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Abstract 

Background 

Developing insight into the pathogenesis of severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) is of critical importance to overcome the global pandemic caused by 

coronavirus disease 2019 (covid-19). In this study, we have applied Mendelian 

randomization (MR) to systematically evaluate the effect of 10 cardiometabolic risk factors 

and genetic liability to lifetime smoking on 97 circulating host proteins postulated to either 

interact or contribute to the maladaptive host response of SARS-CoV-2. 

 

Methods 

We applied the inverse variance weighted (IVW) approach and several robust MR methods 

in a two-sample setting to systemically estimate the genetically predicted effect of each risk 

factor in turn on levels of each circulating protein. Multivariable MR was conducted to 

simultaneously evaluate the effects of multiple risk factors on the same protein. We also 

applied MR using cis-regulatory variants at the genomic location responsible for encoding 

these proteins to estimate whether their circulating levels may influence SARS-CoV-2 

severity.  

 

Findings 

In total, we identified evidence supporting 105 effects between risk factors and circulating 

proteins which were robust to multiple testing corrections and sensitivity analyses. For 

example, body mass index provided evidence of an effect on 23 circulating proteins with a 

variety of functions, such as inflammatory markers c-reactive protein (IVW Beta=0.34 per 

standard deviation change, 95% CI=0.26 to 0.41, P=2.19x10-16) and interleukin-1 receptor 

antagonist (IVW Beta=0.23, 95% CI=0.17 to 0.30, P=9.04x10-12). Further analyses using 

multivariable MR provided evidence that the effect of BMI on lowering immunoglobulin G, 

an antibody class involved in protecting the body from infection, is substantially mediated 

by raised triglycerides levels (IVW Beta=-0.18, 95% CI=-0.25 to -0.12, P=2.32x10-08, 

proportion mediated=44.1%). The strongest evidence that any of the circulating proteins 

highlighted by our initial analysis influence SARS-CoV-2 severity was identified for soluble 
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glycoprotein 130 (odds ratio=1.81, 95% CI=1.25 to 2.62, P=0.002), a signal transductor for 

interleukin-6 type cytokines which are involved in the body’s inflammatory response. 

However, based on current case samples for severe SARS-CoV-2 we were unable to 

replicate findings in independent samples.  

 

Interpretation 

Our findings highlight several key proteins which are influenced by established exposures 

for disease. Future research to determine whether these circulating proteins mediate 

environmental effects onto risk of SARS-CoV-2 are warranted to help elucidate therapeutic 

strategies for covid-19 disease severity.  
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Introduction 

On the 11th of March 2020 the World Health Organisation (WHO) declared the coronavirus 

disease 2019 (covid-19) a global pandemic1. Although strict lockdown measures have been 

enforced in many countries to control the spread of infection, the number of deaths 

worldwide which have been attributed to severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) continues to rise2. Furthermore, despite widespread ongoing biomedical 

research it remains unclear why some individuals develop severe symptoms of SARS-CoV-2 

once contracting covid-19, whereas an estimated 80% of individuals display either 

asymptomatic or mild infections3. It is becoming increasingly evident however based on 

findings from the literature that established cardiometabolic disease risk factors play a role 

in the severity of symptoms for SARS-CoV-24,5. 

 

To address this critical and urgent challenge, researchers in the field, led by colleagues 

from the MRC Epidemiology Unit, have rapidly generated a curated dataset concerning the 

genetic architecture of 97 unique proteins which may be involved in influencing SARS-CoV-

2 severity6. These include inflammatory cytokines which are involved in the body’s 

immune response to infection, proteins involved in fibrinolysis and blood coagulation, 

antibodies which play a critical role in the body’s immune response to infection (such as 

immunoglobulin G) and gene products which have been reported to interact with SARS-

CoV-2 proteins in human cells7. A complete list of these proteins can be found in 

Supplementary Table 1.  

 

This curated resource provides an opportunity to undertake Mendelian randomization 

(MR) analyses to develop insight into the environmental risk factors that influence these 

SARS-CoV-2-related proteins, as well as potential downstream consequences on risk of 

covid-19. MR can be implemented as a form of instrumental variable analysis which 

exploits the random assortment of genetic alleles at birth under Mendel’s laws of 

Inheritance8,9. As such genetic variants can be leveraged as instrumental variables to 

investigate causal relationships between conventional exposures (such as cardiometabolic 

risk factors) and outcomes (such as circulating proteins) (Figure 1A). As these inherited 
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genetic variants are fixed at conception, MR is typically robust to confounding factors and 

reverse causation which can bias analyses in an observational setting which do not make 

use of human genetics data. 

