers, their families, and the general population under alternative scenarios about school12

reopening. In our primary analysis, we considered three levels of school operating capacity13

(50%, 75%, and 100%) and three assumptions about face-mask adherence in schools (50%, 75%,14

and 100%). Under a scenario in which schools operate remotely, we projected 45,579 (95%15

CrI: 14,109-132,546) infections and 790 (95% CrI: 176-1680) deaths between August 24 and16

December 31. Reopening at 100% capacity with 50% face-mask adherence in schools resulted17

in a proportional increase of 42.9 (95% CrI: 41.3-44.3) times that number of infections and 9.218

(95% CrI: 8.9-9.5) times that number of deaths. In contrast, operating at 50% capacity with19

100% face-mask adherence resulted in only an 11% (95% CrI: 5%-18%) increase in the number20

of infections compared to the scenario in which schools operate remotely. We conclude that21

reduced capacity and high face-mask adherence in schools substantially reduce the burden of22

COVID-19, both among those with direct ties to schools and across the state. As Indiana and23

other states proceed with school reopening, our results illustrate quantitatively the benefits of24

safety measures that schools are undertaking, underscoring their value for both schools and their25

communities.26
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1 Introduction29

The United States has been the country most severely impacted by the COVID-19 pandemic30

in terms of total reported cases and deaths, with over 5.2 million cases and 167,000 deaths31

through August 14 [1]. This severity led to social interventions on an unprecedented scale,32

including restrictions on mass gatherings, bans on non-essential travel, and school closures [2, 3,33

4, 5]. While such restrictions were initially successful in reducing transmission, the subsequent34

relaxation of restrictions on mass gatherings and movement were followed by large increases in35

notified cases and, more recently, deaths [1, 3, 6, 7]. The state of Indiana reported its highest36

daily number of cases to date (1,249) on August 6 [8].37

It is within this context of intense community transmission that attention has turned to the38

reopening of schools for the start of the academic year in August [9, 10, 11]. During influenza39

epidemics, school closures have been estimated to reduce transmission community-wide [12, 13,40

14]. In general, schools are seen as key drivers of the transmission of respiratory pathogens due to41

close contact among children at school [15, 16, 17]. However, several factors complicate the effect42

of school reopenings on SARS-CoV-2 transmission. In particular, children and adolescents appear43

less susceptible to infection and are much less likely to experience severe outcomes following44

infection [18, 19, 20, 21, 22, 23]. It is also still unclear what their contribution to transmission is,45

but several studies suggest they can play an important role [18, 24, 25, 26]. There are additional46

economic and social factors to consider, too, such as the economic costs of school closures for47

families that must then stay home from work, and the nutritional benefits of school reopening48

for children who rely on free and subsidized school meals [27, 28, 29].49

Our objective in this study was to explore the impacts of strategies for school reopening on50

the burden of COVID-19 in the state of Indiana, USA. We synthesized evidence around features51

of COVID-19 epidemiology in children [19] in an agent-based model originally developed for52

pandemic influenza [30] that is equipped to translate such evidence into projections of community-53

wide transmission under alternative scenarios about school reopening. We focused on the role of54

reducing the capacity of classrooms and adherence to wearing face masks in schools, given that55

both physical distancing and face masks have been shown to reduce transmission of SARS-CoV-56

2 in community settings [31]. Our main outcome measures were changes in statewide totals of57

SARS-CoV-2 infections, symptomatic infections, and deaths, across different scenarios of school58

capacity and face-mask adherence, compared with a baseline scenario in which schools operate59

remotely.60
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2 Methods61

Approach62

Our approach to modeling SARS-CoV-2 transmission is based on the Framework for Recon-63

structing Epidemic Dynamics (FRED) model [30]. Using this model, we simulated the spread of64

SARS-CoV-2 in the population of Indiana, USA using a synthetic population with demographic65

and geographic characteristics of the population, including age, household composition, house-66

hold location, and occupation [32]. We analyzed the impact of school reopening from August 2467

