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Abstract 
Coronavirus disease 2019 (COVID-19) has caused strain on health systems worldwide due to 
its high mortality rate and the large portion of cases requiring critical care and mechanical 
ventilation. During these uncertain times, public health decision makers, from city health 
departments to federal agencies, sought the use of epidemiological models for decision support 
in allocating resources, developing non-pharmaceutical interventions, and characterizing the 
dynamics of COVID-19 in their jurisdictions. In response, we developed a flexible scenario 
modeling pipeline that could quickly tailor models for decision makers seeking to compare 
projections of epidemic trajectories and healthcare impacts from multiple intervention scenarios 
in different locations. Here, we present the components and configurable features of the COVID 
Scenario Pipeline, with a vignette detailing its current use. We also present model limitations 
and active areas of development to meet ever-changing decision maker needs. 
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Introduction 
In late 2019, the virus responsible for coronavirus disease 2019 (COVID-19) was detected in 
Wuhan, China ​[1]​. Since its emergence, SARS-CoV-2 has spread rapidly, causing significant 
morbidity and mortality; prompting the World Health Organization to declare a pandemic on 11 
March 2020 ​[2]​. In addition to its significant individual health impacts, COVID-19 has put 
considerable strain on health systems, as a large fraction of cases require mechanical 
ventilation or critical care ​[3]​. In every stage of the pandemic thus far, there has been a need for 
flexible decision support tools that can be used to model and compare critical planning 
scenarios.  
 
Epidemiological models have played an important role in shaping public health policy and 
interventions throughout the pandemic. The methods used have ranged widely -- from 
agent-based modeling approaches that simulate the global movement of individuals and their 
contacts in household, workplace, and leisure settings ​[4]​, to population-level models that 
incorporate features like age-specific transmission, asymptomatic and presymptomatic 
transmission, and metapopulation structure ​[5–7]​, to curve fitting approaches that use data from 
early in the COVID-19 pandemic to project future burden ​[8]​. Likewise, the goals of these 
models have varied widely, from assessing importation risk, estimating the fraction of cases 
attributable to transmission from unobserved infections, projecting the impact of 
non-pharmaceutical interventions that target different populations, and forecasting the needs of 
the healthcare system. 
 
Within this space, there was a need for a modeling pipeline that could provide flexible but 
sophisticated epidemiological models to decision makers who needed to plan and compare 
specific interventions. Here, we detail our scenario modeling pipeline, a modular framework that 
projects epidemic trajectories and health care impacts under different suites of interventions in 
order to aid in scenario planning. The flexibility of our approach has allowed us to provide rapid 
support to multiple organizations at the same time, while customizing our models to 
situation-specific questions and data. This framework has been used to provide tailored 
estimates of the relative impacts of different scenarios of disease transmission, severity, and 
control, thus guiding intervention policies in several states, countries, and humanitarian aid 
settings. 

Methods 

Pipeline at a Glance 
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The pipeline consists of multiple modular components designed to run in sequence to produce 
results and reports focused on policy relevant outcomes (Figure 1). While the pipeline was 
developed to be extended, the current core components are (1) epidemic seeding, (2) the 
transmission model, (3) health outcome generation engine, and (4) report generation.  
 
These modular components of the pipeline fit together because each is composed of multiple 
pieces: an input format, an output format, one or more code libraries (where applicable), and a 
runner script. The standardized input and output formats ensure that components may be 
switched out according to user preference without impacting other phases. The “library” 
generally contains the core functions for a pipeline component. The script liaises between the 
user-defined configuration and the library by choosing which library to use and converting the 
input format to a format used by the library. 
 
The pipeline runs these components in sequence, according to the specifications outlined in a 
configuration file. This makes it easy to add or modify a component. To add a component, we 
specify its input format, and incorporate its dependencies. To modify the implementation of a 
component, we add or modify functions in the library and function calls in the runner script. 
When appropriate, entire components may be substituted with data from outside of the pipeline, 
provided that the data meet the input formats required by the next pipeline phase.  

