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Abstract  28 

Background: While the COVID-19 pandemic presents a global challenge, the U.S. response 29 
places substantial responsibility for both decision-making and communication on local health 30 
authorities, necessitating tools to support decision-making at the community level. 31 

Objectives: We created a Pandemic Vulnerability Index (PVI) to support counties and 32 
municipalities by integrating baseline data on relevant community vulnerabilities with dynamic 33 
data on local infection rates and interventions. The PVI visually synthesizes county-level 34 
vulnerability indicators, enabling their comparison in regional, state, and nationwide contexts.  35 

Methods: We describe the data streams used and how these are combined to calculate the PVI, 36 
detail the supporting epidemiological modeling and machine-learning forecasts, and outline the 37 
deployment of an interactive web Dashboard. Finally, we describe the practical application of the 38 
PVI for real-world decision-making. 39 

Results: Considering an outlook horizon from 1 to 28 days, the overall PVI scores are 40 
significantly associated with key vulnerability-related outcome metrics of cumulative deaths, 41 
population adjusted cumulative deaths, and the proportion of deaths from cases. The modeling 42 
results indicate the most significant predictors of case counts are population size, proportion of 43 
black residents, and mean PM2.5. The machine learning forecast results were strongly predictive 44 
of observed cases and deaths up to 14 days ahead. The modeling reinforces an integrated concept 45 
of vulnerability that accounts for both dynamic and static data streams and highlights the drivers 46 
of inequities in COVID-19 cases and deaths. These results also indicate that local areas with a 47 
highly ranked PVI should take near-term action to mitigate vulnerability.    48 

Discussion: The COVID-19 PVI Dashboard monitors multiple data streams to communicate 49 
county-level trends and vulnerabilities and facilitates decision-making and communication 50 
among government officials, scientists, community leaders, and the public to enable effective 51 
and coordinated action to combat the pandemic. 52 

Introduction 53 

Defeating the COVID-19 pandemic requires well-informed, data-driven decisions at all 54 
levels of government, from federal and state agencies to county health departments. Numerous 55 
datasets are being collected in response to the pandemic, enabling the development of predictive 56 
models and interactive monitoring applications (Wynants et al. 2020; ESRI 2020). However, this 57 
multitude of data streams—from disease incidence to personal mobility to comorbidities—is 58 
overwhelming to navigate, difficult to integrate, and challenging to communicate. Synthesizing 59 
these disparate data is crucial for decision-makers, particularly at the state and local levels, to 60 
prioritize resources efficiently, identify and address key vulnerabilities, and evaluate and 61 
implement effective interventions. To address this situation, we developed a COVID-19 62 
Pandemic Vulnerability Index (PVI) Dashboard (https://covid19pvi.niehs.nih.gov/) for 63 
interactive monitoring that features a county-level Scorecard to visualize key vulnerability 64 
drivers, historical trend data, and quantitative predictions to support decision-making at the local 65 
level (Figure 1). 66 
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We assembled U.S. county- and state-level datasets into 12 key indicators across four 67 
major domains: current infection rates (infection prevalence, rate of increase), baseline 68 
population concentration (daytime density/traffic, residential density), current interventions 69 
(social distancing, testing rates), and health and environmental vulnerabilities (susceptible 70 
populations, air pollution, age distribution, comorbidities, health disparities, and hospital beds). 71 
These 12 indicators (some of which combine multiple datasets) are integrated at the county level 72 
into an overall PVI score, employing methods previously used for geospatial prioritization and 73 
profiling (Bhandari et al. 2020; Marvel et al 2018). The individual data streams comprising these 74 
indicators measure either well-established, general vulnerability factors for public health 75 
disasters or emerging factors relevant to the COVID-19 pandemic (Centers for Disease Control 76 
and Prevention 2015).  77 