(first day of classes in Marion County, the most populous) to December 31, 2020 in the overall68

population of Indiana, as well as in students, teachers, and their households. We quantified69

impact as the difference in the number of COVID-19 infections, symptomatic infections, and70

deaths, between each scenario and the baseline scenario.71

Agent-based model72

We chose an agent-based model for this analysis to address key issues such as heterogeneity of73

transmission within a population due to population density, age, occupation, and contact net-74

work. We used a synthetic population of Indiana to realistically represent characteristics of the75

population [32]. FRED simulates pathogen spread in a population by recreating interactions76

among people on a daily basis. Each human is modeled as an agent who visits a set of places77

defined by their activity space (houses, schools, workplaces, and neighborhood locations). Trans-78

mission can occur when an infected person visits the same location as a susceptible person on79

the same day, with numbers of contacts per person specific to each location type. For instance,80

school contacts depend not on the size of the school but on the age of the student. Every day of81

the week, students and teachers visit their school, and students are assigned to classrooms based82

on their age. Given that schools are closed during the weekends, community contact is increased83

by 50% [30]. For both schools and other locations, we adopted contact rates for each location84

type that were previously calibrated to attack rates for influenza specific to each location type85

[30, 33].86

Once infected, each individual had latent and infectious periods drawn from distributions87

calibrated so that the average generation interval distribution matched estimates from Singapore88

(mean = 5.20, standard deviation = 1.72) [34]. The absolute risk of transmission depended on the89

number and location of an infected individual’s contacts and a parameter that controls SARS-90

CoV-2 transmissibility upon contact, which we calibrated. A proportion of the infections were91

asymptomatic [35]. We assumed these infections were as infectious as symptomatic infections92

and had identical incubation and infectious period distributions [36, 37, 26, 38]. We assumed that93

children were less susceptible to infection than adults, which we modeled with a logistic function94

calibrated to model-based estimates of this relationship by Davies et al. [19]. We assumed that95

severity of disease increased with age, consistent with statistical analyses performed elsewhere96

[39, 40, 41, 21].97

Agent behavior in FRED has the potential to change over the course of an epidemic. Following98

the onset of symptoms, infected agents self-isolate at home according to a fixed daily rate, whereas99
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others continue their daily activities [42, 43]. This rate was chosen so that, on average, 68% of100

agents will self-isolate at some point during their symptoms, where 68% is the proportion of101

symptomatic infections with a fever and assuming that those with a fever are likely to self-102

isolate. [43]. Agents can also respond to public health interventions, including school closure,103

shelter in place, and a combination of mask-wearing and social distancing. School closures104

occur on specific dates [44], resulting in students limiting their activity space to household and105

neighborhood locations. Shelter-in-place interventions reduce some agents’ activity spaces to106

their households only, whereas others continue with their daily routines. We used mobility107

reports from Google [45] to drive daily compliance with shelter-in-place, such that shelter-in-108

place compliance in our model accounts for both the effects of shelter-in-place orders and some109

people deciding to continue staying at home after those orders are lifted [46]. We used Google110

Trends data for Indiana using the terms “face mask” and “social distancing” [47] to capture111

temporal trends and survey data [48] to capture the magnitude of these behaviors. Our default112

assumption about protection afforded by face masks followed a median estimate of the adjusted113

odds ratio of 0.3 against SARS-CoV in a non-health care setting [49, 31]. Further details about114

the model are available in the Supplementary Text.115

Data and outcomes116

We obtained daily incidence of death from the New York Times COVID-19 database [1]. Hospi-117

talizations and the age distribution of deaths reported in Indiana were obtained from the Indiana118

COVID-19 dashboard [8]. Daily numbers of tests performed in the state were available from The119

Covid Project [50]. We calibrated the model to daily values of deaths, hospitalizations, and test120

positivity through August 10 and to the age distribution of deaths cumulative through July 13121

to estimate nine model parameters using a sobol design sampling algorithm [51, 52] (Supplemen-122

tary Material). We validated the model by comparing its predictions of the infection attack rate123

overall and by age to results from two statewide serological surveys undertaken in late April and124

early June [53, 54].125

To account for uncertainty in the calibrated parameters in our future projections, we sim-126

ulated nine scenarios about school reopening with values of the model’s nine free parameters127

sampled from the calibrated distribution. From August 24 to December 31, we outputted num-128

bers of daily infections, symptomatic cases, hospitalizations, and deaths, structured by age, place129

of infection (school, home, other), and affiliation with schools (student, teacher, none). For our130

analysis, we focused on infections, symptomatic infections, and deaths in the overall population131

and the subgroups of students, teachers, and their families.132

Model scenarios133

Our primary analysis focused on three scenarios for school operating capacity (50%, 75%, or134