Module 1: Epidemic seeding and initialization 
“Epidemic seeding” refers to how the disease transmission module is initialized with infected 
individuals. A seeding module must produce one of more seeding files that specifies an added 
number of incident cases occurring due to “seeding” at particular dates and locations.  
 
The pipeline currently contains two epidemic seeding options: 1) seeding according to first case 
appearance in data, and 2) seeding according to an air travel importation model.  

Seeding according to earliest identified cases  
This seeding option enables users to seed the model according to COVID-19 case data. It 
currently supports user-supplied data and download from two commonly used public sources, 
the Johns Hopkins University Center for Systems Science and Engineering (JHU-CSSE) 
COVID-19 Dashboard ​[9]​ and USAFacts, a US-specific database that collates data from state 
health departments ​[10]​. Drawing from the user-specified data source, this option identifies the 
first five days that cases were reported in each modeled location. We assume that confirmed 
cases were infected a user-specified number of days prior to when they were reported, and that 
there is a user-specified ratio of infections to confirmed cases. Seed infections are, hence, 
created in each modeled location on the estimated days of infection for the first five days with 
reported cases; they are drawn stochastically from a Poisson distribution where the mean is the 
product of the number of reported cases and the user-specified ratio. 
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To facilitate the generation of the seeding file for US settings, we provide the 
“R/scripts/create_seeding.R” script in “HopkinsIDD/COVIDScenarioPipeline,” which pulls data 
directly from USAFacts. 

Seeding according to an air importation model 
We adapted a previously published model of measles importation to model the rate of 
COVID-19 importation to specific locations due to air travel ​[12]​. This seeding option, available 
in the Github repository “HopkinsIDD/covidImportation” ​[13]​, uses complete itinerary (origin to 
final destination) air travel volume data from OAG ​[14]​ for all airports in the world, source 
location populations, and source location incidence data, to inform a model with which absolute 
counts of importation are estimated on a daily basis into airports ​[13]​. 
 
Geographic areas surrounding airports are classified spatially into “airport catchment areas” with 
a Voronoi tessellation of space in reference to the latitude and longitude coordinates of the 
airport ​[15]​. When there are multiple airports within close proximity, the user may specify a 
threshold distance under which airports may be grouped into a single cluster that is defined by 
its centroid. We then assign a probability of importation to each intersection of a Voronoi tile and 
an administrative unit boundary. This probability is calculated as the proportion of the airport 
catchment area population that lives in that intersection, assuming that population is distributed 
evenly by area. All air importations on a given day are then aggregated to the administrative unit 
level and seeded into the epidemic model as newly infected individuals.  
 

Module 2: Transmission model and intervention scenarios 
The disease transmission module takes in seeding information and produces an epidemic 
model output file that contains, at minimum for subsequent module compatibility, daily counts of 
incident infections, indexed to their time of symptom onset. The currently implemented default 
transmission module comprises a metapopulation model with stochastic 
Susceptible-Exposed-Infected-Recovered (SEIR) disease dynamics.  

Disease dynamics 
The core model is a modified SEIR compartmental model where the time in the “Infected” 
compartment follows an Erlang distribution (i.e., the infected compartment is split into  
compartments) to produce more realistic infectious periods where the chance of recovery 
depends on the time since infection ​[16]​, and a coefficient ( ) can be set to help the model 
approximate non-homogeneous mixing between susceptible and infected individuals and 
non-exponential growth ​[17]​. Currently  is fixed at three compartments. 
 
Transition of individuals between disease compartments is simulated stochastically with 
binomial random draws:  
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where , , , , , and  represent the number of individuals in those respective 
compartments,  is the force of infection from the infected population on the susceptible 
population,  is the latent period,  is the infectious period, and  is the number of  
compartments. The force of infection, which modulates transition of individuals from the  to  
compartments: 
 

 
 
where  is the total population,  is the daily transmission probability as defined by  and the 
infectious period, and  is the mixing coefficient. 