 

In this study, we systematically applied MR to estimate the effects of 10 cardiometabolic 

exposures and genetic liability to lifetime smoking in turn on each of the SARS-CoV-2 

prioritised proteins. This was followed by a series of sensitivity analyses as well as 

applying multivariable MR to evaluate whether exposures independently influence the 

same circulating protein or act along overlapping causal pathways. We also sought to 

investigate the potential effects of proteins highlighted by this analysis on risk of severe 

covid-19 using data from recently conducted genome-wide association studies (GWAS).  
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Figure 1: Directed acyclic graphs (DAGs) to illustrate the analysis undertaken in this study

using Mendelian randomization. A) We firstly leveraged genetic variants (referred to as single

nucleotide polymorphisms (SNPs)) to systematically estimate the effect of 11 risk factors on

97 circulating proteins related to SARS-CoV-2. B) For proteins highlighted in the initia

analysis, we applied MR to estimate their genetically predicted effects on risk of SARS-CoV-2

severity. Instruments for proteins were SNPs robustly associated with their levels and located

in the genome at the encoding genes region (commonly referred to as cis-protein quantitative

trait loci (cis-pQTL)). 
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Methods 

Data resources 

Deriving genetic instruments for modifiable exposures 

We obtained genetic instruments for 11 exposures using data from large-scale GWAS. 

These were body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure 

(DBP), high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) 

cholesterol, triglycerides, apolipoprotein A-I (Apo A-I), apolipoprotein B (Apo B), genetic 

liability to lifetime smoking, waist-hip-ratio adjusted for BMI and childhood adiposity 

based on reported body size at age 1010-13. Details on the study characteristics for the 

GWAS used to derive these instruments can be found in Supplementary Table 2. 

 

We undertook linkage disequilibrium (LD) clumping to identify independent genetic 

instruments for these 11 exposures assessed using the software PLINK14. This process 

involves removing genetic variants which are correlated with the mostly strongly 

associated variant with a trait of interested in a region based on pairwise LD (using r2 < 

0.001 in this study) using a reference panel of 503 individuals of European descent from 

phase 3 (version 5) of the 1000 genomes project15.  

 

Quantitative trait loci data for SARS-CoV-2-related proteins  

All pQTL summary statistics for 97 unique proteins were obtained from the 

https://omicscience.org/apps/covidpgwas webserver6. Details on how these pQTL were 

derived are described in detail in the study by Pietzner et al and outlined in 

Supplementary Figure 1. Briefly, plasma samples from 10,708 individuals from the 

Fenland population-based cohort study were eligible for analysis after exclusions. In total, 

409 circulating proteins which were prioritised due to any of the following criteria; 

evidence suggesting that they interact with SARS-CoV-2 (n=332)7, associated with disease 

severity (n=26)16, involved in viral entry (n=2)17 or that they are clinical biomarkers of 

adverse, prognosis, complications and disease deterioration (n=54)18-21. Of the proteins, 

SOMAscan proteomic assays were used to derive data on 179 of them. 
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In the same set of participants, imputed genotype data on 17,652,797 genetic variants were 

available after imputation using the UK10K+1000G phase3 reference panel. Summary 

statistics were available in a total of 97 unique proteins from the webserver as they had at 

least 1 pQTL acting in cis, which is defined here as genetic variants robustly associated with 

circulating proteins (based on P<5x10-08) and located within a 1Mb window around the 

genes responsible for encoding them.  

 

We undertook LD clumping as before to identify pQTL to be used as instruments in MR 

analyses. However, for protein instrumental variables we applied a more lenient LD 

threshold of r2<0.2 to identify weakly correlated pQTL all within a cis-window of 1Mb 

either side of the lead cis-pQTL for each protein analysed. MR was then undertaken for 

protein targets whilst taking into account LD structure of pQTL as proposed previously22. 