100% of students receiving in-person instruction) and three scenarios for face-mask adherence135

in schools (50%, 75%, or 100%). We compared each of the nine combinations of these scenarios136

to a scenario in which schools reopened normally (100% capacity, 0% face-mask adherence) and137

to a scenario in which schools operated remotely until the end of the calendar year. For each138
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of these scenarios, we analyzed the sensitivity of the model outcomes to parameter uncertainty139

by calculating the partial rank correlation coefficient [55] of each calibrated parameter and two140

outcomes: the cumulative number of infections between August 24 and December 31, and the141

proportion of infections acquired in schools during that period.142

In addition to our primary analysis, we considered alternative scenarios about select model143

parameters that we regarded as potentially important unknowns. To explore the possibility that144

children play a lesser role in SARS-CoV-2 transmission than our default assumptions would145

suggest, we considered one alternative scenario in which asymptomatic infections (which are146

more likely to occur among children) are half as infectious as symptomatic infections, and a147

second alternative scenario in which children aged 0-10 years have lower susceptibility (0.1). To148

explore the possibility that face masks could be either more or less protective than our default149

assumption would suggest, we considered scenarios that followed adjusted odds ratio estimates at150

the lower (0.12) and upper (0.73) ends of the 95% CrI from the study that informed our default151

assumption about protection afforded by face masks [49, 31].152

3 Results153

Our model was generally consistent with the data to which it was calibrated, capturing trends154

over time in daily deaths, hospitalizations, and test positivity (Fig. 1A-C), as well as greater155

proportions of deaths among older age groups (Fig. 1D). Some trade-offs in the model’s ability156

to recreate different data types were apparent, such as a recent increase in hospitalizations that157

the model failed to capture (Fig. 1C), likely due to the predominance of data on deaths in the158

likelihood. Even so, the model’s predictions reproduced the range of variability in the data, as159

assessed by coverage probability of its 95% posterior predictive intervals (daily deaths: 0.85;160

daily hospitalizations: 0.93; daily test positivity: 0.95; cumulative deaths by age: 1.0). The161

model was also consistent with data withheld from fitting. Across all ages, the model’s 95%162

posterior predictive intervals of the cumulative proportion infected through late April (median:163

0.017; 95% CrI: 0.0045-0.051) and early June (median: 0.022; 95% CrI: 0.0058-0.069) spanned164

estimates from two state-wide serological surveys [53] (Fig. 2A). Our model’s predictions also165

overlapped with age-stratified estimates from those surveys (Fig. 2B), although it underpredicted166

infections among individuals aged 40-60 years.167

Calibration of the parameter that scaled the magnitude of SARS-CoV-2 importations [56, 57]168

in our model resulted in a median of 1.299 (95% PPI: 0.502-1.461) imported infections per day169

from February 1 to August 10. To ensure that the model reliably reproduced the high occurrence170

of deaths observed in long-term care facilities, we seeded infections into those facilities at a daily171

rate proportional to the prevalence of infection on that day; this calibrated proportion was 0.037172

(95% PPI: 0.022-0.092). On the opposite end of the age spectrum, our calibration resulted in173

a median estimate of susceptibility among children of 0.346 (95% CrI: 0.311-0.506), compared174

to 0.834 (95% CrI: 0.652-0.946) in adults (Fig. S1). Our calibration resulted in an estimate of175

transmissibility (median: 0.593; 95% CrI: 0.501-0.788) that corresponded to values of R(t) during176

the initial phase of the epidemic in Indiana of 1.46 (95% CrI: 0.31-3.48), which represents an177

average of daily values across the month of February (Fig. 1A). Driven by a calibrated estimate178
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that the proportion of people sheltering in place rose in early March and peaked at a median of179

Figure 1. Model calibration to data: A) daily incidence of death; B) proportion of deaths through
July 13 in decadal age bins; C) daily incidence of hospitalization; and D) daily proportion of
tests administered that are positive for SARS-CoV-2. In all panels, blue diamonds represent
data. In A, C, and D, the gray line is the median, the dark shaded region the 50% posterior
predictive interval, and the light shaded region the 95% posterior predictive interval.
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32.1% (95% CrI: 28.8-66.9%) on April 7 (Fig. S2A), our estimates of R(t) dropped to a low of180

0.57 (95% CrI: 0.42-0.71) on April 7 and have remained below 1 since (Fig. 1A). Also impacting181

our estimates of R(t) is the increasing use of face masks in the community, which we estimated182

at 0.534 (95% CrI: 0.461-0.540) as of July 19 (Fig. S2B). Note that this estimated distribution183

of community face-mask adherence does not differ between scenarios and is not the same as the184

level of adherence in schools, which we imposed at different levels depending on the scenario.185