Metapopulation dynamics 
The model is capable of simulating disease spread in multiple locations jointly according to 
assumptions about population mobility between individual model locations (e.g., administrative 
units). The SEIR disease dynamics described above are simulated in each model location with 
a modification to the force of infection term that accounts for this impact of mobility on disease 
spread. 
 
The force of infection in a given location  is calculated from a combination of local infections 
and infections in locations that are connected to it according to the mobility matrix, as follows: 
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where  is a mobility matrix such that  represents the daily movement of individuals (e.g., 
commuting) from origin  to destination ,  is the proportion of time that moving individuals 
spend away, and  is the population of node . The transition of individuals between disease 
compartments may be modified to index by location , for example: 
 

 
 

Users may provide a symmetric or asymmetric wide-form mobility matrix for all model locations 
or a long-form sparse mobility matrix that indicates only pairs of model locations with 
connectivity.  

Application of non-pharmaceutical interventions 
In the absence of vaccines and other preventive treatments, non-pharmaceutical interventions, 
such as school closures, social distancing, stay-at-home directives, and testing and isolation are 
critical strategies for reducing disease transmission. The model enables users to specify 
non-pharmaceutical interventions as changes to the basic reproductive number ( ) and the 
inverse of the infectious period ( ), for pre-specified periods of time and to apply 
non-pharmaceutical interventions to all or subsets of model locations independently. 
Non-pharmaceutical interventions can be implemented with fixed or distributional effectiveness. 
In addition, users may specify a rate of fatiguing intervention effectiveness (e.g., declining 
adherence to a policy) over a certain number of days. This format enables flexibility in scenario 
planning; for instance, the model can be used to examine the effects of chaining multiple 
interventions together over time (e.g., school closure then stay-at-home), gradual declining 
adherence of the population to an intervention, switching interventions on and off over time, and 
spatially heterogeneous interventions (Figure 2). 
 
The effectiveness of a given non-pharmaceutical intervention modulates the daily transmission 
term below: 
 

 
 

where  is the daily transmission rate after accounting for intervention effectiveness  at 

the specified location  at time . When non-pharmaceutical interventions are in effect  
replaces  in the force of infection term . 
 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.06.11.20127894doi: medRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=M#0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bi%2Cj%7D#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=p_a#0
https://www.codecogs.com/eqnedit.php?latex=H_i#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=R_0#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_i%5E%7B%27%7D(t)%20%3D%20(1%20-%20r_i(t))%20%5Ccdot%20%5Cbeta_i(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_i%5E%7B%27%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=r_i(t)#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_i%5E%7B%27%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_i(t)#0
https://www.codecogs.com/eqnedit.php?latex=FOI_i(t)#0
https://doi.org/10.1101/2020.06.11.20127894
http://creativecommons.org/licenses/by/4.0/


Intervention specification is completely user-specified. We include a set of common 
non-pharmaceutical intervention scenarios that can be applied for user-specified dates and 
locations (​Table S1 ​), which have been compiled according to our review of the literature on the 
potential impact of non-pharmaceutical interventions on respiratory virus transmission. 

Module 3: Calculation of health outcomes 
This pipeline module translates outputs from the transmission model into health outcomes such 
as hospitalizations and deaths. It takes in counts of daily incident infections and produces daily 
counts for specific health outcomes at appropriate time delays.  
  
The current default implementation produces hospital and intensive care unit (ICU) admissions, 
current hospital and ICU occupancy, ventilators needs, and number of deaths. Our modeling of 
health outcomes assumes that there is some transition probability from infection to death, 
infection to hospitalization, hospitalization to ICU admission, and ICU admission to ventilator 
use. In our modeling of health outcomes, we consider the probability of its occurrence (e.g., 
probability that infections are hospitalized), the time delay relative to its disease course (e.g., 
time between hospital admission and ICU admission), and where applicable, the duration in a 
given state (e.g., how long a patient remains ventilated). 
 