In developing the PVI, we performed rigorous statistical modeling of the underlying data 78 
to enable quantitative analysis and monitoring and provide short-term predictions of cases and 79 
deaths. Our modeling efforts directly address the discussion raised by Chowkwanyun and Reed 80 
(2020) about racial disparities in COVID-19 case and death rates. By contextualizing factors 81 
such as these racial disparities, correcting for socioeconomic factors, health resource allocation, 82 
and co-morbidities, and highlighting place-based risks and resource deficits, the PVI can help 83 
explain differences in the spatial distribution of cases. Specifically, we performed three types of 84 
modeling efforts, all of which are regularly updated. First, epidemiological modeling on 85 
cumulative case- and death-related outcomes provides insights into the epidemiology of the 86 
pandemic.  Second, dynamic time-dependent modeling provides similar outcome estimates as 87 
national-level models but with county-level resolution. Finally, a Bayesian machine learning 88 
approach provides data-driven, short-term forecasts. Herein, we describe the development of the 89 
PVI, including the epidemiological modeling and machine-learning forecasts, and its use in an 90 
interactive web Dashboard. 91 

Methods 92 

Data Streams Included in the Pandemic Vulnerability Index  93 

To the best of our knowledge, we have assembled the most extensive set of community-94 
level data streams related to COVID-19. These data streams span four major domains, namely 95 
infection rate, population concentration, intervention measures, and healthcare vulnerability.  96 
The specific components (i.e., datasets) comprising the current PVI model are provided in a 97 
dedicated Details page linked from the Dashboard.  Supplementary Table 1 describes each 98 
component, outlines the rationale for its inclusion, and provides a link to the associated data 99 
source.  To empower additional modeling efforts, the complete time series of all daily PVI scores 100 
and the source data are publicly available at https://github.com/COVID19PVI/data. The software 101 
used to generate PVI scores and profiles from these data is freely available at https://toxpi.org 102 
(Marvel et al. 2018).    103 

These data streams comprise both static and dynamic data, including static measures of 104 
population concentration and healthcare vulnerabilities.  Many of the data streams are from the 105 
CDC’s Social Vulnerability Index (SVI), which was developed by the Agency for Toxic 106 
Substances and Disease Registry (ATSDR’s) Geospatial Research, Analysis and Services 107 
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Program (GRASP). GRASP creates and maintains databases that help emergency response 108 
planners and public health officials identify and map the communities most likely to need 109 
support before, during, and after a disaster or hazard event such as the current pandemic.  The 110 
SVI has been successfully used in a variety of emergency response scenarios, including mapping 111 
fire outbreaks to determine vulnerability metrics (Lue & Wilson 2017) and hazard mitigation 112 
planning studies (Horney et al. 2017). The CDC’s SVI uses U.S. Census data to rank each census 113 
tract’s social vulnerability based on 15 factors, including poverty, vehicle access, and housing 114 
crowding.  Additional data streams from the 2020 County Health Rankings that summarize the 115 
prevalence of important co-morbidities and risk factors at the county level are also included 116 
(Bhandari et al. 2020). Regarding interventions, it has been established that increased testing 117 
rates and the implementation of social distancing are effective interventions to slow the spread of 118 
COVID-19 and fatalities due to the disease (Wu et al. 2020).  Testing rates are from the COVID 119 
Tracking Project (The COVID Tracking Project 2020), and daily ordinal grades of social 120 
distancing adherence are from Unacast (2020), which analyzes relative mobility compared to the 121 
same period during the previous year using mobile device data.  By anchoring movement to pre-122 
COVID-19 activity, this measure is applicable in both rural and urban settings, which have 123 
different mobility patterns in general.  Dynamic measures of disease spread and the number of 124 
transmissible cases are estimated from John Hopkins University data (Dong, Du, & Gardner 125 
2020). 126 

PVI Calculation 127 

For each county, the PVI, a dimensionless index score, is calculated as a weighted 128 
combination of all data sources and represents a formalized, rational integration of information 129 
from various domains.  The score is calculated using the Toxicological Prioritization Index 130 
(ToxPi) framework for data integration, as described in Reif et al. (2010). Briefly, the individual 131 
factors are ranked for each county by scaling the raw value from 0 to 1.  Factors for which lower 132 
values represent higher risk (percent testing and social distancing) are reverse-scaled so that 133 
higher values represent higher vulnerability. This allows all factors to be expressed on the same 134 
scale (0 to 1) and removes the difficulties associated with applying different units to different 135 
factors. The overall PVI is then calculated using a weighted sum. The choice of factors used in 136 
the creation of the PVI score and the weights applied to them were informed by our 137 
epidemiological modeling (described in subsequent section) as well as general knowledge of 138 
contributors to general health morbidities.  139 

