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Summary	13	

Background 14	
Cardiovascular	disease	(CVD)	is	the	number	one	cause	of	death	worldwide,	and	CVD	burden	is	increasing	in	low-15	
resource	settings	and	for	lower	socioeconomic	groups	worldwide.	Machine	learning	(ML)	algorithms	are	rapidly	16	
being	developed	and	incorporated	into	clinical	practice	for	CVD	prediction	and	treatment	decisions.	Significant	17	
opportunities	for	reducing	death	and	disability	from	cardiovascular	disease	worldwide	lie	with	addressing	the	18	
social	determinants	of	cardiovascular	outcomes.	We	sought	to	review	how	social	determinants	of	health	(SDoH)	19	
and	variables	along	their	causal	pathway	are	being	included	in	ML	algorithms	in	order	to	develop	best	practices	for	20	
development	of	future	machine	learning	algorithms	that	include	social	determinants.	21	
 22	
Methods 23	
We	conducted	a	systematic	review	using	five	databases	(PubMed,	Embase,	Web	of	Science,	IEEE	Xplore	and	ACM	24	
Digital	Library).	We	identified	English	language	articles	published	from	inception	to	April	10,	2020,	which	reported	25	
on	the	use	of	machine	learning	for	cardiovascular	disease	prediction,	that	incorporated	SDoH	and	related	variables.	26	
We	included	studies	that	used	data	from	any	source	or	study	type.	Studies	were	excluded	if	they	did	not	include	the	27	
use	of	any	machine	learning	algorithm,	were	developed	for	non-humans,	the	outcomes	were	bio-markers,	28	
mediators,	surgery	or	medication	of	CVD,	rehabilitation	or	mental	health	outcomes	after	CVD	or	cost-effective	29	
analysis	of	CVD,	the	manuscript	was	non-English,	or	was	a	review	or	meta-analysis.	We	also	excluded	articles	30	
presented	at	conferences	as	abstracts	and	the	full	texts	were	not	obtainable.	The	study	was	registered	with	31	
PROSPERO	(CRD42020175466).	32	
 33	
Findings 34	
Of	2870	articles	identified,	96	were	eligible	for	inclusion.	Most	studies	that	compared	ML	and	regression	showed	35	
increased	performance	of	ML,	and	most	studies	that	compared	performance	with	or	without	SDoH/related	36	
variables	showed	increased	performance	with	them.	The	most	frequently	included	SDoH	variables	were	37	
race/ethnicity,	income,	education	and	marital	status.	Studies	were	largely	from	North	America,	Europe	and	China,	38	
limiting	the	diversity	of	included	populations	and	variance	in	social	determinants.		39	
 40	
Interpretation 41	
Findings	show	that	machine	learning	models,	as	well	as	SDoH	and	related	variables,	improve	CVD	prediction	model	42	
performance.	The	limited	variety	of	sources	and	data	in	studies	emphasize	that	there	is	opportunity	to	include	more	43	
SDoH	variables,	especially	environmental	ones,	that	are	known	CVD	risk	factors	in	machine	learning	CVD	prediction	44	
models.	Given	their	flexibility,	ML	may	provide	opportunity	to	incorporate	and	model	the	complex	nature	of	social	45	
determinants.	Such	data	should	be	recorded	in	electronic	databases	to	enable	their	use.	46	
 47	
Funding 48	
We	acknowledge	funding	from	Blue	Cross	Blue	Shield	of	Louisiana.	The	funder	had	no	role	in	the	decision	to	49	
publish.	50	
	51	

Introduction	52	

An	estimated	17.9	million	people	die	each	year	from	cardiovascular	diseases	(CVD),	which	represent	31%	of	all	53	

deaths	worldwide	and	the	number	one	cause	of	death.1		Low-income	and	middle-income	countries	carry	75%	of	54	

the	burden	of	CVD	deaths	worldwide	and	in	high-income	countries,	lower	socioeconomic	groups	have	a	higher	55	
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incidence	of	CVD	and	higher	mortality	due	to	CVD.1,2		In	high-income	countries	such	as	the	United	States,	the	56	

prevalence	of	CVD	is	expected	to	rise	10%	between	2010	and	2030,3	not	only	in	the	aging	population	but	also	57	

notably	via	stark	disparities	among	socioeconomic	and	racial	groups.4,5	Direct	causes	for	these	shifts	in	CVD	58	

burden	have	been	well-studied,	attributed	to	changes	in	diet	(increased	consumption	of	processed	foods)6	and	59	

physical	activity	(more	sedentary	lifestyles),7	resulting	in	a	dramatic	rise	in	conditions	such	as	obesity,	60	

hypertension,	and	diabetes	mellitus.		These	changes	are	shaped	by	the	“conditions	in	which	people	are	born,	61	

grow,	live,	work	and	age”,	referred	to	by	the	World	Health	Organization	as	social	determinants	of	health	(SDoH).8		62	

Multinational,	prospective	cohort	studies	as	well	as	ecologic	analyses	have	shown	that	SDoH	contribute	to	63	

over	35%	of	the	population	attributable	risk	of	various	cardiovascular	diseases,9,10	among	which	education,	64	

income	and	occupation	are	particularly	influential.11		Research	has	also	illuminated	mechanisms	of	action;	social	65	

factors	usually	interact	with	each	other	through	the	mediation	of	or	effect	modification	by	psychological	and	66	

biological	pathways,	exerting	a	long-term	effect	on	cardiovascular	outcomes.5,12		Social	determinants	also	result	67	

in	unequal	sharing	of	the	benefit	of	advances	in	CVD	prevention	and	treatment.13	Given	the	critical	importance	of	68	

social	determinants	with	respect	to	disease	risk,	it	is	clear	that	better	capturing	the	interaction	and	relative	69	

influence	of	such	factors	in	relation	to	traditional	CVD	risk	factors	of	hypertension,	diabetes	and	hyperlipidemia	70	

provides	the	most	significant	opportunity	to	reduce	CVD	burden.5,11,12,14	71	

Meanwhile,	artificial	intelligence	(AI)	and	machine	learning	(an	application	of	AI	for	detecting	patterns	from	72	

data)15	tools	have	started	to	be	adopted	in	clinical	research,	prompted	by	recent	progress	in	advanced	computing	73	

strategies	as	well	as	the	proliferation	of	electronic	medical	record	databases.16	Machine	learning	methods	have	74	

demonstrated	improvement	across	multiple	metrics	for	prediction	of	CVD	risk,	incidence	and	outcomes17-19	over	75	

traditional	risk	scores	such	as	those	from	the	American	College	of	Cardiology	or	American	Heart	Association.20	As	76	

a	data-driven	approach,	machine	learning	provides	more	flexibility	in	modeling	complex	relationships	between	77	

predictors,	which	can	be	particularly	advantageous	in	addressing	the	multi-level	interactions	between	different	78	

social	determinants	and	CVD	outcomes,	as	well	as	uncovering	novel	risk	factors.	Though	the	increased	flexibility	79	

of	machine	learning	models	is	appealing,	given	the	rapid	rise	of	machine	learning	approaches	including	studies	80	

which	incorporate	social	determinants,	we	need	to	better	understand	best	practices	for	such	modelling	81	

approaches	for	CVD	risk	prediction	particularly	in	the	context	of	those	including	SDoH.	82	

Thus,	we	performed	a	systematic	review	to	understand	the	current	landscape	of	how	social	determinants	are	83	

being	used	in	machine	learning	models	for	CVD	prediction.	Specifically,	we	sought	to	examine	which	types	of	84	

machine	learning	algorithms	and	types	of	social	determinant	variables	are	being	used,	and	for	which	85	

populations.	Indeed,	understanding	the	manner	in	which	SDoH	are	incorporated	into	such	models	is	critical	in	86	

order	to	tease	apart	the	distinct	the	biological	and	social	influences,	along	with	their	interactions,	that	make	87	

populations	different	and	in	need	of	a	different	standard	of	care.	Findings	from	this	review	serve	to	inform	the	88	

design	of	future	machine	learning	approaches	and	identify	areas	for	methodological	innovation	in	order	to	89	

improve	early	prediction	of	CVD	and	reduce	its	significant	disease	burden.21,22		90	

	91	

Method	92	

Search	strategy	and	selection	criteria	93	

First,	YZ	with	the	help	of	an	expert	librarian,	did	a	comprehensive	search	of	five	databases:	PubMed,	Embase,	94	

Web	of	Science,	IEEE	Xplore	and	ACM	Digital	Library	on	April	10th,	2020,	to	identify	all	relevant	articles	on	95	

machine	learning	integrating	social	determinants	in	cardiovascular	disease	prediction	models	published	in	96	