The user may specify health outcome probabilities and delays, conditional on the flows 
described above. For use as default values, we provide tables of parameter values which were 
derived from a literature review of COVID-19 health outcomes (​Table S2 ​). 
 
The pipeline currently contains two versions of this module with different approaches to the 
specification of health outcome risks: 1) unadjusted, uniform risk and 2) location-specific risks, 
adjusted by key demographic or health factors in each location.  

Unadjusted, population-wide health outcome risks 
This option generates health outcome estimates with unadjusted risk across all locations, 
assuming fixed values for all health outcome probabilities, delays and durations. 
 
We assumed that the number of infections admitted to the hospital is a draw from the Binomial 
distribution, lagged by a fixed time from symptom onset to hospital admission:  
 

 
where  is the number of hospital admissions,  is the number of infections,  is the 
time of infection,  is the mean time delay between infection and hospital admission, 
and  is the probability of hospitalization given infection (​Table 1 ​). 
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We make similar assumptions for the transitions between other outcomes (hospitalization 
admission to ICU admission, ICU admission to ventilator use, infection to death):  
 

 
 

The number of patients currently hospitalized, admitted to ICU, and ventilated are generated 
from the incident number of events and fixed (non-distributional) user-defined durations for each 
event.  
 
As information about the death and hospitalization rates were scarce early on in the pandemic, 
decision makers wanted to consider how things would unfold over different scenarios of health 
burden. To facilitate these needs, our pipeline separates hospitalization and death rates from 
the other outcomes, and allows users to consider multiple scenarios for different rates. 

Location-specific health outcome risks 
The health outcomes of SARS-CoV-2 infection can vary greatly between locations due to 
differences in age distributions and health status between populations. For this reason, the 
hospitalization module also supports the specification of location-specific relative risks. Users 
may provide a wide format data file with standardized variable names for the transition 
probabilities and relative risks (columns) by geoid (rows). These transition probabilities are 
conditional on previous states (e.g., probability of hospitalization given infection is named 
p_hosp_inf). The probability of hospitalization and death given infection are specified as relative 
values compared to population-wide averages specified in the configuration file. We note that 
the location-specific standardizations apply only to the health outcomes, making a critical 
assumption that all individuals are at equal risk of infection. 
 
While location-specific data is not required to differ for all health outcome transition probabilities 
(i.e., some probabilities can be constant across all locations), the location-specific file should 
include the variables described in ​Table 1 ​ and population-wide average values for the 
probability of hospitalization (p_hosp_inf) and death (p_death_inf) given infection. 
 

Table 1 ​. Health outcome risk parameters 
 

Column Name (notation, as 
appropriate) 

Description 

p_hosp_inf ( ) probability of hospitalization among infected individuals 

p_icu_hosp ( ) probability of ICU admission among hospitalized individuals 
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p_vent_icu ( ) probability of ventilation among individuals in the ICU 

p_death_inf ( ) probability of death among infected individuals 

rr_hosp_inf relative risk of hospitalization (given infection) relative to the 
average across all geoids  

rr_death_inf relative risk of death (given infection) relative to the average 
across all geoids 

 
 
To facilitate construction of such files, we have created a companion package ​covidSeverity 
that produces location-specific relative death and hospitalization rates based on the age 
distribution of the local population ​[18]​. The package generates these outputs for US counties 
based on data from the US Census Bureau, and we provide this as a model input file as part of 
the main pipeline implementation (see 
COVIDScenarioPipeline/sample_data/geoid-params.csv). The package also includes built-in 
functionality to pull data from WorldPop ​[19]​ and generate adjustments for any location of 
interest ​[18]​. 
 