 

Covid-19 GWAS datasets 

Genetic estimates on SARS-CoV-2 were obtained using data from a GWAS of severe covid-

1923 based on 1980 patients from intensive care units and wards at seven hospital located 

in the pandemic epicenters in Italy and Spain. Severe covid-19 was defined as 

hospitalization with respiratory failure and a confirmed SARS-CoV-2 viral RNA 

polymerase-chain-reaction (PCR) test using nasopharyngeal swabs or other biologic fluids. 

Effect estimates from these GWAS were mapped to hg19 coordinates using the LiftOver 

tool (https://genome.sph.umich.edu/wiki/LiftOver). We analysed GWAS data on severe 

SARS-CoV-2 to data based on reported covid-19 symptoms can potentially lead to 

misleading conclusions24. We also sought out replication of findings using GWAS results 

from the covid-19 host genetic initiative25 using data on hospitalized covid-19 cases 

compared to population controls (https://www.covid19hg.org/results/), as well as a 

GWAS of mortality attributed to covid-19 in the UK Biobank study compared to population 

controls based on analyses by Johnson and colleagues26 (available at 

https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx). 
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Statistical analysis 

We firstly applied MR to estimate the effect of each of the 11 exposures in turn on each 

protein in a two-sample setting27. Initially we used the inverse variance weighted (IVW) 

approach which takes the SNP-outcome estimates and regresses them on those for the 

SNP-exposure associations. This provides an overall weighted estimate of the causal effect 

which is based on the inverse of the square of the standard error for the SNP-outcome 

association28. We applied a correction using false discovery rate (FDR)<5% to these results 

to account for multiple testing. This threshold has been used in this study as a heuristic to 

highlight findings with the strongest statistical evidence to investigate in further detail.  

 

For effects which survived FDR corrections we applied other MR methods as sensitivity 

analyses. This firstly involved applying the weighted median and MR-Egger approaches 

which are more robust to horizontal pleiotropy in comparison to the IVW method29,30. We 

also applied the MR directionality test (also referred to as the ‘Steiger method’) to support 

evidence that our genetic variant is a valid instrument for the exposure in line with the 

underlying assumptions of MR31. Multivariable MR was undertaken to evaluate the direct 

effects of exposures on circulating proteins whilst accounting for the effects of other 

exposures32,33. In doing so, we were able to investigate whether the effect of exposures on 

proteins were putatively mediated via another exposure. To estimate the proportion 

mediated we applied the product method described previously by Burgess and 

colleagues34, using genetic instruments from the GIANT consortium for BMI to avoid 

overlapping samples with the UK Biobank35.  

 

We next applied MR to investigate the genetically predicted effects of circulating proteins 

robust to FDR corrections and sensitivity analyses in the previous analysis on severe SARS-

CoV-2 using GWAS results from Ellinghaus et al. This was undertaken by applying the IVW 

method which uses correlated cis-regulatory variants whilst accounting for their 

correlation structure36. For proteins which provided strong evidence of an effect using the 

IVW method, we also applied the MR-Egger approach whilst accounting for correlation 

structure amongst instruments. We also attempted to replicate findings using the GWAS 
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data from the covid-19 HGI and Johnson et al analyses25,26. Finally, we applied the cis-

correlated IVW approach systematically to all proteins with at least 2 cis-pQTL (as this is 

the minimum number required for the IVW method) for each covid-19 GWAS dataset. This 

allowed us to highlight proteins which may play a role in disease but are not strongly under 

the influence of modifiable risk factors.  

 

All analyses were undertaken using the ‘TwoSampleMR’ and ‘MendelianRandomization’ 

packages using R (version 3.5.1)37,38. The forest plot in Figure 2 was generated using 

‘ggplot2’ v2.2.1 39. Figure 3 was generated using the LD link resource40. 
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Results 

A systematic Mendelian randomization analysis of circulating proteins 

Across the 11 exposures assessed, there were 253 genetically predicted effects on 

circulating proteins which survived FDR<5% corrections using the IVW method 

(Supplementary Table 3). Amongst top findings was a strong effect of BMI on C-reactive 

protein (CRP) levels (Beta=0.34 per standard deviation change in BMI, 95% CI=0.26 to 

0.41, P=2.19x10-16) which is a well-established marker of chronic inflammation41. 