English.	IEEE	Xplore	and	ACM	Digital	Library	were	included	specifically	to	comprehensively	capture	computer	97	
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science	articles	related	to	our	review.	Papers	from	inception	until	the	search	date	were	included.	To	ensure	the	98	

quality	of	included	papers,	we	only	included	peer-reviewed	articles	published	on	journals	or	accepted	in	99	

conferences	and	excluded	non-peer	reviewed	grey	literature	or	arXiv/medRxiv	papers.	100	

We	identified	the	terms	of	social	determinants	of	health	(SDoH)	using	the	broader	definition	from	the	World	101	

Health	Organization	and	Center	for	Disease	Control	and	Prevention	Healthy	People	2020	initiative	which	delineates	102	

SDoH	in	five	key	areas:	economic	stability,	education,	social	and	community	context	(e.g.	“race/ethnicity”,	“income”	103	

and	“education”),	health	and	health	care,	neighborhood	and	built	environment	(e.g.	“living	environment”,	104	

“pollution”	and	“residence	characteristics”).23	Figure	1	is	a	socio-ecological	conceptual	model	adapted	from	Healthy	105	

People	2020,	the	United	States	federal	government’s	national	health	agenda,24	which	illustrates	the multifactorial	106	

nature	of	social-ecological	influences	on	health.	The	framework	emphasizes	the	existence	of	proximate,	or	107	

“downstream,”	health	influences	(e.g.,	smoking)	that	are	shaped	by	distal,	or	“upstream,”	factors	(e.g.,	social	norms	108	

regarding	smoking,	tobacco	regulations).	Therefore,	for	a	robust	review,	we	also	included	prominent	factors	109	

including	health-related	behaviors	along	the	causal	pathway	(e.g.	“diet”,	“smoking”	and	“physical	activity”),	as	110	

although	these	are	enacted	at	the	individual	level,	they	are	shaped	at	social	and	economic	levels.25	This	enables	us	to	111	

understand	comprehensively	how	social	determinants	and	factors	they	directly	shape	are	assessed	in	relation	to	112	

CVD.	Age,	gender	and	race	are	also	in	the	causal	pathway.26	BMI	was	also	included	as	it	is	influenced	by	social	113	

factors	and	causes	diabetes	which	directly	affects	CVD.27		114	

For	search	terms	related	to	machine	learning,	we	included	all	commonly	used	supervised	machine	learning	115	

methods.	Supervised	machine	learning	algorithms	are	those	that	perform	reasoning	(i.e.	prediction)	from	116	

observations	of	the	features	(e.g.	clinical	data,	social	determinants)	based	on	externally	supplied	examples	which	117	

include	the	features	linked	to	outcome	“labels”	(e.g.	CVD	outcomes).	Thus	supervised	machine	learning	was	a	118	

focus	as	the	types	of	tasks	considered	in	the	literature	usually	utilized	labeled	outcomes	of	CVD.28	Commonly	119	

used	unsupervised	machine	learning	algorithms	captured	by	the	search	were	also	included	in	the	abstract	and	120	

full	text	screening	to	ensure	all	types	of	possible	studies	were	considered.	We	also	added	search	terms	to	capture	121	

deep	learning	and	ensemble	methods	as	they	are	widely	used	in	current	clinical	research.29		122	

The	search	terms	for	CVD	outcomes	included	cardiovascular	ischemic	outcomes,	coronary	heart	disease	and	123	

cerebrovascular	disease	which	are	caused	by	atherosclerotic	cardiovascular	disease	(ASCVD).	These	124	

cardiovascular	diseases	cause	the	highest	mortality,	and	estimated	years	of	lives	lost	attributed	to	these	125	

conditions	have	increased	in	recent	years.1,2,30	For	each	of	the	key	areas	of	social	determinants	and	included	126	

variables,	machine	learning	and	CVD,	we	identified	keywords	by	referencing	previous	review	papers	on	social	127	

determinants	and	cardiovascular	diseases,11,31	related	studies	of	different	social	determinants31-35	or	consulting	128	

experts	to	include	relevant	concepts.	Full	search	strategies	are	provided	in	the	appendix.	129	

Once	papers	were	identified	via	the	search	terms,	all	study	designs	and	all	populations	were	included	if	the	130	

article	utilized	any	SDoH	or	health	behaviors	as	features	in	the	machine	learning	models	(in	addition	to	age	and	131	

gender,	as	we	found	that	these	were	commonly	included	as	standard	practice	and	not	specifically	to	represent	their	132	

contribution	as	social	determinants)	were	deemed	eligible.	Eligibility	was	also	considered	if	the	outcomes	were	133	

CVD-related,	including	incidence,	survival,	mortality,	hospital	admission	and	readmission	etc.	We	did	not	restrict	134	

time	of	publication	to	enable	capturing	the	trend	of	these	types	of	papers	over	time.	Studies	were	excluded	if	they	135	

did	not	include	the	use	of	any	machine	learning	algorithm,	were	developed	for	non-humans,	the	outcomes	were	136	

bio-markers,	mediators,	surgery	or	medication	for	CVD,	rehabilitation	or	mental	health	outcomes	after	CVD	137	

diagnosis	or	cost-effectiveness	analysis	of	CVD	treatment,	the	manuscript	was	non-English,	or	was	a	review	or	138	

meta-analysis.	We	also	excluded	articles	presented	at	conferences	as	abstracts	and	the	full	texts	were	not	139	

obtainable.	This	review	was	registered	with	PROSPERO	(CRD42020175466)	and	conducted	in	accordance	with	the	140	
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Preferred	Reporting	Items	for	Systematic	Reviews	and	Meta-Analyses	(PRISMA)	method.	To	supplement	the	141	

bibliographic	database	searches,	we	also	used	Google	Scholar	to	scrutinize	all	keywords	regarding	their	relevance	142	

in	articles	as	well	as	examine	potential	articles	to	identify	if	they	were	eligible.	Duplicates	were	removed	in	the	143	

process.	144	

Three	investigators	(YZ,	EPW,	and	NM)	screened	the	title	and	abstract:	each	article	retrieved	was	145	
independently	assessed	by	two	reviewers	to	determine	its	eligibility	for	full-text	review.	Conflicts	were	resolved	146	
by	discussion	and	validation	from	a	third	reviewer.	After	initial	appraisal,	we	retrieved	full	texts	of	eligible	147	
articles.	148	

Data	analysis	149	

Data	were	extracted	from	individual	articles	independently	by	two	reviewers	(of	YZ,	EPW,	and	NM)	and	checked	150	

by	the	third	reviewer	according	to	criteria	in	a	standardized	extraction	form.	All	data	extraction	was	cross-151	

checked,	and	disagreements	were	resolved	by	discussion	or	referral	to	the	third	reviewer.	Information	extracted	152	

included	year	of	publication,	country,	population,	social	determinants	included	in	the	machine	learning	153	

algorithm,	machine	learning	algorithms,	cardiovascular	disease	outcomes,	data	source	and	performance	of	the	154	

algorithms.	For	each	article,	we	defined	several	criteria	to	assess	the	quality	of	the	study	based	on	best	practices	155	

in	machine	learning36	including	(1)	whether	machine	learning	model	performance	was	evaluated;	(2)	whether	a	156	

hyperparameter	(a	parameter	whose	value	is	used	to	control	the	learning	process)	tuning	process	was	described;	157	

(3)	whether	data-driven	variable	selection	was	performed;	(4)	whether	methods	were	used	to	specifically	158	

interpret	the	contribution	of	included	variables	in	the	prediction.	Each	item	was	scored	as	no	(not	present),	159	

unclear,	or	yes	(present),	and	then	summarized	alongside	all	items	to	get	a	study	quality	score.	160	

	161	

Role	of	the	Funding	Source	162	

The	funder	of	the	study	had	no	role	in	study	design,	data	collection,	data	analysis,	data	interpretation,	or	writing	163	

of	the	report.	The	corresponding	author	had	full	access	to	all	the	data	in	the	study	and	had	final	responsibility	for	164	

the	decision	to	submit	for	publication.	165	

	166	

Results	167	

Our	database	search	identified	2728	distinct	articles;	after	a	full-text	review	of	298	papers,	96	were	included	in	168	

the	systematic	review	(Figure	2).	Among	the	included	studies,	one	of	the	studies	used	data	from	a	clinical	trial,	169	

while	the	others	utilized	observational	data.	Of	the	observational	studies,	data	from	cohort	studies	was	the	most	170	

frequent	(34	studies),	followed	by	data	from	electronic	medical	records	(32	studies),	surveys	(14	studies)	and	171	

data	from	open-access	repositories	of	registry	or	national	survey	data	(7	studies)	(e.g.	Scientific	Registry	of	172	