The ​covidSeverity ​ package applies a logistic generalized additive model (GAM) with a 
penalized cubic spline for age and random effect for age-specific estimates of risk of each 
health outcome from the literature, thus producing estimates of risk for 10-year, aggregated age 
categories. These age-specific estimates are then applied to the population age distribution in a 
given location.  
 

Summarization of model outputs 
This component of the pipeline provides wrapper functions for the lightweight summarization of 
model outputs into quantiles, plotting functions for common figures, and R Markdown templates 
to facilitate the rapid generation of technical reports. This module is available in the R package 
report.generation ​ in the Github repository “HopkinsIDD/COVIDScenarioPipeline.”  
 
We provide two key functions that read and process individual transmission 
(​load_scenario_sims_filtered ​) and health outcome (​load_hosp_sims_filtered ​) 
model output files. In managing individual files with these functions, we reduce the processing 
time and memory load. Both of these functions take processing functions as arguments, thus 
enabling aggregation and filtering to occur at the level of individual files. 
 
The package contains technical report R Markdown templates for US states, US counties, and 
countries, a diagnostic report template called “sanity_check_report,” and a template that is 
maintained solely for integration testing. When ​report.generation ​ is installed and loaded, 
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the templates become available to the user. Many parameters are drawn from the configuration 
file automatically and pre-written R Markdown chunks about the module options and methods 
can be referenced within the package. 
 
Common figures include summary tables and time courses for estimated health outcomes under 
different interventions, maps that portray cumulative cases at the county level, comparisons 
between model estimates and observed cases and deaths, and visualizations for when ICU and 
ventilator capacity for each county is exceeded. The vignette below walks through example 
report outputs in more detail and we provide a template-generated report example in the 
Supplementary Material (Example Report). 

Model specification 
All components and settings for simulations from the COVID Scenario Pipeline model are 
specified in an easily-modifiable YAML configuration file. We describe different options in detail 
in the Results and an example of the complete set of configuration options is provided in the 
Supplementary Material.  

Model access and use  
The project is open-source under the GNU General Public License v3.0 license, and code is 
available at ​https://github.com/HopkinsIDD/COVIDScenarioPipeline ​. The master branch of this 
repository consists of a Python package “SEIR” and two R packages “hospitalization” and 
“report.generation,” which correspond to the second, third, and fourth modules of the model 
pipeline (​https://zenodo.org/badge/latestdoi/245866576 ​). Air importation-based seeding is 
implemented in the ​covidImportation ​ package 
(​https://github.com/HopkinsIDD/covidImportation ​), while seeding according to the earliest 
identified cases is performed in scripts within the “HopkinsIDD/COVIDScenarioPipeline” 
repository. 

Results: scenario modeling vignette 
Here, we present a vignette with 50 model simulations in a fictional setting (Location X) with 
nine counties (named A through I) in demonstrative intervention scenarios from January 31 to 
December 31, 2020.  In this vignette, we walk through how to set up and run the pipeline, 
demonstrate some of the spatial and temporal features for modeling non-pharmaceutical 
interventions, and display some of the plotting functions useful for summarizing the model 
output.  
 
To run the model, users will require the functionality of the 
“HopkinsIDD/COVIDScenarioPipeline” repository and a second GitHub repository specific to 
their model location. A template for such a spatial repository may be found at 
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“HopkinsIDD/COVID19_Minimal” (​https://github.com/HopkinsIDD/COVID19_Minimal ​), and 
complete details on downloading and running the model are available in the template’s wiki at 
https://github.com/HopkinsIDD/COVID19_Minimal/wiki ​. 
 
Once we have a working environment, the next step is to create a configuration file to describe 
the model specifications. A skeleton configuration file is included in the COVID19_Minimal 
template, and the full configuration file accompanying the results of this vignette is in the 
Supplementary Material.  
 
First, we specify the broad parameters of the run, such as the date range covered and the 
number of simulations to run (see first section in Supplementary Material, Example YAML 
Configuration File). 
 