In the event that schools reopen at full capacity and without any use of face masks, our model186

projects that R(t) would increase to 1.72 (95% CrI: 1.43-2.17) by mid-September (Fig. 3A). This187

assumes that levels of sheltering in place and face-mask adherence in the community remain at188

their estimated levels as of August 13 (Fig. S2B). Consistent with our model’s prediction that189

schools contributed appreciably to transmission early in the epidemic (median: 26.2%; 95% CrI:190

21.0-27.5%), this increase in transmission is associated with an increase in the proportion of191

infections arising in schools upon their reopening (Fig. 3B). The sensitivity of the proportion192

of infections arising in schools to model parameters was highest for the inflection point of the193

age-susceptibility relationship, the transmissibility parameter, and the rate at which infections194

were imported into long-term care facilities (Fig. S6). This increase in infections arising in195

schools is projected to give rise to additional transmission statewide (Fig. 3C). An example of196

transmission chains arising from schools and spilling out into school-affiliated families and the197

Figure 2. Model comparison with data withheld from fitting. We validated the model’s predic-
tions against data withheld from fitting on A) the cumulative proportion of the population of
Indiana infected through late April and early June, and B) the cumulative proportion infected
among individuals aged 12-40, 40-60, and 60+. Data are shown in navy and come from a ran-
dom, statewide serological survey [53]. Model predictions are shown in gray. In A, the line and
band indicate the median and 95% posterior predictive interval. In B, lines, boxes, and error
bars indicate median, interquartile range, and 95% posterior predictive interval.
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broader community is shown in Fig. 4.198

Figure 3. The impact of school reopening in Indiana on: A) the reproduction number, R(t),
over time; B) the proportion of infections acquired in different location types over time; and C)
the daily incidence of infection over time. In all panels, schools reopened on August 24. In A and
C, the line represents the median, and the shaded region represents the 50% posterior predictive
interval.
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Figure 4. Example transmission tree of SARS-CoV-2 from one simulation of the model for Saint
Joseph County, Indiana. Green shapes at the top represent agents in the model infected at school,
and arrows descending from them and other shapes show transmission events in school-affiliated
households (orange) and the community at large (purple) that trace back to infections originally
acquired in schools. Different shapes distinguish children (circles) from adults (squares).

In the event that schools remain open throughout the semester and no other policies or199

behavioral responses occur, the increase in R(t) driven by reopening schools at full capacity and200

without the use of face masks would be projected to result in 2.57 million (95% CrI: 2.36-2.88201

million) infections (Fig. 5A) and 10,246 (95% CrI: 7,862-13,794) deaths (Fig. 5B) from Indiana’s202

population as a whole between August 24 and December 31. At the other extreme, if schools203

were to go to remote instruction and all children remained at home, our model projects that R(t)204

would remain near current levels through the remainder of 2020 (Fig. S3A). Again, this assumes205

that levels of sheltering in place and face-mask adherence in the community as a whole remain at206

their estimated levels as of August 13. Under this scenario, transmission would continue through207

contacts at workplaces, within homes, and elsewhere in the community (Fig. S3B), with 45,579208

(95% CrI: 14,651-132,546) infections (Fig. S3C) and 790 (95% CrI: 176-1680) deaths between209

August 24 and December 31.210

Differing policies on the capacity at which schools operate in person and enforce the use of211

face masks have a strong influence on the projected statewide burden of COVID-19. If schools212

operate at 50% capacity and achieve high face-mask adherence, the number of infections and213

deaths that we project is similar to what we project under the scenario in which schools operate214

remotely (Fig. 5, Table S1). Of these two policies, projections of infections and deaths were more215

sensitive to the capacity at which schools operate, with the worst outcomes projected to occur216

when schools operate at full capacity and with low face-mask adherence. Under this scenario,217

cumulative infections statewide were projected to be 42.8 (95% CrI: 41.3-44.3) times greater218
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than if schools operated remotely, and cumulative deaths statewide were projected to be 9.2219

(95% CrI: 8.9-9.5) times greater (Table S1). The sensitivity of these results to model parameters220

was relatively high for parameters that define the age-susceptibility relationship and, in some221

cases, for the transmissibility and shelter-in-place compliance parameters (Fig. S5).222