The PVI profiles translate numerical results into visual representations as component 140 
slices of a radar chart, with each slice representing one piece (or related pieces) of information.  141 
For each profile, the radial length of a slice represents its rank relative to all other entities (i.e., 142 
counties), with a longer radius indicating higher concern or risk.  The relative width (e.g., 143 
fraction of a full, 360° circle) of a slice indicates the contribution of its score to the overall 144 
model. These visual profiles provide a risk assessment of the strength, relative contribution, and 145 
robustness of the multiple data sources used in the model. Figure 2 illustrates the PVI workflow 146 
and the results for two example counties. This type of data integration framework has been 147 
proven effective for communicating risk prioritization and profiling information among 148 
scientists, regulators, stakeholders, and the general public and has been featured in publications 149 
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by the U.S. National Academy of Sciences, Engineering, and Medicine (2017) and the World 150 
Health Organization’s International Agency for Research on Cancer (Loomis et al. 2018).   151 

Epidemiological Modeling 152 

The diverse array of data assembled for the epidemiological modeling that informs the 153 
COVID-19 PVI Dashboard represents an advance over the ever-increasing number of models 154 
related to COVID-19. To provide context and ensure that the data streams provide conclusions 155 
and priority rankings that are broadly consistent with other epidemiological models, we 156 
performed cross-sectional analysis of cumulative (i) cases, (ii) deaths, (iii) deaths as a proportion 157 
of the population, and (iv) deaths as a proportion of reported cases using data current as of 158 
8/24/2020. We emphasize that the PVI is not intended to be an epidemiological modeling tool 159 
per se as it does not explicitly distinguish between factors of vulnerability for cases vs. deaths. 160 
Our modeling described here is intended to anchor the components of the PVI and provide 161 
context within the larger field of COVID-19-related epidemiological modeling. Additionally, this 162 
modeling is not intended to provide forecasts, which are the primary focus of projection models, 163 
as discussed in the subsequent section (see Forecasting). 164 

As the initial analyses displayed evidence of count overdispersion, we performed 165 
generalized linear modeling in R version 3.5 with the gam() procedure using a negative binomial 166 
model with observed cumulative counts as the response (see Supplementary Tables 2–5) (R Core 167 
Team 2018).  For analyses (i), (ii), and (iv), we used log(population size) values as predictors 168 
with estimated coefficients. For analysis (iii), we used the “offset” command to model the death 169 
rate. Similarly, for analysis (iv), we used log(cumulative cases) as an offset to model the death 170 
rate among cases, which may produce biased results due to regional variation in reporting rates. 171 
It should be noted that a constant underreporting bias across counties would be absorbed into the 172 
intercept and would otherwise produce valid coefficient estimates for the predictors. Analysis 173 
(iv) may provide important clues about the death risk as including cases in the denominator 174 
removes a large portion of the stochastic variation. Moreover, for all analyses, we used the 175 
proportion of the state population that has been tested as a predictor to account for additional 176 
sources of bias. 177 

To anchor our efforts to previous work, we included as additional fixed predictors those 178 
from Wu et al. (2020), who focused primarily on the effects of a PM2.5 air pollution index using 179 
an analysis analogous to our model (iii). Before analysis, we removed predictors with pairwise 180 
correlation with any other predictor greater than 0.85 and predictors that would be collinear with 181 
a series of predictors, such as the overall proportion of minority residents. For pairs exceeding 182 
the correlation threshold, we favored predictors with the lower missingness rate (if any) or those 183 
that are reported in other work. Dynamic predictors (i.e., those that changed substantially over 184 
the modeled period) were incorporated using simple county averages over the March-August 185 
period covered by the PVI. With over 3,100 counties (according to FIPS codes), most with >0 186 
cases and deaths, the analysis can easily support the 27 to 28 final predictors used. To facilitate 187 
comparison with previous sources, we used predictors as they are given in their source. 188 
Accordingly, in some instances, predictors are represented as proportions and, in other instances, 189 
they are represented as percentages. 190 
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To provide additional context, we also performed negative binomial modeling (R version 191 
3.5 bam() with “REML” fitting) (R Core Team 2018) of daily cases up to 6/11/2020 192 
(Supplementary Table 6), using the fixed county predictors as well as unaveraged dynamic 193 
predictors. Due to the nature of the model, we included the two-week-lagged cumulative number 194 
of cases as an additional predictor, as well as a smoothing spline time-dependent term to reflect a 195 
nationwide component of risk. Although it is formally a fixed-effects model, we refer to this 196 
model as dynamic and treat each day outcome as an independent realization, with the rate 197 
determined by the predictors. To account for potential time-dependent latent correlation 198 
structures, we determined standard errors for the coefficients by bootstrapping, treating each 199 
county across all dates as an observational unit for bootstrap resampling. We also built a 200 
dynamic version of the generalized linear model for cases and deaths as a proportion of the 201 
population to further investigate the effects of social distancing and other predictors that change 202 
daily. Final significance testing was based on bootstrapping to account for potential time-203 
dependent correlation structures. 204 