Transplant	Recipients	Registry37).	Most	of	the	observational	data	were	structured	data	(clearly	defined	data	173	

features),	while	9	studies	included	unstructured	data	(e.g.	electrocardiogram,	image	and	heart	sound).	The	174	

earliest	year	of	publication	was	1992	(artificial	neural	network	algorithm)38,	and	publications	fulfilling	our	175	

inclusion	criteria	have	been	increasing	over	time	(Figure	3).	Figure	4	summarizes	variables	(4A),	outcomes	(4A),	176	

author	locations	(4B)	and	types	of	venues	were	studies	were	published	(4C).	More	details	on	the	data	sources	177	

and	populations	included,	along	with	all	study	details	are	in	Table	S1.	178	
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	179	

Social	determinant	and	variables	in	the	causal	pathway	180	

Included	studies	reported	diverse	variables	across	social	determinants	and	variables	considered,	including	181	

race/ethnicity,	education,	marital	status,	occupation/employment,	individual	or	household	income,	medical	182	

insurance,	area	of	residence	(e.g.	urban	versus	rural	or	eastern	vs.	western	USA)	and	other	community-level	factors	183	

of	deprivation,	income	and	education	and	environmental	pollutants	as	well	as	smoking,	alcohol	consumption,	184	

physical	activities,	substance	abuse	and	diet.	In	most	studies,	gender	and	age	were	included	as	standard	variables	185	

collected	in	the	survey	or	EHR.	A	few	studies	assessed	physical	activities	and	diet	as	modifiable	risk	factors	for	early	186	

prevention	of	CVD.14,39	Half	of	the	studies	reported	feature	importance	of	variables,	in	which	age,	gender,	smoking	187	

(e.g.	current	smoking/past	smoking/non-smoking)	and	BMI	were	most	frequently	reported	to	contribute	188	

significantly	to	the	CVD	outcome	prediction.	Other	frequently	reported	determinants	including	race/ethnicity,	189	

alcohol	consumption	(e.g.	daily	intake	or	alcoholism),	and	physical	activity/exercise	(e.g.	weekly	exercise	time).	190	

Besides	age,	gender,	BMI	and	smoking	which	were	frequently	reported	in	all	CVD	outcomes,	alcohol	consumption	191	

and	physical	activities	were	frequently	associated	with	stroke	while	BMI	was	frequently	associated	with	coronary	192	

artery	disease.	The	top	ten	variables	considered	in	extracted	papers,	and	their	frequency,	are	illustrated	in	Figure	193	

4A,	which	include	marital	status,	education,	income	and	race/ethnicity	as	the	most	common	social	determinants.	194	

Four	of	the	studies	compared	model	performance	with	social	determinants	and	without	social	determinants;	three	195	

showed	social	determinants	significantly	improved	prediction,	others	showed	improved	prediction	by	addition	of	196	

age,	gender	and	race.40,41	The	study	that	showed	decreased	performance	aimed	to	forecast	the	pattern	of	the	197	

demand	for	hemorrhagic	stroke	healthcare	services	based	on	air	quality;	it	is	possible	that	the	relationship	between	198	

specific	variable	tested	and	outcome	have	little	direct	relationship.42	199	

	200	

Algorithms	and	model	development	201	

The	most	common	machine	learning	methods	were	neural	network	(NN,	36	studies),	random	forest	(RF,	28	202	

studies),	and	decision	trees	(DT.	21	studies).	Three	studies	used	unsupervised	machine	learning	algorithms,	such	203	

as	clustering	to	group	CVD	risk	levels	or	principal	component	analysis	(PCA)	to	extract	features	prior	to	204	

supervised	machine	learning	classification.14,43,44		The	most	frequently	used	algorithms	are	described	in	Table	1.	205	

Of	the	35	studies	using	neural	networks,	12	used	one	hidden	layer,	23	used	multiple	hidden	layers,	including	206	

most	commonly	three-layer	perceptron,	convolutional	neural	network	and	recurrent	neural	network.	Here	we	207	

refer	to	these	studies	collectively	as	“neural	networks”	(NN)	as	deep	learning	typically	refers	to	an	neural	208	

network	with	multiple	layers.45	Of	the	42	studies	including	multiple	machine	learning	algorithms,	random	forest	209	

(9	studies)	and	neural	network	(9	studies)	were	most	frequently	reported	as	the	best	performing	machine	210	

learning	algorithms.	For	most	commonly	studied	CVD	outcomes,	random	forest	was	frequently	reported	to	have	211	

the	best	prediction	for	stroke	while	support	vector	machine	(SVM)	performed	best	for	coronary	artery	disease.		212	

There	were	24	studies	that	compared	machine	learning	algorithms	with	standard	linear	regression,	logistic	213	

regression	or	survival	analysis;	among	those	21	showed	improved	performance	with	machine	learning.	One	214	

study	of	risk	prediction	for	in-hospital	mortality	in	women	with	ST-elevation	myocardial	infarction	using	data	215	

from	the	National	Inpatient	Sample	in	the	United	States,	found	comparable	performance	using	random	forest	and	216	

logistic	regression.46	In	another	study,	neural	network	models	for	prediction	of	acute	coronary	syndromes	using	217	

clinical	data	and	NN	showed	similar	performance	to	logistic	regression	in	predicting	acute	coronary	syndrome;	218	

however,	only	13	variables	were	considered.47	A	third	study	on	predicting	adverse	cardiovascular	events	by	219	

models	integrating	stress-related	ventricular	functional	and	angiographic	data	showed	that	while	a	logistic	220	

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.09.11.20192989doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.11.20192989
http://creativecommons.org/licenses/by-nc/4.0/


6	

model	demonstrated	better	performance	in	this	task	and	implementation,	a	Bayesian	network	model	showed	221	

good	performance	and	also	was	highlighted	as	being	better	at	defining	causal	relationships,	and	thus	useful	for	222	

designing	future	models	in	which	new	variables	can	be	incorporated	in	the	prediction	task.48		223	

	224	

Model,	validation	and	performance	and	study	quality	225	

Most	studies	evaluated	the	performance	of	machine	learning	algorithm(s)	developed.	Area	under	the	receiver	226	

operating	characteristic	curve	(AUC)	was	the	most	common	evaluation	metric	used	(45)	studies,	followed	by	227	

sensitivity	(43	studies),	specificity	(32	studies)	and	accuracy	(32	studies).	At	least	three	of	the	four	metrics	were	228	

used	in	31	studies.	Other	evaluation	metrics	used	included	accuracy,	positive	predictive	value,	negative	229	

predictive	value	and	F1-score,	which	is	the	harmonic	mean	of	the	precision	and	recall,	commonly	used	to	230	

evaluate	machine	learning	methods	via	their	balance	of	these	metrics.	External	evaluation	was	performed	in	11	231	

studies,	wherein	the	authors	tested	the	machine	learning	models	developed	in	one	hospital	on	another	hospital	232	

or	population.	For	example,	one	study	specifically	tested	the	generalizability	of	a	recurrent	neural	network	model	233	

for	predicting	heart	failure	risk	in	a	large	dataset	from	10	hospitals;	evaluating	the	performance	of	a	model	234	

trained	on	each	hospital’s	training	(and	validation)	sets	over	the	10	hospitals’	test	sets.	They	also	evaluated	the	235	

model	that	trained	on	all	hospitals’	training	sets	over	the	10	hospitals’	test	sets.41	and	another	used	data	from	one	236	

hospital	to	train	neural	network	models	for	diagnosis	of	acute	coronary	syndrome	and	tested	the	model	on	data	237	

from	two	other	hospitals.47	238	

Among	those	reported,	most	AUC	were	higher	than	0.70	(Figure	5).	As	most	studies	were	published	in	239	

biomedical	and	clinical	journals,	most	studies	explicitly	interpreted	the	findings	and	their	relevancy	to	clinical	240	

applications.	Almost	half	(40/96)	of	the	studies	compared	more	than	one	machine	learning	algorithm,	of	which	241	

Random	Forest	was	most	commonly	the	best	performing	model.	The	mean	score	of	included	studies	in	the	4-item	242	

quality	assessment	scale	(based	on	evaluation	of	ML,	data-driven	selection	of	features,	hyperparameter	tuning	243	

description,	interpretation	of	the	model)	was	3.34.	Half	of	the	studies	(49)	had	full	scores	and	30	studies	missed	244	

one	of	the	four	items.	Commonly	missed	items	were	data-driven	feature	selection	and	details	of	hyperparameter	245	

tuning	(cross-validation	or	grid	search	strategies	were	utilized	in	68	studies	to	tune	hyperparameters;	other	246	

studies	didn’t	give	details	about	hyper-parameter	tuning	process).	Half	of	all	the	studies	utilized	a	data-driven	247	

selection	method	to	identify	features	before	fitting	machine	learning	models,	which	is	defined	as	extracting	a	248	

subset	of	useful	variables	among	the	original	variables	and	transforming	data	from	a	high-	to	a	low-dimensional	249	

space.49	As	deep	learning	models	to	extract	features	while	training,	those	studies	did	not	always	include	a	feature	250	

selection	process.	251	

	252	

Discussion	253	

To	our	knowledge,	this	is	the	first	systematic	review	to	illustrate	how	machine	learning	is	being	used	to	254	

integrate	SDoH	in	cardiovascular	disease	prediction	models.	This	review	distills	which	types	of	algorithms	and	255	