We also explored the sensitivity of these results to alternative assumptions about the contri-223

bution of children to SARS-CoV-2 transmission and protection afforded by face masks. Under224

an alternative assumption that susceptibility of children aged 0-10 years was only 0.1, we ob-225

served reductions in cumulative infections and deaths that were consistent but relatively modest226

compared to differences due to operating capacity and face-mask adherence (Table S10, S11).227

Under an alternative assumption that the relative infectiousness of asymptomatic infections was228

50% that of symptomatic infections, we observed reductions in cumulative infections and deaths229

under high operating capacity but increases under low and medium capacity (Table S10, S11).230

Again though, these differences were relatively modest compared to differences due to operating231

capacity and face-mask adherence. Alternative assumptions about protection afforded by face232

masks resulted in consistent differences in cumulative infections and deaths, with lower face-233

mask efficacy associated with more infections and deaths (Table S12, S13). For example, under234

a scenario with 50% operating capacity and 100% face-mask adherence in schools, the increase in235

cumulative infections relative to operating remotely ranged from 7% (95% CrI: 3-11%) to 307%236

(95% CrI: 294-322%). Even so, the relative impacts of varying levels of operating capacity and237

face-mask adherence were generally similar under these alternative assumptions.238

The burden of COVID-19 associated with reopening schools differed for students, teachers,239

and their families. Relative to a scenario with remote instruction, risk of infection and symp-240

tomatic infection was greatest for students (Fig. 6, left column), with a hundred-fold or greater241

increase in the risk of infection if schools operate at full capacity with moderate or low face-mask242

adherence (Table S2). Due to their older ages, teachers and families experienced a much higher243

risk of death under scenarios with high capacity and moderate or low face-mask adherence, as244

compared with a scenario with remote instruction (Fig. 6, center & right columns). Under a245

scenario with high capacity and low face-mask adherence, there was a 166-fold higher risk of246

death for teachers (Table S3) and a 223-fold higher risk of death for family members of students247

and teachers (Table S4). At the same time, the risk of death under a scenario with high capacity248

and low face-mask adherence was around 72% the risk of death if schools were to operate at full249

capacity with no masks (Tables S7 & S8).250
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Figure 5. The impact of different school reopening strategies on A) cumulative infections and
B) cumulative deaths in Indiana between August 24 and December 31. Scenarios are defined by
the capacity at which schools operate (x-axis) and face-mask adherence (shading). Orange lines
represent projections under a scenario of school reopening at full capacity without masks (solid:
median; dotted: 95% posterior predictive interval). Blue lines represent a scenario where schools
operate remotely. Error bars indicate inter-quartile ranges.
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Figure 6. The impact of different school reopening strategies on cumulative infections (top row),
cumulative symptomatic infections (middle row), and cumulative deaths (bottom row) in Indiana
between August 24 and December 31. These outcomes are presented separately for students (left
column), teachers (middle column), and school-affiliated families (right column). Scenarios are
defined by the capacity at which schools operate (x-axis) and face-mask adherence (shading).
Orange lines represent projections under a scenario of school reopening at full capacity without
masks (solid: median; dotted: 95% posterior predictive interval). Blue lines represent a scenario
where schools operate remotely. Error bars indicate inter-quartile ranges.
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4 Discussion251

Our model provides a detailed, demographically realistic representation of SARS-CoV-2 trans-252

mission in Indiana that is consistent both with data to which it was calibrated and to data that253

was withheld from calibration. In contrast to models that rely on assumptions about intervention254

impacts or estimate them statistically [2, 58], our model makes predictions about intervention255

impacts based on first-principles assumptions about individual-level behavior and contact pat-256

terns. Consistent with results from other analyses [2, 58, 20], the inputs and assumptions in257

our model led to a prediction that schools made a considerable contribution to SARS-CoV-2258

transmission in February and early March, prior to large-scale changes in behavior. Extending259

that, a primary result of our analysis is that schools could, once again, make a considerable260

contribution to SARS-CoV-2 transmission as they resume normal activity in the fall semester.261

Our results indicate that operating at reduced capacity and achieving high face-mask adher-262

ence would reduce the burden of COVID-19 in schools and across the state. In the event that263

both interventions are pursued fully, our model projects that infections and deaths statewide264

would be around 10% greater than under a scenario with fully remote instruction. In the event265

that schools operate at full capacity, our model projects that infections and deaths statewide266

could be one to two orders of magnitude greater than under a scenario with fully remote instruc-267

tion, especially if there is poor face-mask adherence in schools. The impacts associated with268

reducing capacity result from reductions in both the number of contacts within the school and269

the probability that an infected student would be in attendance in the first place, similar to the270

logic behind why smaller gatherings are associated with reduced risk of transmission [3, 59, 60].271