Forecasting  205 

For the accurate prediction of future COVID-19 cases and deaths, it is necessary to 206 
account for the fluid nature of the data streams comprising the PVI. Accordingly, we developed a 207 
Bayesian spatiotemporal random-effects model that jointly describes the log-observed and log-208 
death counts to build local forecasts. Log-observed cases for a given day are predicted using 209 
known covariates (e.g., population density, social distancing metrics), a spatiotemporal random-210 
effect smoothing component, and the time-weighted average number of cases for these counts. 211 
This smoothed time-weighted average is related to a Euler approximation of a differential 212 
equation; it provides modeling flexibility while approximating potential mechanistic models of 213 
disease spread. The smoothed case estimates are used in a similar spatiotemporal model that 214 
predicts future log-death counts based on a geometric mean estimate of the estimated number of 215 
observed cases for the previous seven days as well as the other data streams. The Dashboard 216 
shows the resulting county-level predictions and corresponding confidence intervals (Fig. 1). 217 
Details of the model are provided in the Supplemental Information. 218 

Dashboard Technical Details 219 

We used the ArcGIS JavaScript API (v4.13) (ESRI 2020) and custom PHP and JavaScript 220 
files to build the Dashboard web application. The API is used to overlay county borders, 221 
COVID-19 count data, and PVI model images on a Basemap or custom WebMap.  County 222 
boundary data is from a feature service, while all other data is stored in an SQL database. PVI 223 
model images are base64-encoded scalable vector graphics (SVGs) rendered as inline images. 224 
The custom scripts controlling the Dashboard’s functionality optimize the efficiency of HTTP 225 
requests and other computational overhead to promote real-time interactivity. The Dashboard is 226 
hosted by the National Institute of Environmental Health (NIEHS) Office of Scientific 227 
Computing, which provides high-availability HTTPS load balanced with NGINX and a secure 228 
environment for web applications. Automated data updates are pushed to the public servers 229 
daily, and the daily update process is paralleled on a private server to permit independent data 230 
integrity assessment. 231 
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Complete, continually-updated documentation is available from a link on the Dashboard to 232 
a Quick Start Guide that introduces the PVI and Dashboard tools 233 
(https://www.niehs.nih.gov/research/programs/coronavirus/covid19pvi). A Details page provides 234 
additional in-depth information 235 
(https://www.niehs.nih.gov/research/programs/coronavirus/covid19pvi/details/index.cfm). The 236 
Supplemental Information and Figure S2 explain in detail the main features.  The Dashboard is 237 
also mirrored as an iFrame on the CDC’s COVID Data Tracker, under the Unique Populations 238 
tab (https://covid.cdc.gov/covid-data-tracker/). 239 

Results 240 

PVI and Vulnerability 241 

The summarization and communication goals of the PVI and the corresponding scorecards 242 
are human-centric and designed to convey and distill high-dimensional complex data. Our PVI 243 
model communicates an integrated concept of vulnerability that accounts for both dynamic 244 
(infection rate and interventions) and static (community population and healthcare 245 
characteristics) drivers.  To gauge the association of daily PVI scores versus observed death 246 
outcomes, we assessed the rank-correlation between the overall PVI and the key vulnerability-247 
related outcome metrics of cumulative deaths (Figure S1A), population adjusted cumulative 248 
deaths (Figure S1B), and the proportion of deaths from cases (Figure S1C). The Spearman Rho 249 
values for the PVI (from March 15 to August 12th) versus outcomes 1, 7, 14, 21, and 28 days 250 
ahead of a given day are displayed. All daily rank-correlation estimates were highly 251 
significant (p-values < 5.1E-14). The mean Rho values increase with a longer time horizon (blue 252 
text on Supplementary Figures 1A, 1B, 1C) and thus a highly-ranked PVI provides evidence that 253 
local actions should be taken to mitigate undesirable outcomes.   254 