Elsewhere, there was strong evidence of an effect of HDL cholesterol on elevated levels of 

serum amyloid A-1 (Beta=0.23, 95% CI=0.16 to 0.29, P=1.59x10-12) and A-2 (Beta=0.24, 

95% CI=0.17 to 0.30, P=4.38x10-13) proteins. Undertaking sensitivity analyses found 106 

effects that were robust to FDR<5% corrections using either the weighted median or MR-

Egger methods (Supplementary Tables 4 & 5). The MR directionality tests provided 

evidence that assumptions regarding directionality may have been violated for one of these 

effects, which was between waist-hip-ratio adjusted for BMI and the protein ITIH3 (IVW 

Beta=-0.31, 95% CI=-0.46 to -0.16, P=4.07x10-05) (Supplementary Table 6). IVW 

estimates for the 105 effects which were robust to sensitivity analyses can be found in 

Supplementary Table 7. An overview of the analytical pipeline applied in this section 

including method and datasets used can be found in Supplementary Figure 2. 

 

Amongst the exposures which contributed most to the remaining 105 effects were BMI (23 

effects) and triglycerides (27 effects). As illustrated in Figure 2, the effects driven by BMI 

were typically spread across the 6 subcategories of circulating proteins. This included 

effects on coagulation factor IX (IVW Beta=0.21, 95% CI=0.14 to 0.27, P=2.42x10-07), tissue-

type plasminogen activator (Beta=0.16, 95% CI=0.09 to 0.23, P=2.38x10-06) and cytokines 

including interleukin-1 receptor antagonist (Beta=0.23, 95% CI=0.17 to 0.30, P=9.04x10-

12). In contrast, the majority of triglycerides effects were found to be on proteins allocated 

to the SARS-CoV-Human protein-protein interaction (PPI) or covid-19 disease severity 

subcategories. There were exceptions to this however, such as an effect on clotting factor 

vitamin K-dependent protein S (Beta=0.21, 95% CI=0.15 to 0.27, P=1.25x10-10) and 

cytokine signal transducer interleukin-6 receptor subunit beta (Beta=-0.21, 95% CI=-0.28 
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to -0.13, P=4.12x10-08). We also note the conflicting directions of effect which risk factors 

have on the proteins assessed even within the same category. For example, within the 

fibrinolysis category BMI provided evidence of an effect on higher levels of fibrinogen 

(Beta=0.09, 95% CI=0.02 to 0.16, P=0.008), as well as an inverse effect on antithrombin III 

(Beta=-0.25, 95% CI=-0.32 to -0.18, P=4.43x10-13). Findings from the literature supported 

the direction of effect between BMI and circulating proteins for various effects identified in 

this analysis (CRP, Factor B and H, the interleukin 1 family of proteins, SAA/2, fibrinogen 

and antithrombin III), although for others there was no clear prior evidence suggesting that 

obesity influences their levels (Supplementary Table 8).  
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Figure 2: Forest plots illustrating the Mendelian randomization estimates of genetically predicted A) body mass index and B)

triglycerides on circulating proteins related to SARS-CoV-2 severity. Proteins have been grouped and coloured based on thei

subcategories. * Gelsolin corresponds to soma ID 16607-78 as a separate epitope is also available on the SomaLogic assay for thi

protein 
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BMI is recognized to causally influence triglycerides and we therefore undertook 

multivariable MR to evaluate the direct effects of BMI and triglycerides on the 7 proteins 

which they had in common based on univariable estimates in the previous analysis. The 

majority of these effects remained robust after accounting for the effects of the other 

exposure, suggesting that BMI and triglycerides influence these proteins directly via 

separate causal pathways (Supplementary Table 9). The notable exception to this was the 

effect of BMI on immunoglobulin G, an antibody class involved in the body’s immune 

response to infection. Effect estimates for BMI on this circulating protein identified in the 

univariable analysis (Beta=-0.11, 95% CI=-0.18 to 0.04, P=0.02) attenuated to the null 

when accounting for the effect of triglycerides (Beta=-0.06, 95% CI=-0.13 to 0.02, P=0.13). 

This suggests that BMI indirectly lowers immunoglobulin G due to its influence on raising 

triglyceride levels. We estimated that 44% of the BMI effect on immunoglobulin G was 

mediated via triglycerides using mediation MR. 