The magnitude of our results was most sensitive to the degree of protection afforded by face272

masks, which remains uncertain in school and other community settings for SARS-CoV-2 [31].273

Although the scenarios we considered resulted in projected impacts spanning nearly the full274

range between fully remote instruction and fully in-person instruction with no face masks, they275

are a simplification of the full range of scenarios of how schools could operate this fall. Scenarios276

that we did not explore include different groups of students attending in person or remotely [61],277

varying degrees of modularization within schools [62], and the implementation of testing-based278

control strategies in schools [63]. A related simplification of our statewide analysis is that the279

state, in reality, consists of a patchwork of policies across districts. In light of this complexity that280

our model does not capture, our results should be interpreted with caution in setting specific,281

quantitative targets for capacity or face-mask adherence. For any scenario though, our results282

illustrate the importance of reducing capacity and maximizing face-mask adherence to the extent283

possible, as do other modeling studies [61, 62, 63, 64, 65].284

The burden of COVID-19 associated with reopening schools is not expected to fall evenly285

across the state’s population. Under scenarios with schools operating at full capacity, our model286

projects that hundreds of thousands of children could be infected during the fall semester.287

Whereas very few deaths are expected among infected children, the numbers of deaths among288

teachers and school-affiliated families could number in the hundreds. In comparison, the total289

number of deaths projected across the state is projected to be in the low thousands, meaning290

that adults with close ties to schools could represent a sizable fraction of deaths across the state291
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in coming months, if schools operate at full capacity and with low face-mask adherence. Im-292

portantly, the magnitude of these projections depend further on factors outside the control of293

schools [2]. In the absence of school reopening, our projections assume steady, controlled levels294

of transmission with R(t) < 1. Changes in government policies, individual behavior, and face-295

mask adherence in the community all have the potential to alter this trajectory for the state as296

a whole, as well as its schools [2, 31, 66].297

A critical assumption of our analysis is that children are capable of being infected with SARS-298

CoV-2 and transmitting it to others at meaningful levels. Although the burden of severe disease299

skews strongly towards older ages [22, 67, 8], there are other lines of evidence that support300

our assumption. These include a contact-tracing study that found no distinguishable difference301

between infectivity of children and adults [26], several studies that found no distinguishable302

difference in viral load between children and adults [68, 37, 36, 69], a study that observed a303

greater secondary attack rate among children in homes [26], and a modeling study that found304

no evidence that children were less infectious [70]. More direct evidence comes from COVID-305

19 outbreaks that have already been observed in schools, including one in a high school in306

Israel in which 13.2% of students and 16.6% of staff were infected in just 10 days [71]. Even307

more pertinent, some schools in Indiana recently reopened and have already reported cases of308

COVID-19 among students [72]. Our analysis offers perspective on what those initial cases could309

give rise to in coming months, depending on the degree to which schools choose to operate310

at reduced capacity and enforce face-mask adherence. Based on two alternative scenarios we311

explored about the potential for SARS-CoV-2 transmission among children, these lessons about312

the importance of operating capacity and face-mask adherence appear robust to outstanding313

biological uncertainties about transmission of SARS-CoV-2 by children.314

There is now a growing body of evidence that school closures contributed to mitigating the315

first wave of the epidemic and could lead to rising case numbers if relaxed [6, 63]. Our study316

adds to this evidence, and suggests an even greater impact of school reopening than several317

other studies [65, 63, 62, 73, 61]. This is due in part to our assumption that asymptomatic318

and symptomatic infections contribute similarly to transmission [26, 68, 37, 36, 69], and in part319

to our model’s ability to capture chains of transmission within schools and extending out into320

the community. Our study echoes several modeling studies in emphasizing the importance of321

reducing school capacity to impede transmission [62, 63, 64, 65, 73]. As schools grapple with322

COVID-19 throughout fall 2020 and beyond, results such as these provide an important basis for323

motivating the adoption and sustainment of reductions in operating capacity and adherence to324

face-mask requirements. As we demonstrated, these actions are highly consequential for those325

directly linked to schools and for the communities in which they are embedded.326
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