Epidemiological Modeling 255 

Supplementary Tables 2-7 display the regression coefficients produced with generalized linear 256 
modeling in a cross-sectional analysis of county cases and deaths up to 8/24/2020. As expected, 257 
the most significant predictor for the case count is population size (p<1E-300). The next most 258 
significant predictors associated with case counts are the proportion of black residents (p=1.28E-259 
61) and mean PM2.5 (p=9.08E-32), followed by Insurance percent coverage (positively 260 
associated, p=1.51E-27) and proportion of Hispanic residents (p=6.92E-20 ) (Supplementary 261 
Table 2). In addition, the proportion of the population tested for SARS-Cov-2 infection is 262 
associated with case counts (p=3.39E-13), which we attribute to statewide responses to emerging 263 
infection clusters. In this cumulative analysis, social distancing and travel-related predictors were 264 
significant even though they represent aggregate values per county. For deaths as a proportion of 265 
the county population (Supplementary Table 4), the same predictors are highly significant, 266 
although the Insurance percent coverage is much less significant than for cases (p=4.48E-05) . 267 
We note that cases and deaths per county population represent overall societal risk, for which 268 
vulnerability measures are relevant. The rank correlation coefficients for the PVI vs. the fitted 269 
values for the number of cases and the death rate are 0.54 and 0.55, respectively (p<10-16 for 270 
both). 271 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.08.10.20169649doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20169649


 
 

8 
 

Our analysis of the proportion of deaths per cases is enlightening, despite the previously 272 
noted caveat regarding potential bias due to testing variation. We note that a true case fatality 273 
rate potentially involves very different predictors than a case rate model, and deaths per county 274 
population are also closely tied to case rates. Our modeling (Supplementary Table 5) shows that 275 
after multiple test corrections, state testing rates are no longer significant in comparison to 276 
multiple-testing thresholds (p=0.036), which is consistent with the hypothesis that testing 277 
uncovers cases but does not predict case fatalities. The proportion of black residents (p=2.64E-278 
12) and mean PM2.5 (p=1.92E-04) were significant, but less so than in the deaths/population 279 
model. Deaths/reported cases were found to be associated with the proportion of owner-occupied 280 
residences (p=9.31E-07) and inversely associated with median house value (p=0.000863). Both 281 
measures tend to be associated with wealth, but the relationship is complicated by the fact that 282 
high housing prices impede home ownership. 283 

The results of the dynamic model for cases (Supplementary Table 6) with bootstrapped p-284 
values had much stronger significance than the results of the cumulative case model, which we 285 
attribute to the dynamic model’s ability to account for additional sources of variation due to the 286 
use of lagged case counts, a smooth time-dependent term to account for national trend, and the 287 
inclusion of daily dynamic predictors. Again, the most significant predictors are the population 288 
size (p<1E-300), the proportion of black residents (p<1E-300), the two-week-lagged cumulative 289 
number of cases as a predictor of current cases (p<1E-300), and mean PM2.5 (p<1E-300). We 290 
also ran the analogous model for deaths/population size (Supplementary Table 7) and the same 291 
predictors were found to be highly significant. In summary, the dynamic versions of the 292 
generalized linear model reinforce and amplify the conclusions from the previous cumulative 293 
models. However, the models are not designed to perform forecasting, which can be viewed as 294 
essentially a machine learning exercise. For forecasting, careful cross-validation approaches can 295 
be used to assess the accuracy of the results. 296 