Next we provide spatial setup information identifying the location of files containing geographic 
data and the geographic targets for modeling. The ​spatial_setup ​ section of the 
configuration file identifies a geographical data (geodata) file that contains the population data 
for each county or administrative subunit in the location(s) of interest and a mobility matrix file 
that contains the daily trip counts for each pair of counties. Users may employ the R scripts 
“build_US_setup.R” or “build_nonUS_setup.R,” which are provided with the repository, to 
generate compatible geodata and mobility matrix files. For users modeling non-US settings, the 
Github repository “COVID-19-Mobility-Data-Network/mobility” can be used to fit real-time or 
sparse travel data with mobility models in order to generate similarly compatible mobility 
matrixes ​[20,21]​. 
 
We note that in situations with high cross-border mobility, it may be important to model a region 
larger than the location of interest in order to appropriately capture disease transmission risk in 
a given location. Here, we model Locations X, Y, and Z even though Location X is the sole 
location of interest: 
 
spatial_setup: 
  base_path: data/location-x ## base path to spatial files 
  setup_name: location-x ## spatial folder name 
  geodata: geodata.csv ## path to geodata file with modeled geoids 
  mobility: mobility.csv ## path to mobility matrix 
  popnodes: pop ## column name of population in geodata 
  nodenames: geoid ## column name of unique location identifiers in 
geodata 
  modeled_states: 
    - X 
    - Y 
    - Z 
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We then specify the locations of the seeding files (see ​seeding ​ section in Supplementary 
Material, Example YAML Configuration File), with a separate section to describe the air 
importation model parameters as appropriate (see ​importation ​ in Supplementary Material, 
Example YAML Configuration File). 
 
Next, we specify the parameters that determine the course of the disease. The ​seir ​ section of 
the configuration file defines parameters used in the SEIR disease transmission model, 
including the level of population mixing (where 1 is homogeneous mixing, and < 1 is 
heterogeneous), the incubation period of the virus, the infectious period, and the baseline basic 
reproductive number ​. These values may be fixed or drawn randomly from a distribution, 
according to the configuration file: 
 
seir: 
  parameters: 
    alpha: 1 ## mixing coefficient 
    sigma: 1 / 5.2 ## inverse of the incubation period in days 
    gamma: ## inverse of the infectious period in days 
      distribution: uniform 
      low: 1 / 6 
      high: 1 / 2.6 
    R0s: ## baseline basic reproductive number 
      distribution: uniform 
      low: 2 
      high: 3 
 
We typically parameterize sigma and gamma in our model with estimates of the range of the 
serial interval (SI) or generation time, such that  

 
which assumes that the average infection occurs halfway through an index case’s infectious 
period. 
 
The next step is defining the modeled intervention scenarios. Here, we considered five 
scenarios in our vignette example: 1) a no intervention scenario (named ​Uncontrolled ​), in 
which  remains unchanged over the course of the outbreak; 2) social distancing measures 
with fixed effectiveness in place from March 19 to December 31 
(​SocialDistancing_fixed ​); 3) social distancing measures with declining compliance, 
which were modeled as 10% reductions in effectiveness every 2 weeks beginning March 19 
(​SocialDistancing_fatigued ​); 4) social distancing measures following a 3-week on-off 
“pulsing” cycle from March 19 to August 12 (​SocialDistancing_pulsed ​); and 5) social 
distancing measures with spatial heterogeneity (​SocialDistancing_checker ​), where three 
of nine counties implement social distancing measures with fixed effectiveness from March 19 to 
December 31.  
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An intervention may be specified in a single block for all model locations, as in the case of the 
SocialDistancing_fixed ​ scenario, or for unique location identifiers (“geoids”) as in the 
SocialDistancing_checker ​ scenario: 
 