SDoH	and	related	variables	have	been	considered	and	resulting	performance.	We	found	that	the	flexibility	of	256	

machine	learning	models	has	proved	useful	in	CVD	prediction	models,	with	them	commonly	performing	better	257	

than	regression	approaches.	We	find	that	models	that	consider	SDoH	and	related	variables	also	benefit	from	258	

flexible	modeling	approaches,	with	neural	networks	consistently	outperforming	regression	across	all	CVD	259	

outcomes.	260	
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Broadly,	we	found	several	limitations	in	the	content	covered	by	included	papers.	First,	the	studies	were	highly	261	

skewed	to	originate	from	USA,	Europe	and	China,	with	lower-income	locations	not	being	well	represented.	262	

Moreover,	we	found	that	the	race	and	ethnicity	distribution	in	some	studies	was	also	not	very	representative	of	263	

underlying	populations.	This	is	particularly	striking	given	the	high	and	increasing	CVD	burden	and	changing	264	

socio-environmental	circumstances	in	lower-income	countries	and	regions	and	disparities	in	CVD	burden.	The	265	

variance	of	social	determinants	incorporated	into	models,	and	thus	the	performance	and	applicability	of		those	266	

models	across	contexts,	will	be	decreased	with	less	diversity	in	the	study	sample.50	SDoH	variables	themselves	267	

were	also	not	very	frequently	included,	with	only	marital	status,	education,	income	and	race/ethnicity	in	the	top	268	

ten.	Environmental	attributes	that	have	been	shown	as	important	modifiable	components	of	CVD	risk	such	as	269	

green	spaces	and	stress32,51,52	were	very	few,	and	even	then	were	very	broad	(e.g.	region	of	country).42	If	such	270	

area-based	variables	are	included,	machine	learning	may	also	prove	useful	to	unweave	the	strands	of	271	

environmental	influences	but	also	integrate	the	effects	of	the	various	components	of	the	environment	into	a	272	

comprehensive	model.32	We	also	find	that	models	did	not	take	into	account	social	processes	associated	with		273	

socioeconomic	conditions	across	the	life	course.	Socioeconomic	position,	psychosocial	factors	and	behaviors	274	

during	adolescence	and	youth	are	important	likely	to	be	important	in	the	development	of	CVD	and	precursors	275	

(dyslipidemia,	hypertension,	and	smoking).53	Finally,	studies	generally	included	gender	interchangeably	with	sex,	276	

which	precludes	consideration	of	the	socially-determined	aspect	of	gender.54	277	

Despite	these	limitations,	our	results	largely	found	social	determinants	and	variables	considered	to	improve	278	

model	performance.	In	terms	of	algorithms,	several	types	of	machine	learning	algorithms	were	evaluated,	with	279	

results	showing	that	when	compared	within	studies,	the	most	flexible	models	such	as	neural	networks	and	280	

random	forest	models	were	best	performing.	Neural	networks	also	most	commonly	outperformed	regression	281	

models.	This	is	understood	to	be	the	case	because	neural	networks	include	hidden	layers	which	can	take	into	282	

account	more	complex	relations	in	the	data,	and	therefore	this	may	be	another	possible	explanation	for	the	283	

improved	performance.55,56	Moreover,	recent	studies	uncovering	network	and	spillover	effects	(social	284	

environment)	and	shared	decision-making57	involved	in	physical	activity,58,59	diet60	and	smoking61	indicate	that	285	

the	pathways	that	inform	these	behaviors	are	intricate.	However,	this	may	illuminate	an	opportunity	for	machine	286	

learning,	which	based	on	flexibility,	can	help	capture	such	complex	interactions.		287	

The	constraints	on	included	data	are	likely	due	to	difficulties	in	capturing	certain	SDoH	variables	and	linking	288	

them	with	individual	records	in	databases	used	in	many	of	the	included	studies.	Studies	have	largely	used	social	289	

variables	from	available	data	sources;	commonly	those	in	the	electronic	health	record.	The	use	of	flexible,	290	

machine	learning	models	also	bring	concerns	regarding	interpretability	and	potential	over-fitting	to	data,62		291	

though	this	was	not	a	common	discussion	topic	across	all	papers.	This	is	likely	because	most	models	selected	292	

variables	based	on	prior	clinical	significance,	thus	prediction	performance	would	be	based	on	such	factors	which	293	

are	known	to	be	relevant	to	CVD	even	if	the	specific	importance	of	each	variable	was	not	measured.	Furthermore,	294	

most	papers	(66)	papers	used	methods	such	as	automatic	relevance	determination55	or	feature	selection63	to	295	

examine	and/or	rank	the	importance	of	variables	in	machine	learning	models.	This	was	the	case	even	as	articles	296	

were	published	in	a	variety	of	venues	(Figure	4D).		297	

While	this	is	the	first	review	that	gives	findings	related	to	the	use	of	machine	learning	and	social	determinants	298	

for	CVD	prediction,	there	are	individual	studies	that	support	components	of	the	findings	of	this	study.	First,	299	

machine	learning	in	general	has	shown	promise	with	respect	to	cardiovascular	disease	prediction.64-66	Compared	300	

to	the	established	American	College	of	Cardiology/American	Heart	Association	risk	calculator	to	predict	301	

incidence	and	prognosis	of	ASCVD,20	previous	work	has	shown	that	machine-learning	algorithms	(especially	302	

random	forest,	gradient	boosting	machines	and	neural	networks)	were	better	at	identifying	individuals	who	will	303	
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develop	CVD	and	those	who	will	not.17-19	These	studies	have	attributed	this	to	the	fact	that	standard	CVD	risk	304	

assessment	models	make	an	implicit	assumption	that	each	risk	factor	is	related	in	a	linear	fashion	to	CVD	305	

outcomes	and	such	models	may	thus	oversimplify	complex	relationships	which	include	large	numbers	of	risk	306	

factors	with	non-linear	interactions.		The	role	of	social	determinants	in	cardiovascular	disease	(not	specifically	307	

machine	learning-related)	has	been	studied	through	several	papers	and	systematic	reviews.	While	full	308	

summaries	of	this	work	have	been	performed	elsewhere,11	we	note	that	there	have	been	several	studies	of	309	

various	proximal	and	distal	social	determinants	and	cardiovascular	disease.	In	general,	studies	indicate	that	the	310	

changing	burden	of	disease	due	to	societal	and	environmental	conditions,	as	well	as	increasing	advances	in	311	

treatment	and	prevention	have	not	been	shared	equally	across	economic,	racial	and	ethnic	groups,	compelling	312	

the	need	for	broad	range	consideration	of	social	determinants	in	CVD	prediction.11,31	Finally,	the	models	that	have	313	

incorporated	social	determinants	and	machine	learning	for	CVD	prediction	also	reflect	limitations	of	many	314	

machine	learning	algorithms	that	have	been	highlighted	recently,	which	are	based	on	homogenous	populations,	315	

particular	with	respect	to	race	(captured	through	the	limited	geographic	diversity	in	Figure	4C).17		316	

Our	review	was	limited	in	several	aspects.	First,	the	included	studies	evaluated	different	types	of	317	

cardiovascular	outcomes,	and	heterogeneity	of	outcome	metrics	makes	it	difficult	to	compare	machine	learning	318	

performance	across	studies.	The	population	considered	also	includes	samples	from	different	data	sources,	319	

hospitals	and	countries	which	taken	together	make	the	comparison	across	studies	not	standardized.	Third,	most	320	

studies	did	not	evaluate	external	validity,	leaving	the	applicability	of	the	algorithms	to	other	populations	or	321	

healthcare	settings	inconclusive.	Fourth,	the	review	was	also	limited	to	studies	published	in	English,	which	might	322	

have	created	some	bias	in	the	articles	that	were	ultimately	retained	for	the	analysis.	323	

Findings	emphasize	the	need	to	comprehensively	capture	both	proximal	and	distal	social	determinant	324	

variables	in	models.	Where	mechanisms	are	not	well	understood,	machine	learning	can	also	be	used	to	325	

understand	relationships	between	social	and	biological	variables	comprehensively.	For	example,	race	is	often	326	

conceptualized	as	a	proxy	for	variables	for	socioeconomic	position	or	cultural	factors	and	better	ways	to	capture	327	

as	well	as	understand	relationships	between	these	factors	and	their	impact	on	CVD	risk	should	be	investigated.	328	