The most consistent significant predictors for COVID-19 related case rates and mortality 297 
are the proportion of black residents and the mean PM2.5, reinforcing conclusions from previous 298 
reports (Dong, Du, & Gardner 2020). A one-percentage-point increase in the proportion of black 299 
residents is associated with a 2.9% increase in the COVID-19 death rate. The effect of a 1 g/m3 300 
increase in PM2.5 is associated with an approximately 14.5% increase in the COVID-19 death 301 
rate, which is at the high end of a previously reported confidence interval from a report in late 302 
April 2020 (Wu et al. 2020) when deaths had reached 38% of the total as of June 2020.  We find 303 
that these effects persist when including numerous additional predictors and correcting for 304 
factors such as socioeconomic status, housing density, and comorbidities. Moreover, the effects 305 
persist for a range of response values, including cumulative (i) cases, (ii) deaths, (iii) deaths as a 306 
proportion of the population, and (iv) deaths as a proportion of reported cases (Supplemental 307 
Tables 2-5). These results strongly suggest the important role of structural variation by location, 308 
which results in drastic health disparities.  The results of the dynamic version of the generalized 309 
linear model (Supplemental Tables 6-7) support the importance of social vulnerability indicators 310 
and may be viewed as a sensitivity test that the impact of social distancing and other dynamic 311 
measures do not alter the significance of many of the social vulnerability indicators. 312 

 313 
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Functional Power-Adjusted Relative Rate Model Forecasting 314 

Data-driven machine learning was implemented for near term predictions of case and death 315 
outcomes at a local level. The resulting county-level predictions and corresponding confidence 316 
intervals for the next seven days are shown in the Dashboard ‘Predictions’ element. Additional 317 
details of the model and implementation are included in the Supplemental Information. The 318 
accuracy of the predictions were assessed by calculating the Pearson Correlation (Rho) of the 319 
predicted values versus the observed from June 3 through August 5, 2020. To avoid weekend-320 
related reporting variation in cases and deaths, both predictions and observed cases/deaths were 321 
summed to weeks based on Wednesday through Tuesday. The accuracy of county-level 322 
predictions of Covid19-cases and -deaths were assessed by calculating the Pearson Correlation 323 
(Rho) of weekly predicted values versus weekly actual values across U.S. counties. For the 10 324 
forecasts of Covid19 cases made each Wednesday from June 3rd through August 5th, the median 325 
Rho for 1-week out was 0.96. For deaths, the 1-week out median Rho for these 10 periods was 326 
0.88. Summary Rho distributions are shown in Supplemental Figure 3, and scatterplots for all 327 
counties for the most recent analysis week are shown in Supplemental Figure 4. 328 

Dashboard Features 329 

The interactive visualization within the PVI Dashboard communicates factors underlying 330 
vulnerability and empowers community action. On loading, the Dashboard displays the top 250 331 
PVI profiles (by rank) for the current day. The data, PVI scores, and predictions are updated 332 
daily, and users can scroll through historical PVI and county outcome data. Individual profiles 333 
are an interactive map layer with numerous display options and filters that allow sorting by 334 
overall score and combinations of slice scores, clustering by profile similarity (i.e., vulnerability 335 
“shape”), and searching for counties by name or state. Any user-selected county overlays the 336 
summary Scorecard and populates the surrounding panels with county-specific information 337 
(Figure 1). Scrollable panels on the left include plots of vulnerability drivers relative to their 338 
nationwide distribution across all U.S. counties, with the location of the selected county 339 
delineated. The panels across the bottom of the Dashboard report cumulative county numbers of 340 
cases and deaths; timelines of cumulative cases, deaths, PVI scores, and PVI ranks; daily 341 
changes in cases and deaths for the most recent 14-day period (a measure commonly used in 342 
reopening guidelines); and predicted cases and deaths for a seven-day forecast horizon.  343 

Taken together, the Dashboard features support the interactive evaluation and visualization 344 
of current data for localities while providing context with respect to all U.S. counties. Full time 345 
series of case, death, and PVI trends enable the examination of the track records of counties of 346 
interest as well as the comparison of trajectories for peer, or comparable, counties in terms of 347 
varying success with specific interventions. For example, using Orleans County (home to New 348 
Orleans, LA) as an exemplar, we employed the multi-criteria filtering capabilities in the 349 
Dashboard to find a peer county for comparison. By bounding the PVI to similar ranges of 350 
vulnerability drivers (i.e., slices) for population mobility, residential density, and population 351 
demographics, we identified a subset of candidate counties and ultimately chose Clayton County, 352 
GA to illustrate the effects of dramatic differences in public action/interventions. Figure 3 shows 353 
detailed results for the two counties, which have similar baseline vulnerabilities but implemented 354 
divergent interventions at the outset of the pandemic. Specifically, pronounced differences in 355 
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intervention measures (social distancing and testing) are associated with varying dynamics of the 356 
infection rates in these counties, as visualized through the considerable differences in magnitude 357 
of the blue (intervention-related) and red (infection-related) slices over time. Note that all data 358 
streams are scaled so that a larger slice indicates increased vulnerability (e.g., the larger blue 359 
slices represent less adherence to social distancing and lower testing rates). As visualized in 360 
Figure 3, the PVI rank for Orleans County improves over time (i.e., follows a downward 361 
rank/percentile path), effectively blunting the curve caused by the accelerated increase in the 362 
number of cases through early interventions. There is no similar positive change for Clayton 363 
County, reflecting differences due to varying interventions in the two areas. In this way, the PVI 364 
Dashboard enables customized empirical comparisons and evaluations across peer counties.  365 