    SocialDistancing_fixed: ## scenario name 
      template: ReduceR0  
      period_start_date: 2020-03-19 ## intervention start date 
      period_end_date: 2020-12-31 ## intervention end date 
      value: ## randomly draw an intervention effectiveness value from 
a uniform distribution between .71 and .83 
        distribution: uniform 
        low: .71  
        high: .83 
    SocialDistancing_checker: 
      template: ReduceR0 
      affected_geoids: ["County B", "County E", "County F"] ## matches 
location IDs in geodata file 
      period_start_date: 2020-03-19 
      period_end_date: 2020-12-31 
      value: 
        distribution: uniform 
        low: .71 
        high: .83 
 
Other intervention scenarios require multiple blocks to be stacked together, as in the case of the 
SocialDistancing_pulsed ​ scenario, shown in truncated form below: 
 
    SD_Pulse1: 
      template: ReduceR0 
      period_start_date: 2020-03-19 
      period_end_date: 2020-04-08 
      value: 
        distribution: uniform 
        low: .71 
        high: .83 
    SD_Pulse2: 
      template: ReduceR0 
      period_start_date: 2020-04-30 
      period_end_date: 2020-05-20 
      value: 
        distribution: uniform 
        low: .71 
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        high: .83 
    ... <SD_Pulse3 and SD_Pulse4> ... 
    SocialDistancing_pulsed: 
      template: Stacked 
      scenarios: 
        - SD_Pulse1 
        - SD_Pulse2 
        - SD_Pulse3 
        - SD_Pulse4 
 
Then, we set up the health outcome risk specifications. In the ​hospitalization ​section of 
the configuration file, we specify whether the model calculates health outcome risks with 
age-adjusted estimates, the average infection fatality ratios (IFR), and the time delays between 
different health outcomes. The time delays are modeled with lognormal distributions and 
parameterized with the log median and log standard deviation. For ease of use, we provide a 
table of estimates found in the literature in ​Table S2 ​. 
 
After the simulation runs complete, we can produce rapid summaries of the results using R 
Markdown templates provided by the ​report.generation ​ package. The ​report ​section of 
the configuration file specifies scenario labels and colors, IFR scenario labels, and table display 
dates. These settings, along with other model parameters, can be loaded into a technical report 
template.  
 
Here we describe how the ​state_report ​ template in the ​report.generation ​ package 
can be used to display our model results as an example. The full template-generated report 
linked to this vignette is provided in the Supplementary Material (Example Report). First, the 
configuration file is loaded to pull in the model settings and file paths. Then, we use a number of 
predefined functions to load and plot the data.  
 
For example, one standard report figure compares time series of the daily number of hospital 
beds needed across intervention scenarios (​Figure 2 ​) using the 
load_hosp_geocombined_totals ​ and ​plot_ts_hosp_state_sample ​ functions from 
the ​report.generation ​ package in order to load and plot the data. To plot variations of 
these figures, we only need to change which health outcome variable is specified in 
plot_ts_hosp_state_sample ​. 
 
While ​Figure 2 ​ displays aggregate results, our reports also provide location-specific risk and 
logistical outputs at the county- or administrative subunit-level. For example, we present the 
age-adjusted infection fatality ratios and risk of ICU admission among hospitalized infections for 
the modeled counties within the distribution of all counties in the United States in ​Figure 3 ​A and 
Figure 3 ​B. Using the ​load_hosp_geounit_relative_to_threshold ​ and 
plot_needs_relative_to_threshold_heatmap ​ functions from ​report.generation ​, 
we display the potential need for beds in excess of health system capacity by model location in 
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our reports (​Figure 3 ​C). Values of the location-specific healthcare capacity, represented by the 
number of staffed hospital, acute care, or intensive care beds available and/or number of 
ventilators available, are user-defined; these can be based on assumptions of the average 
availability per person or input from data where available.  
 
A map of model outputs makes it easier to visualize spatial and temporal heterogeneity in 
different intervention scenarios (​Figure 4 ​). We provide this functionality in the 
load_cum_inf_geounit_dates ​ and ​plot_geounit_map ​ functions in the 
report.generation ​ package. 
 