Indeed,	identification	of	potential	mediating	and	moderating	factors	in	these	pathways	of	social	determinants	329	

will	inform	public	health	interventions.	Improved	constructs	will	also	help	in	incorporation	of	environmental	and	330	

behavioral	variables	such	as	diet	and	physical	activity	which	were	not	well	represented	in	current	studies.	Our	331	

findings	support	bodies	of	work	that	promote	inclusion	of	such	information	in	the	electronic	health	record67,68	332	

and	we	add	reasoning	that	this	would	also	enable	study	of	social	determinants	in	machine	learning	in	large	333	

enough	sample	sizes	to	reduce	overfitting	of	models.	Finally,	results	emphasize	the	need	for	studies	that	include	334	

more	diverse	populations	with	varied	environmental	and	social	influences,	which	would	represent	and	ensure	335	

validity	of	prediction	models	across	these	diverse	interactions50	to	improve	cardiovascular	disease	prediction	in	336	

diverse	settings,	in	particular	those	where	disease	risk	is	increasing.	337	

	338	

Research	in	context	339	

Evidence	before	this	study	340	

While	there	are	no	reviews	that	specifically	address	social	determinants,	machine	learning	and	cardiovascular	341	

disease	(CVD),	the	latest	research	on	cardiovascular	disease	indicates	the	imperative	relevance	of	social	342	

determinants.	Societal	and	environmental	conditions	distributed	unequally	among	groups	are	driving	a	343	

significant	and	increasing	global	burden	of	cardiovascular	diseases	particularly	to	low	and	middle-income	344	

countries	as	well	as	lower-socioeconomic	groups	in	high-income	countries.	At	the	same	time,	research	shows	345	
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that	machine	learning	offers	the	potential	for	capturing	flexible	relationships	compared	to	the	linear	346	

relationships	assumed	in	typical	CVD	risk	scores,	which	is	of	particular	relevance	for	the	consideration	of	social	347	

variables.	Select	models	have	examined	the	performance	of	certain	social	variables	in	CVD	prediction,	including	348	

those	that	use	machine	learning,	but	given	these	rapidly	advancing	research	areas,	a	systematic	examination	into	349	

which	social	determinants	have	been	modelled	and	how	different	methods	have	performed,	is	needed.	350	

Added	value	of	this	study	351	

Through	a	rigorous	and	comprehensive	systematic	review,	we	assessed	the	state-of-the	art	methods	prediction	352	

of	the	two	types	of	CVD	with	the	highest	recent	mortality	(ischemic	heart	disease	and	stroke),	that	use	machine	353	

learning	and	incorporate	social	determinants	and	related	variables	in	their	causal	pathway.	We	show	that	354	

environmental	and	area-based	determinants	are	lacking	from	most	models.	Machine	learning,	especially	flexible	355	

models	such	as	neural	networks,	show	good	performance	in	relation	to	regression	models.	We	accounted	for	356	

model	and	information	gain	differences	across	by	examining	within	study	performance	of	best	algorithm	357	

compared	to	regression.	We	assessed	the	quality	of	their	implementations	via	best-practices	from	the	machine	358	

learning	literature,	finding	that	quality	was	generally	rigorous.	Finally,	we	show	that	the	origin	of	studies	is	359	

highly	skewed	to	USA	and	middle/high-income	countries	in	Europe	and	Asia,	which	indicates	that	knowledge	360	

regarding	the	diversity	of	social	determinants	and	their	impact	is	limited.	361	

Implications	of	all	the	available	evidence	362	

With	the	significant	burden	of	CVD	and	large	burden	in	low-	and	middle-income	countries,	this	work	directly	363	

informs	how	we	can	augment	prediction	models,	using	state	of	the	art	machine	learning	methods,	while	also	364	

taking	into	account	growing	social,	environmental	risk	factors	that	shape	CVD	risk.	According	to	the	findings	of	365	

this	review,	strategies	to	capture	social	variables,	especially	environmental	determinants	are	needed	in	the	366	

electronic	health	record	databases	from	which	machine	learning	methods	are	commonly	developed.	Finally,	367	

studies	to-date	represent	a	narrow	set	of	locations;	we	need	to	support	studies	in	low-	and	middle-income	368	

countries	to	identify	and	tailor	our	understanding	to	the	specific	social	determinants	in	these	populations.	369	
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Figures	and	Tables	375	

	376	

	377	

Figure	1:	Socio-ecological	framework	of	health;	conceptual	model	used	in	the	study,	adapted	378	
from	Healthy	People	2020,	the	United	States	federal	government’s	national	health	agenda	379	

	380	

	381	

Figure	2:	PRISMA	flowchart	of	study	review	process	and	exclusion	of	papers	382	
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	383	

	384	

Figure	3:	Number	of	ML	algorithms	used	in	publications	by	year	and	type	(NN:	neural	network,	RF:	random	forest,	385	
EN:	ensemble	methods	(e.g.	Adaboost,	gradient	boosting,	bagged	decision	tree),	SVM:	support	vector	machine,	DT:	386	
decision	tree,	NB:	naïve	Bayes,	BN:	Bayesian	network,	Reg:	regularization	methods	(ridge/lasso	regression),	Other:	387	
multilayer	perceptron,	maximum	entropy,	adversarial	network,	linear	discriminant	analysis,	k-nearest	neighbors,	388	
recursive	partitioning,	clustering,	quadratic	discriminant,	radial	basis	function	kernel)	389	
 390	

	391	

Figure	4:	(A)	Top	ten	social	determinant	and	related	variables	included	based	on	study	inclusion	criteria	(social	392	
determinants	in	blue,	other	variables	in	red),	(B)	most	frequently	reported	CVD	outcomes	(AAA:	abdominal	aortic	393	
aneurysm,	LOS:	length	of	stay	,	ACS:	acute	coronary	syndrome,	HF:	heart	failure,	MI:	myocardial	infarction,	CAD:	394	
coronary	artery	disease)	(C)	countries	of	corresponding	authors	and	(D)	journal	types	of	publication	reported	in	395	
systematic	review	papers	(EVS:	environmental	sciences)	all	with	respect	to	the	percentage	of	included	papers	they	396	
appear	in	 397	
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	398	

	399	

Figure	5:	Difference	of	Area	under	the	ROC	curve	between	ML	and	LR	by	ML	algorithm	type	400	

Table	1:	Summary	of	machine	learning	algorithms,	best	performing	and	sample	sizes	used	in	the	studies	401	

Algorithm	 Number	
(%)	of	
papers**	

Num	as	best	
algorithm	when	
multiple	algorithms	

Sample	Size	

<100	 100-1000	 1000-10,000	 >10,000	

Neural	Net	 35	(36.5%)	 9	 5	 8	 13	 9	

Random	Forest	 32	(33.3%)	 9	 0	 3	 14	 15	

Decision	Tree	 21	(21.9%)	 2	 2	 6	 8	 5	

Support	Vector	Machine	 20	(20.8%)	 7	 1	 3	 11	 5	

Ensemble	 17	(17.7%)	 5	 0	 2	 7	 8	

Bayesian	Network	 13	(13.5%)	 1	 1	 4	 2	 6	

Naïve	Bayes	 12	(12.5%)	 1	 2	 2	 5	 3	

Regularization*	 11	(11.5%)	 0	 0	 2	 6	 3	

Other	 28	(29.2%)	 1	 4	 6	 12	 6	

*regularization included Lasso, Ridge and Elastic net 402	
**Note:	each	paper	could	include	multiple	versions	or	multiple	algorithms	403	
	404	