Discussion 366 

Numerous expert groups have coalesced around a general roadmap to address the current 367 
COVID-19 pandemic that comprises (i) reducing the spread through social distancing, (ii) 368 
gradually easing restrictions while monitoring for resurgence and healthcare overcapacity, and 369 
(iii) eventually moving to pharmaceutical interventions. However, the responsibility for 370 
navigating the COVID-19 response falls largely on state and local officials, who require data at 371 
the community level to make equitable decisions on allocating resources, caring for vulnerable 372 
sub-populations, and enhancing/relaxing social distancing measures. The goal of the COVID-19 373 
PVI Dashboard is to empower informed actions to combat the pandemic from the local to the 374 
national levels on multiple time scales. The Dashboard accomplishes this goal by combining 375 
underlying COVID-19-specific structural vulnerabilities with dynamic infection and intervention 376 
data at the county level to produce an integrated concept of vulnerability that can inform 377 
decision-making on actions at the local level.   378 

Furthermore, the general public must embrace interventions for them to be effective, and 379 
interactive visualization is a proven approach to communication among diverse audiences. The 380 
PVI Dashboard provides interactive, visual profiles of vulnerability atop an underlying statistical 381 
framework that enables the comparison of counties by clustering and the evaluation of the PVI’s 382 
sensitivity to component data. The Dashboard’s county-level Scorecards illustrate both overall 383 
vulnerability and the components driving it. A key utility of a public-facing, interactive 384 
dashboard is that decision-makers can point to it for support, thus promoting transparency and 385 
public buy-in for actions taken in the interest of public health.  Example use cases include the 386 
priority distribution of medical resources such as hospital beds, targeted community outreach 387 
activities, and the establishment of contact-tracing mechanisms.  Eventually, the PVI could be 388 
used to support the priority distribution of vaccines to highly-vulnerable communities. 389 

The modeling efforts presented here support decision-making in multiple ways. The 390 
epidemiological modeling enables testing the impact of changes in dynamic interventions, such 391 
as changes in social distancing, and the forecasting efforts support short-term resource allocation 392 
decisions, such as hospital staffing and the distribution of supplies. These forecasts also help 393 
communicate the trends that are part of the CDC’s reopening criteria (Centers for Disease 394 
Control and Prevention 2020), such as whether interventions and local government actions 395 
translate into flattened curves. The PVI score itself constitutes an integrated indicator of 396 
vulnerability that is strongly associated with mortality outcomes in the near-to-medium term. 397 
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The overall PVI score highlights highly-ranked counties that should consider taking local actions 398 
or receive targeted help to mitigate undesirable outcome trends. The Timelines panel of the 399 
Dashboard illustrates observed county-level changes over time to answer questions such as 400 
“Have we flattened the curve?” while the Predictions panel presents statistically robust forecasts 401 
that consider all of the data to answer the question, “What’s next?”.  Overall, the COVID-19 PVI 402 
Dashboard can help facilitate decision-making and communication among government officials, 403 
scientists, community leaders, and the public to enable more effective and coordinated action to 404 
combat the pandemic.   405 