 

Harnessing cis-regulatory variants to evaluate effects of circulating proteins on 

risk of severe SARS-CoV-2 

For each protein highlighted in the previous analysis, we undertook MR using cis-pQTL as 

instruments to estimate their effects on risk of severe SARS-CoV2-2 (Supplementary 

Table 10). The protein which provided the strongest evidence that it may influence risk of 

covid-19 was gp130, soluble, also known as glycoprotein 130 (odds ratio (OR)=1.81 

increased risk of severe SARS-CoV2-2 per 1-fold increase in gp130, 95% CI=1.25 to 2.62, 

P=0.002). This protein is encoded by the IL6ST gene and is responsible for signal 

transduction with all members of the interleukin 6 receptor family42. There were 18 

weakly correlated pQTL scattered across this locus used as instrumental variables as 

illustrated in Figure 3. Their pairwise LD correlations can be found in Supplementary 

Table 11. Although another cytokine gene is also located in this region (IL31RA), single 

variant associations for these 18 pQTL with severe SARS-CoV-2 suggested that this 

alternate target is unlikely to be responsible for this putative effect (Supplementary Table 

12). This is because the two lead pQTLs largely responsible for driving the overall IVW 

estimate were rs929108 (P=0.002), which is located downstream of IL6ST (i.e. the opposite 
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side compared to IL31RA) and rs6875155 (P=0.006), located within the gene body of IL6ST 

itself.  

 

Applying the MR-Egger method accounting for correlation structure using the 18 IL6ST 

instruments provided effect estimates which included the null (OR=1.55, 95% CI=1.00 to 

2.39, P=0.05). Furthermore, we were unable to detect robust evidence of replication using 

the two other covid-19 GWAS datasets (covid-19 host genetics initiative: OR=1.11, 95% 

CI=0.83 to 1.48, P=0.48 & Risk of death due to covid-19 death in UK Biobank: OR=1.26, 95% 

CI=0.79 to 2.00, P=0.34). Lastly, we applied the IVW method accounting for correlation 

structure to all proteins with at least 2 cis-pQTL to evaluate their genetically predicted 

effects on risk of covid-19. However, using current sample sizes we did not detect strong 

evidence that these circulating proteins influence risk of severe covid-19 based on multiple 

testing corrections (Supplementary Table 13, Supplementary Table 14 & 

Supplementary Table 15). 
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Figure 3: A diagram of genetic locus used to identify protein quantitative trait loci (pQTL) as

instrumental variables in the Mendelian randomization analysis for glycoprotein 130

(encoded by IL6ST) and SARS-CoV-2 severity. The heatmap represents the linkage

disequilibrium structure at this region amongst the pQTL used with the bottom-left section

representing pairwise r2 coefficients (red) and the upper-right section illustrating pairwise D

values (blue). 
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Discussion 

We have undertaken a comprehensive Mendelian randomization study to systematically 

evaluate the effect of 11 established risk factors for disease on circulating levels of proteins 

related to SARS-CoV-2. Our main findings are that among the modifiable risk factors 

assessed, BMI and triglycerides showed the widest repertoire of causal effects on 

circulating proteins (providing evidence of causation for 23 and 27 effects, respectively). 

Furthermore, of the circulating proteins investigated by our study, the strongest evidence 

of an effect on developing severe covid-19 was identified for glycoprotein 130, which is 

involved in the transmission of molecular signals for inflammatory interleukin cytokines.  

 

Amongst the 105 effects which were robust to multiple testing and sensitivity analyses 

there were several well-established relationships based on the literature. For example, 

having a high BMI is a known driver of systemic inflammation as indexed by C-reactive 

protein levels41 and acute inflammatory markers such as fibrinogen43. Other findings fit 

with the known biology of cardiometabolic risk factors and proteins identified by our 

analysis, such as the effect of HDL cholesterol on serum amyloid A-1 and A-2 proteins, 

which have previously been proposed as clinically applicable surrogates of HDL vascular 

functionality 44. Whilst our results are therefore of immediate importance for SARS-CoV-2 

research, they may also be valuable for future endeavours interested in the therapeutic 

potential of these proteins with respect to a wide range of disease outcomes. 

 

There were several results from our study which may assist in unravelling the complex 

pathogenesis of SARS-CoV-2 severity. For example, immunoglobulin G (IgG) is a class of 

antibodies produced by plasma B cells in the immune system in response to a pathogen 45. 