	405	

	406	
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	407	

Appendix	408	

Table	S1:	Summary	of	all	included	papers	(attached	at	end).		409	

Search	terms	and	search	strategies	PubMed:	410	
(Social	determinants	of	health[Mesh]	OR	demography[Mesh]	OR	demographic*[tw]	OR	race	[tw]	OR	racism[Mesh]	411	
OR	“ethnicity”[tw]	OR	gender	identity[Mesh]	OR	gender[tw]	OR	social[tw]	OR	social	support[Mesh]	OR	412	
income[Mesh]	OR	education[Mesh]	OR	employment[Mesh]	OR	marital	status[Mesh]	OR	occupation[tw]	OR	413	
“health	insurance”[tw]	OR	health	literacy[Mesh]	OR	marriage[tw]	OR	insurance[tw]	OR	housing[tw]	OR	414	
home[tw]	OR	religion[tw]	OR	socioeconomic	factors[Mesh]	OR	social	class[Mesh]	OR	“social	status”[tw]	OR	415	
“access	healthcare”[tw]	OR	healthcare	disparities[Mesh]	OR	“financial	difficulties”[tw]	OR	poverty[Mesh]	OR	416	
“social	disparity”[tw]	OR	unemployment[Mesh]	OR	social	condition[Mesh]	OR	“social	inequality”[tw]	OR	417	
vulnerable	population[Mesh]	OR	“social	environment”[tw]	OR	sociodemographic*[tw]	OR	sociological	418	
factors[Mesh]	OR	body	mass	index[Mesh]	OR	physical	activity[Mesh]	OR	diet[Mesh]	OR	smoking[Mesh]	OR	419	
“alcohol	consumption”[tw]	OR	tobacco[Mesh]	OR	“substance	use”[tw]	OR	“physical	inactivity”[tw]	OR	“substance	420	
abuse”[tw]	OR	health*	behavi*r*[tw]	OR	health*	service[tw]	OR	environment[Mesh]	OR	“living	environment”	OR	421	
“birthplace”[tw]	OR	“pollution”[tw]	OR	residence	characteristics[Mesh]	OR	“geographic	locations”[tw]	OR	422	
“rural”[tw]	OR	“urban	health”[tw]	OR	neighborhood[tw]	OR	cultur*[tw])	AND	(machine	learning[Mesh]	OR	423	
supervised	machine	learning[Mesh]	OR	decision	trees[Mesh]	OR	neural	networks[Mesh]	OR	“Naive	Bayes”[tw]	424	
OR	“kNN”[tw]	OR	support	vector	machine[Mesh]	OR	perceptron[tw]	OR	“radial	basis	function”[tw]	OR	“Bayesian	425	
Network”[tw]	OR	“random	forest”[tw]	OR	“classification	tree”[tw]	OR	“elastic	net”[tw]	OR	“multilayer	426	
perceptron”[tw]	OR	lasso[tw]	OR	ridge[tw]	OR	“nearest	neighbor”[tw]	OR	deep	learning[Mesh]	OR	boosting[tw]	427	
OR	bagging[tw]	OR	ensemble[tw])	AND	(“atherosclerotic	cardiovascular	disease”[tw]	OR	cardiovascular	428	
abnormalities[Mesh]	OR	heart	disease*[tw]	OR	heart	arrest[Mesh]	OR	myocardial	ischemia[Mesh]	OR	arterial	429	
occlusive	diseases[Mesh]	OR	cerebrovascular	disorders[Mesh]	OR	peripheral	vascular	diseases[Mesh])	Embase:	430	
(exp	”social	determinants	of	health”/	or	exp	”demography”/	or	demographic*	or	*race”/	or	”racism”	or	431	
*ethnicity”/	or	exp	”gender	identity”/	or	”gender”	or	”social”	or	exp	”social	support”/	or	exp	”education”/	or	exp	432	
”employment”/	or	”income”	or	”marital	status”	or	exp	”occupation”/	or	exp	”health	insurance”/	or	”health	433	
literacy”/	or	exp	”marriage”/	or	”insurance”	or	exp	”housing”/	or	”home”	or	”religion”	or	”socioeconomic	factors”	434	
or	exp	”socioeconomics”/	or	”social	class”	or	exp	”healthcare	access”/	or	exp	”health	care	disparities”/	or	435	
”financial	difficulties”	or	exp	”poverty”/	or	”social	disparity”	or	exp	”unemployment”/	or	exp	”social	status”/	or	436	
”social	inequality”	or	exp	”vulnerable	population”/	or	*social	environment/	or	sociodemographic*	or	*body	437	
mass/	or	*physical	activity/	or	*diet/	or	exp	”smoking”/	or	exp	”alcohol	consumption”/	or	”tobacco	use”	or	exp	438	
”substance	use”/	or	exp	”physical	inactivity”/	or	exp	”substance	abuse”/	or	*environment/	or	*birthplace/	or	exp	439	
”pollution”/	or	”residence	characteristics”	or	*geography/	or	”neighborhood”	or	cultur*	or	exp	”rural	health”/	or	440	
exp	”urban	health”/)	and	(exp	”machine	learning”/	or	”supervised	machine	learning”	or	exp	”decision	trees”/	or	441	
”neural	networks”	or	exp	”artificial	neural	network”/	or	”Naive	Bayes”	or	exp	”Bayesian	learning”/	or	exp	”k	442	
nearest	neighbor”/	or	”knn”	or	exp	”support	vector	machine”/	or	”SVM”	or	exp	”perceptron”/	or	exp	”radial	443	
based	function”/	or	”Bayesian	Network”	or	exp	”random	forest”/	or	”classification	tree”	or	”elastic	net”	or	444	
”multilayer	perceptron”	or	”lasso”	or	”ridge”	or	exp	”deep	learning”/	or	”boosting”	or	”ensemble”)	and	445	
(”atherosclerotic	cardiovascular	disease”	or	*coronary	artery	atherosclerosis/	or	”cardiovascular	abnormalities”	446	
or	exp	”cardiovascular	malformation”/	or	*heart	disease/	or	exp	”heart	arrest”/	or	exp	”myocardial	ischemia”/	or	447	
”arterial	occlusive	diseases”	or	exp	”cerebrovascular	disorders”/	or	exp	”peripheral	vascular	diseases”/)	448	
Web	of	Science:	449	
TS=((“Social	determinants	of	health”	OR	demography	OR	demographic*	OR	race	OR	ethnicity	OR	“gender	450	
identity”	OR	gender	OR	social	OR	“social	support”	OR	income	OR	education	OR	employment	OR	“marital	status”	451	
OR	occupation	OR	“health	insurance”	OR	marriage	OR	insurance	OR	housing	OR	religion	OR	“socioeconomic	452	
factors”	OR	“social	class”	OR	“access	healthcare”	OR	“healthcare	disparities”	OR	“financial	difficult”	OR	poverty	453	
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OR	“social	disparity”	OR	unemployment	OR	“social	condition”	OR	“social	inequality”	OR	“vulnerable	population”	454	
OR	“social	environment”	OR	sociodemographic*	OR	“body	mass	index”	OR	“physical	activity”	OR	diet	OR	smoking	455	
OR	“alcohol	consumption”	OR	tobacco	OR	“substance	use”	OR	“physical	inactivity”	OR	“substance	abuse”	OR	456	
environment	OR	birthplace	OR	pollution	OR	“residence	characteristics”	OR	“geographic	locations”	OR	“rural”	OR	457	
“urban	health”)	AND	(“machine	learning”	OR	“supervised	machine	learning”	OR	“decision	trees”	OR	“neural	458	
networks”	OR	“Naive	Bayes”	OR	kNN	OR	“support	vector	machine”	OR	“perceptron”	OR	“radial	basis	function”	OR	459	
“Bayesian	Network”	OR	“random	forest”	OR	“classification	tree”	OR	“elastic	net”	OR	“multilayer	perceptron”	OR	460	
“lasso”	OR	“ridge”	OR	“nearest	neighbor”	OR	“deep	learning”	OR	“boosting”	OR	“ensemble”)	AND	461	
(“atherosclerotic	cardiovascular	disease”	OR	“cardiovascular	abnormalities”	OR	heart	disease*	OR	“heart	arrest”	462	
OR	“myocardial	ischemia”	OR	“arterial	occlusive	diseases”	OR	“cerebrovascular	disorders”	OR	“peripheral	463	
vascular	diseases”))		464	
IEEE:	465	
(“Social	determinants	of	health”	OR	demography	OR	demographic*	OR	race	OR	ethnicity	OR	“gender	identity”	OR	466	
gender	OR	social	OR	“social	support”	OR	income	OR	education	OR	employment	OR	“marital	status”	OR	467	
occupation	OR	“health	insurance”	OR	marriage	OR	insurance	OR	housing	OR	religion	OR	“socioeconomic	factors”	468	
OR	“social	class”	OR	“access	healthcare”	OR	“healthcare	disparities”	OR	“financial	difficult”	OR	poverty	OR	“social	469	
disparity”	OR	unemployment	OR	“social	condition”	OR	“social	inequality”	OR	“vulnerable	population”	OR	“social	470	
environment”	OR	sociodemographic*	OR	“body	mass	index”	OR	“physical	activity”	OR	diet	OR	smoking	OR	471	
“alcohol	consumption”	OR	tobacco	OR	“substance	use”	OR	“physical	inactivity”	OR	“substance	abuse”	OR	472	
environment	OR	birthplace	OR	pollution	OR	“residence	characteristics”	OR	“geographic	locations”	OR	“rural”	OR	473	
“urban	health”)	AND	(“machine	learning”	OR	“supervised	machine	learning”	OR	“decision	trees”	OR	“neural	474	
networks”	OR	“Naive	Bayes”	OR	kNN	OR	“support	vector	machine”	OR	“perceptron”	OR	“radial	basis	function”	OR	475	
“Bayesian	Network”	OR	“random	forest”	OR	“classification	tree”	OR	“elastic	net”	OR	“multilayer	perceptron”	OR	476	
“lasso”	OR	“ridge”	OR	“nearest	neighbor”	OR	“deep	learning”	OR	“boosting”	OR	“ensemble”)	AND	477	
(“atherosclerotic	cardiovascular	disease”	OR	“cardiovascular	abnormalities”	OR	heart	disease*	OR	“heart	arrest”	478	
OR	“myocardial	ischemia”	OR	“arterial	occlusive	diseases”	OR	“cerebrovascular	disorders”	OR	“peripheral	479	
vascular	diseases”)	480	
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Study Country Study Design SDoH and  
Related Variables Included 

CVD Outcomes Algorithms 

Alizadehsani, 

Roohallah, et al. 