A growing number of risk factors have been highlighted in the rapidly expanding scientific 406 
studies on COVID-19.  Infectious disease epidemiology is rapidly evolving, and new risk factors 407 
and environmental variables (e.g., weather conditions) are continually being discovered. From 408 
the early identification of older individuals’ vulnerability (Verity et al. 2020) to the dramatic 409 
racial disparities that have been more recently highlighted (Coughlin et al. 2020), there is 410 
mounting evidence that socially marginalized populations are suffering disproportionally.  While 411 
this is not unique to the ongoing pandemic, it is clear that pandemic vulnerability and response 412 
are dynamic and differ across communities (Quinn & Kumar 2020). The COVID-19 PVI 413 
Dashboard provides contextualized local summaries of differences in vulnerability and highlights 414 
racial disparities, even when adjusting for multiple covariates. The Dashboard’s presentation of 415 
information in a relative sense enables the fair comparison of communities of different sizes to 416 
support prioritization decisions. Further, the PVI visualization is a human-centric and 417 
communicates how particular communities’ drivers (i.e., slices) differ in terms of their 418 
contribution to overall vulnerability. This visualization promotes transparency by clarifying the 419 
judgments and trade-offs entering into such an assessment while maintaining a direct link to the 420 
underlying quantitative data. 421 

  COVID-19 will continue to present public health challenges into the foreseeable future. By 422 
integrating vulnerability information (both historical and forward-looking), the Dashboard 423 
supports key decision-making for managing the ongoing pandemic. We will continue to update 424 
the data streams combined to calculate the PVI and will add additional variables as evidence of 425 
new risk factors and potential drivers of vulnerability emerge and supported by publicly 426 
available data.  We will also continually develop software tools so that people can actively build 427 
their own models and will update the modeling efforts as needed. Combating endemic diseases 428 
requires long-range thinking, informed action, and political will, and we offer the COVID-19 429 
PVI Dashboard as an interactive monitoring tool to support these sustained efforts. 430 
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  540 
Figure 1. Dashboard displaying map view with PVI Scorecard and associated data for a 541 
selected county. The Dashboard allows U.S.-wide navigation to area(s) of interest. The filter is 542 
set to display the top 250-ranked (i.e., most vulnerable) PVI profiles for the selected date 543 
(displayed in the upper left panels for each data layer). The Scorecard displayed shows the 544 
contribution of each indicator (slice) for Florence, SC, which is in a cluster of high-PVI counties 545 
across the rural Southeast U.S. The scorecard summarizes the overall PVI score and rank 546 
compared to all 3,142 U.S. counties. In the graphical profile, longer slices indicate higher 547 
vulnerability driven by a particular indicator, with corresponding indicator-wise scores (0 = 548 
minimum; 1 = maximum) provided in the lower portion of the Scorecard. The scrollable score 549 
distributions at left compare the selected county PVI to the distributions of overall and slice-wise 550 
scores across the U.S. The panels below the map are populated with county-specific information 551 
on observed trends in cases and deaths, observed numbers for the selected date, historical 552 
timelines (for cumulative cases, cumulative deaths, PVI, and PVI rank), daily case and death 553 
counts for the most recent 14-day period, and a 7-day forecast of predicted cases and deaths. The 554 
information displayed for both observed COVID-19 data and PVI layers is scrollable back 555 
through March 2020. Documentation of additional features and usage, including advanced 556 
options (accessible via the collapsed menu at the upper left), is provided in a Quick Start Guide 557 
(linked at the upper right corner). 558 
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 559 

 560 
Figure 2. Translation of data into PVI profiles. Information from all 3,142 U.S. counties is 561 
translated into PVI slices. The illustration shows how Air Pollution data (average density of 562 
PM2.5 per county) are compared for two example counties. The county (County Y) with the 563 
higher relative measurement has a longer Air Pollution slice than the county (County X) with a 564 
lower measurement. This procedure is repeated for all slices, resulting in an integrated, overall 565 
PVI profile. 566 
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 568 

 569 
Figure 3. PVI data from the PVI Dashboard are shown for Orleans County, LA (left) and 570 
Clayton County, GA (right). The PVI profiles from March 15th, 2020 are shown above the 571 
timelines for each county. Comparing Orleans Parish (County) to Clayton County, they have 572 
similar ranks for Population Concentration (green slices) and Health and Environment (purple 573 
slices). For Intervention Practices (blue slices), differences can be seen; Orleans County’s 574 
adherence to social distancing measures and increased COVID-19 testing (reverse-scored and 575 
indicated by smaller blue slices) is visualized compared to Clayton. The changes in overall PVI 576 
rank across the timeline of the pandemic are shown. While the trajectory of new cases was 577 
blunted in Orleans County, it continued increasing in Clayton. Note that both counties observed 578 
spikes in the Cases trajectory as Social Distancing measures were relaxed at the end of June. 579 
 580 
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