Our results indicate that having a high BMI may reduce levels of circulating IgG, suggesting 

that people with obesity have less of this class of antibody to help protect their body’s 

immune system from infection. That being said, an important consideration when 

interpreting this finding is that IgG levels were measured in individual’s in a healthy state 
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and can therefore only act a proxy for IgG response to infection. Additionally, generic IgG 

levels were measured rather than the specific adaptive immune response to SARS-CoV-2.  

 

Additionally, our multivariable MR estimates for the effect BMI on IgG attenuated to 

include the null when accounting for the effect of triglycerides on this class of antibodies. 

This suggests that triglycerides may mediate the lowering effect of BMI on IgG, which we 

estimated as 41.1% of the total effect of BMI on IgG levels being mediated via triglycerides. 

Further research into the role of IgG and B cell immunity in the body’s immune response to 

the covid-19 pathogen is therefore warranted, particularly given that IgG is being 

measured by tests for antibody responses to SARS-CoV-246. Along with evaluating the effect 

of modifiable risk factors on antibody mediated immunity to covid-19, it will be critical to 

develop insight into how these factors influence cell mediated immunity given the 

emerging importance of the adaptive immune response to SARS-CoV-247. 

 

Using MR to estimate the genetically predicted effects of circulating proteins on severe 

covid-19 risk highlighted glycoprotein 130 as the protein with the strongest evidence of an 

effect on SARS-CoV-2 severity (OR=1.81, 95% CI=1.25 to 2.62, P=0.002), however we were 

unable to replicate these findings in larger samples. Glycoprotein 130 is encoded by the 

IL6ST gene and belongs to the interleukin-6 family of cytokines42. It’s activation is 

dependent upon the binding of cytokines with their receptors, such as interleukin-6 (IL6) 

with interleukin-6 receptor (IL6R)48. This is noteworthy due to the interest in repurposing 

IL6R blockers as a potential therapeutic strategy for SARS-CoV-249. As lowering the levels 

of circulating IL6R will lead to lower activation of glycoprotein 130, estimates in this study 

suggest that this might result in reduced risk of severe SARS-CoV-2 symptoms. These 

findings therefore corroborate results from a recent MR study which used human genetic 

data to support the efficacy of IL6R inhibition as a potential treatment option for severe 

SARS-CoV-2 symptoms50. There is however conflicting evidence emerging from clinical 

trials evaluating the repurposing of IL6R blockers for covid-19 therapy with some already 

being halted51. 
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This study has several limitations which should be taken into account when interpreting its 

findings. The current sample sizes of the SARS-CoV-2 GWAS are (as one would expect) 

relatively modest compared to large-scale GWAS data which MR studies are 

contemporaneously applied to, meaning that our cis-pQTL analysis is likely underpowered. 

We analysed severe covid-19 as an outcome to mitigate reported selection bias of cases24, 

so larger sample sizes of severe SARS-CoV-2 GWAS in the future should improve the 

statistical power of our approach. Furthermore, although the protein GWAS data is of 

unprecedented sample size compared to previous large-scale pQTL analyses (n=10,708), it 

remains comparably modest to the sample sizes of GWAS used to derive instrument for the 

cardiometabolic exposures in this work. This is exaggerated by the fact that protein MRs 

are typically conducted using a monogenic instrument and thus genetic instruments are 

likely to explain a lower proportion of variance in the exposure52. Therefore, although we 

have undertaken thorough evaluations to interrogate bi-directional relationships between 

the exposures and proteins in this study, the discrepancies between the samples sizes 

makes the direction of effect challenging to orient (the majority of exposure instruments 

were derived using sample sizes of n=~440,000). Finally, although data from plasma pQTL 

studies provide an exceptional opportunity to leverage instruments for MR studies, it 

should be noted that serum plasma may not capture signatures confined to disease or cell-

type relevant tissues. This is particularly important for a disease with a large autoimmune 

component such as covid-19 and further emphasis should therefore be noted when 

interpreting the results of our study on proteins such as IgG. 

 

In conclusion, our MR study identified many effects between conventional risk factors and 

circulating proteins which provides a platform for prospective endeavours to dissect 

related disease pathways. Future research into the pathogenesis of the proteins highlighted 

by this study are warranted to discern whether they may hold therapeutic potential for 

covid-19 severity.  
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