(2018) 

Australia Unclear Age, BMI, obesity, sex, smoking Coronary artery 

disease 

DT, SVM, NB 

Tamal, Maruf 

Ahmed, et al. 

(2019) 

Bangladesh Observational 

(survey) 

Age, physical exercise, smoking Heart disease DT, SVM, NB, QDA, 

RF, LR 

Al’Aref, Subhi J., 
et al. (2020) 

Canada, 
Germany, 

Italy, Korea, 

Switzerland, 

US 

Prospective 
observational  

Age, BMI, ethnicity, sex, 
smoking 

Coronary artery 
disease 

Gradient boosting 

Chan, Ka Lung, 

et al. (2018) 

China Cohort  Age, sex, smoking Stroke NN, SVM, NB 

Chen, Jian, et al. 

(2019) 

China Observational 

(EHR) 

Environmental pollutants Stroke RF, DT, XGB, SVM, 

LR, KNN 

Gan, Xiu-min, et 

al. (2011) 

China Case control  Age, alcohol intake, BMI, 

education, other body metrics, 

physical activities, diet, smoking 

Stroke DT 

Hsiao, Han CW, 

et al. (2016) 

China Observational 

(EHR) 

Age, gender, area level social 

determinants 

All types of CVD DL 

Hu, Danqing, et 

al. (2016) 

China Observational 

(EHR)) 

Age, smoking Other CVD RF, SVM, NB, lasso, 

other* 

Huang, 

Zhengxing, et al. 
(2015) 

China Observational 

(EHR) 

Age, gender, smoking Coronary artery 

disease 

SVM, other 

Huang, 

Zhengxing, et al. 

(2019) 

China Observational 

(EHR) 

Age, gender, smoking Other CVD NN, DL, other 

Shao, Zeguo, et 

al. (2019) 

China Observational 

(survey) 

Age, alcohol intake, BMI, diet, 

physical activities, smoking 

Stroke RF, DT 

Wan, Eric Yuk 

Fai, et al. (2017) 

China Retrospective 

cohort  

Age, BMI, gender, smoking  All types of CVD DT 

Xu, Yuan, et al. 

(2019) 

China Retrospective 

cohort  

Age, alcohol intake, gender, 

smoking  

Rehospitalization Gradient boosting 

Karaolis, Minas 

A., et al. (2010) 

Cyprus Observational 

(EHR) 

Age, gender, smoking  Myocardial 

infarction 

DT 
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Anselmino, 

Matteo, et al. 

(2009) 

Europe Cross-sectional Age, BMI, gender, smoking, 

other body metrics 

Stroke, myocardial 

infarction 

NN 

Deguen, 

Séverine, et 

al. (2010) 

France Cross-sectional Age, education, gender, income, 

occupation, residence, area-level 

social determinants 

Coronary artery 

disease 

Other 

Baars, Theodor, 

et al. (2020) 

Germany Cohort  Age, BMI, gender, smoking  Mortality Other ensemble** 

Exarchos, 
Konstantinos P., 

et al. (2015) 

Greece Observational 
(EHR) 

Age, gender, smoking Other NB 

Tsipouras, 

Markos G., et al. 

(2008) 

Greece Observational 

(EHR) 

Age, BMI, gender, smoking, 

other body metrics  

Coronary artery 

disease 

NN, DT 

Jabbar, M. A, et 

al. (2014) 

India Observational 

(EHR) 

Age, gender, residence All types of CVD DT, PCA 

Naushad, Shaik 

Mohammad, et 

al. (2018) 

India Case control  Age, alcohol intake, BMI, diet 

gender, smoking  

Coronary artery 

disease 

Other ensemble, other 

Amin, Syed 

Umar, et al. 

(2013) 

India Observational 

(survey) 

Age, alcohol intake, diet, gender, 

physical activities, smoking 

All types of CVD NN, other 

Afarideh, 

Mohsen, et al. 

(2016) 

Iran Open cohort Age, BMI, gender, smoking, 

other body metrics,  

All types of CVD NN 

Amini, Leila, et 
al. (2013) 

Iran Observational 
(survey) 

Age, alcohol intake, BMI, 
gender, physical activities, 

smoking 

Stroke DT, other 

Ayatollahi, 

Haleh, et al. 

(2019) 

Iran Observational 

(EHR) 

Age, gender, marital status, 

occupation, residence, smoking 

Coronary artery 

disease 

NN, SVM 

Parizadeh, 

Donna, et al. 

(2017) 

Iran Cohort  Age, gender, smoking, other 

body metrics,  

Stroke DT 

Shakerkhatibi, 

M., et al. (2015) 

Iran Case–crossover 

design 

Age, gender, area-level social 

determinants 

Hospital admission NN 

Berchialla, Paola, 

et al. (2012) 

Italy Cohort  Age, smoking Myocardial 

infarction, 

mortality 

RF, NN, SVM, BN 
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Bigi, Riccardo, et 

al. (2005) 

Italy Cohort  Age, gender, smoking Myocardial 

infarction, 

mortality 

NN, other 

Foltran, 

Francesca, et al. 

(2011) 

Italy Observational 

(EHR) 

Age, BMI, gender, smoking, 

other body metrics 

Coronary artery 

disease 

BN 

Pasanisi, 

Stefania, et al. 
(2018) 

Italy Cohort  Age, gender, smoking All types of CVD NN 

Cho, In Jeong et 

al. (2020) 

Korea Cohort  BMI, physical activities, smoking  All types of CVD DL 

Hae, Hyeonyong, 

et al. (2018) 

Korea Retrospective 

Cohort  

Age, BMI, gender, smoking Coronary artery 

disease 

RF, DT, GB, SVM, NB, 

Ridge, other 

Kwon, Joon-

myoung, et al. 

(2019) 

Korea Retrospective 

Cohort  

Age, BMI, gender, smoking Mortality RF, DL 

Juarez-Orozco, 

Luis Eduardo, et 

al. (2020) 

Netherlands Observational 

(EHR) 

Gender, BMI, smoking  Coronary artery 

disease, other 

ensemble 

Tay, Darwin, et 

al. (2015) 

Singapore Cohort  Age, diet, gender, physical 

activities, built environment 

All types of CVD NN, SVM 

Fuster-Parra, 

Pilar, et al. 

(2016) 

Spain Observational 

(survey) 

BMI, gender, physical activities, 

smoking, other body metrics 

All types of CVD DT, BN, NB, other 

Green, Michael, 

et al. (2006) 

Sweden Observational 

(EHR) 

Age, gender, smoking Acute coronary 

syndrome 

NN 

Marshall, Adele 
H., et al. (2010) 

UK Cohort  BMI, Smoking Coronary artery 
disease, mortality 

BN 

Alaa, Ahmed M., 

et al. (2019) 

UK Cohort  BMI, diet, physical activities, 

residence, smoking 

All types of CVD RF, NN, ensemble, GB, 

Adaboost 

Harrison, Robert 

F., et al. (2005) 

UK Observational 

(EHR) 

Gender, smoking Acute coronary 

syndrome 

NN 

He, Xi, et al. 

(2020) 

UK Observational 

(survey) 

Gender, smoking Coronary artery 

disease 

PCA, other 

Ayala Solares, 

Jose Roberto, et 

al. (2019) 

UK Observational 

(EHR) 

Gender, income, smoking, area-

level social determinants 

All types of CVD BN 

Yang, Hui, et al. 

(2015) 

UK Observational 

(EHR) 

BMI, smoking Coronary artery 

disease 

NB, other 
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Ahmad, Tariq, et 

al. (2018) 

USA Registry Age, alcohol intake, BMI, 

education, gender, income, 

marital status  

Heart failure RF, other 

Akay, Metin., et 

al. (1992) 

USA Cross-sectional Age, BMI, gender, smoking  Coronary artery 

disease 

NN, other 

Ambale-

Venkatesh, 

Bharath, et al. 
(2017) 

USA Cohort  Age, alcohol intake, BMI, 

education, gender, income, race, 

smoking, other body metrics 

Stroke, all types of 

CVD, heart failure, 

coronary artery 
disease, mortality 

RF, lasso 

Basu, Sanjay, et 

al. (2017) 

USA Cohort  Age, gender, race, smoking Stroke, heart 

failure, myocardial 

infarction, 

mortality 

Lasso 

Dinh, An, et al. 

(2019) 

USA Cross-sectional Age, alcohol intake, BMI, 

gender, income, physical 

activities, race  

All types of CVD RF, GB, ensemble, 

SVM 

Dogan, 

Meeshanthini V., 

et al. (2018) 

USA Cohort  Age, alcohol intake, BMI, 

gender, physical activities, 

smoking 

Stroke RF, ensemble 

Edwards, 

Dorothy F., et al. 

(1999) 

USA Observational 

(EHR) 

Age, gender, race Mortality NN 

Golas, Sara 

Bersche, et al. 
(2018) 

USA Observational 

(EHR) 

Education, gender, marital status, 

occupation, race 

Rehospitalization Deep unified networks, 

GB 

Gonzales, Tina 

K., et al. (2017) 

USA Cohort  Alcohol intake, BMI, gender, 

income, physical activities, 

smoking 

Myocardial 

infarction 

RF, other 

Hsich, Eileen M., 

et al. (2019) 

USA Observational 

(survey) 

Age, BMI, medical insurance, 

race, smoking 

Mortality RF 

Hu, Danqing, et 

al. (2016) 

USA Clinical trial Age, BMI, gender, income, race, 

residence,  

Carotid 

atherosclerosis 

RF, NB, other 

Imran, Tasnim F., 

et al. (2018) 

USA Observational 

(EHR) 

Age, BMI, gender, race, smoking Stroke Lasso 

Kerut, Edmund 

Kenneth, et al. 

(2019) 

USA Observational 

(survey) 

Gender, race, smoking Abdominal aortic 

aneurysm 

NN 

Kogan, Emily, et 

al. (2020) 

USA Observational 

(EHR) 

Gender, residence, area-level 

social determinants 

Stroke RF, NN, GB 
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Leach, Heather 

J., et al. (2016) 

USA Cohort  BMI, diet, income, physical 

activities, smoking, built 

environment 

All types of CVD DT 

Akay, Metin, et 

al. (1994) 

USA Observational 

(EHR) 

Gender, smoking Coronary artery 

disease 

NN 

Mansoor, Hend, 

et al. (2017) 

USA Cohort  Alcohol intake, income, medical 

insurance, race, smoking, 

substance abuse, area-level social 
determinants 

Mortality RF 

McGeachie, 

Michael, et al. 

(2009) 

USA Cohort  Age, BMI, education, gender, 

smoking 

Coronary artery 

disease 

BN 

Mobley, Bert A, 

et al. (1995) 

USA Observational 

(EHR) 

Gender, medical insurance, race Length of stay in 

hospital 

NN 

Motwani, 

Manish, et 

al. (2017) 

USA Cohort  Age, BMI, race, smoking Mortality Other ensemble 

Ni, Yizhao, et 

al. (2018) 

USA Cohort  Alcohol intake, gender, marital 

status, occupation, race, smoking, 

substance abuse 

Stroke RF, NN, SVM 

Ottenbacher, 

Kenneth J., et al. 

(2001) 

USA Retrospective 

Cohort  

Age, gender, marital status, 

medical insurance, occupation, 

residence 

Rehospitalization NN 

Rasmy, Laila, et 

al.  (2018) 

USA Observational 

(EHR) 

Age, gender, race Heart failure DL, ridge, lasso 

Baldassarre, 
Damiano, et al. 

(2004) 

Italy Cross-sectional Age, BMI, gender, smoking All types of CVD NN, other 

Bandyopadhyay, 

Sunayan, et al. 

(2015) 

USA Observational 

(EHR) 

Age, BMI, gender, smoking All types of CVD BN 

Beunza, Juan-

Jose, et al. (2019) 

Spain Cohort  Age, BMI, education, gender, 

smoking 

Coronary artery 

disease 

RF, NN, DT, AdaBoost, 

SVM 

Biesbroek, 

Sander, et al. 

(2015) 

Netherlands Cohort  Age, alcohol intake, diet, 

education, gender, physical 

activities, , smoking 

Stroke, Coronary 

artery disease 

RF, DT, PCA, other 

Brisimi, 

Theodora S., et 

al. (2018) 

USA Observational 

(EHR) 

Age, gender, race, smoking, area-

level social determinants 

Hospitalization RF, SVM 
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Çelik, Güner, et 

al. (2014) 

Turkey Observational 

(EHR) 

Age, gender, smoking Stroke NN, other 

Cheon, Songhee, 

et al. (2019) 

Korea Observational 

(survey) 

Age, gender, medical insurance, 

area-level social determinants 

Stroke RF, Adaboost, SVM, 

DL, PCA, NB, other 

Corsetti, James 

P., et al. (2016) 

USA Observational 

(EHR) 

BMI, race All types of CVD BN 

Cox Jr, Louis 

Anthony Tony. 

(2017) 

USA Observational 

(survey) 

Age, education, gender, income, 

marital status, smoking, area-

level social determinants 

Stroke RF, DT, BN 

Cox Jr, Louis 
Anthony Tony. 

(2018) 

USA Observational 
(survey) 

Age, education, income, gender, 
marital status, smoking, area-

level social determinants 

All CVD BN 

Daghistani, 

Tahani A., et al. 

(2019) 

Saudi Arabia Observational 

(EHR) 

Age, gender, medical insurance, 

smoking 

Length of stay RF, NN, SVM, BN 

Dai, Wuyang, et 

al. 

(2015) 

USA Observational 

(EHR) 

Age, gender, race, smoking, area-

level social determinants 

Hospitalization AdaBoost, SVM, NB, 

other 

Dogan, 

Meeshanthini V., 

et al. 2018 

USA Cohort  Age, gender, smoking Coronary artery 

disease 

RF 

Li, Yan, et al. 

(2019) 

USA Observational 

(survey) 

Age, alcohol intake, education, 

gender, income, medical 

insurance, physical activities, 

race, smoking, area-level social 
determinants 

Stroke, coronary 

artery disease 

RF 

Li, Xuemeng, et 

al. (2019) 

China Observational 

(survey) 

Age, alcohol intake, BMI, 

gender, physical activities, 

smoking  

Stroke RF, NN, DT, other 

ensemble, BN, NB 

Karaolis, M., et 

al. (2008) 

Cyprus Observational 

(EHR) 

Age, gender, smoking Coronary artery 

disease 

DT 

Raihan, M., et al. 

(2019) 

Bangladesh Observational 

(EHR) 

Age, gender, physical activities, 

smoking, substance abuse,  

Coronary artery 

disease 

NN 

Martínez-García, 

M., et al. (2018) 

Mexico Retrospective 

Cohort  

Age, alcohol intake, BMI, 

education, gender, income, 

marital status, medical insurance, 

smoking 

Myocardial 

infarction, 

rehospitalization 

SVM 

Miller, C. S., et 

al. (2014) 

USA Cross-sectional 

case-controlled  

Age, BMI, gender, race, smoking Myocardial 

infarction 

DT 
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Eswaran, 

Chikkannan, et 

al. (2012) 

Malaysia Cross-sectional Age, BMI, gender, smoking Myocardial 

infarction 

NN, BN, other 

Ross, Elsie 

Gyang, et al. 

(2016) 

USA Prospective 

observational  

Age, alcohol intake, BMI, 

education, income, marital status, 

occupation, physical activities, 

race, residence, smoking 

Mortality, other RF, ridge 

Saito, Hiroshi, et 
al. (2019) 

Japan Observational 
(survey) 

Age, gender, occupation, 
residence, smoking 

Rehospitalization Lasso 

Van Loo, Hanna 

M., et al. (2014) 

Netherlands Observational 

study 

Age, BMI, gender, smoking Mortality Lasso 

Vedomske, 

Michael A. et al. 

(2013) 

USA Observational 

(EHR) 

Age, gender, medical insurance, 

race 

Rehospitalization RF 

Ayyagari, 

Rajeev, et al. 

(2014) 

USA Retrospective 

Cohort  

Age, gender, race, smoking Stroke Lasso 

Vistisen, Dorte, 

et al. (2016) 

Denmark Cohort  Age, alcohol intake, BMI, 

gender, physical activities, 

smoking  

Stroke RF, DT 

Wu, Yafei, et al. 

(2020) 

China Prospective 

observational  

Age, alcohol intake, gender, 

smoking 

Stroke RF, SVM, lasso 

Yu, Shipeng, et 

al. (2015) 

USA Retrospective 

Cohort  

Age, gender, marital status, race Rehospitalization SVM, lasso 

Zhuang, 

Xiaodong, et al. 
(2018) 

China Observational 

(survey) 

Age, BMI, gender, income, race, 

smoking, area-level social 
determinants 

All types of CVD RF 

	

Abbreviations used: NN: neural network, RF: random forest, SVM: support vector machine, DT: decision tree, NB: naïve Bayes, BN: Bayesian network, Lasso: 
lasso regression , Ridge: ridge regression, QDA: quadratic discriminant analysis 

*“Other” algorithms used include: multilayer perceptron, maximum entropy, adversarial network, k-nearest neighbors, recursive partitioning, clustering,  

quadratic discriminant, RBF 

**Other ensemble: methods other than: Adaboost, Gradient boosting 
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