Each report template is equipped to load static R Markdown reference chunks, which we have 
pre-written and provided with the package. These chunks provide details on our methods, 
limitations, and key references, pulling in parameters from the configuration file as needed. 

Discussion 
We present our scenario pipeline as an open-source modeling framework that aims to balance 
epidemiological rigor with the flexibility and urgency required by public health policymaking. The 
modularity of our framework has enabled us to adapt our assumptions about COVID-19 
epidemiology, transmission, and health outcome risks in response to emerging information and 
to different settings. The pipeline implementation of non-pharmaceutical interventions is highly 
adaptable for policymakers desiring to compare the impact of different potential scenarios. 
 
Throughout the course of the pandemic, we have adapted the default settings of our pipeline in 
response to the changing needs and questions of our collaborators. At the beginning of the 
pandemic, air importation seeding was a critical determinant of epidemic onset in specific 
locations. Now that cases of COVID-19 are present worldwide, we have shifted towards 
developing more empirical methods of epidemic seeding that better match trajectories of 
confirmed cases in specific locations as policy questions have shifted to more operational 
needs. Further, as new data emerged, we moved from calculating unadjusted health outcomes 
to health outcomes based on age-standardized risk of hospitalization, ICU admission, and death 
according to emerging case-study data.  
 
As the COVID-19 pandemic continues, we plan to continue expanding the scope of the COVID 
Scenario Pipeline to changing needs and questions. Future model releases will include a health 
outcomes model expansion that will enable a multiplicity of pathways to ICU occupancy, 
ventilator usage, and death. As questions have shifted to near-term operational needs, we have 
also begun to incorporate inference into our models, thus enabling the calibration of model 
trajectories to deaths and confirmed case counts, short-term forecast of health outcomes, and 
estimation of location-specific transmission parameters and NPI effectiveness.  
 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.06.11.20127894doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.11.20127894
http://creativecommons.org/licenses/by/4.0/


The current implementation of our model has several limitations. We do not explicitly model the 
role of asymptomatic transmission or other factors that may lead to biases in reporting, and we 
assume that only one progression in health outcome severity exists (infections to hospitalization 
to ICU to ventilator use), although we know that many disease course progressions are 
possible. In addition, the delays and durations involved in our health outcomes progression are 
fixed values, despite high variability in the estimates of these values. Our epidemic simulations 
do not account for age-specific transmission, so our model cannot capture the impact of 
strategies such as cocooning of high-risk age groups beyond population-level reductions in 
disease transmission. However, the modular approach taken is meant to allow for easy 
substitution of models with improvement in any of these areas while still taking advantage of 
other pipeline components. This flexibility does come at a cost, as the modular pipeline 
approach requires us to write and read files at the end and beginning of each phase, 
respectively. This procedure requires more disk space and input/output steps than other 
modeling approaches that can hold all of the necessary data in memory until a single output is 
produced at the end. Still, these slowdowns are not critically limiting; we have been able to run 
1000 county-level simulations of the United States in less than 10 minutes on a 96 core server. 
 
These limitations point to a broader need to consider the totality of evidence generated by 
epidemiologic models. While our approach is well-suited to answering policy questions about 
interventions, it is critical for policymakers to explore projections from multiple models in order to 
understand the range of possible trajectories and the sensitivity of results to different 
assumptions. Models that incorporate individual-level behaviors may be better for considering 
the impact of specific contact tracing strategies or location-specific measures like workplace 
occupancy or symptom screening policies ​[22]​; models incorporating real-time mobility data can 
best characterize the impact of movement-related restrictions ​[23]​; models with age-specific 
transmission may provide more detail on the impact of age-specific interventions like 
“cocooning” ​[24]​ or closing and opening schools; still other models are particularly suited to 
address questions about health systems burden and forecast operational needs ​[5,25]​. 
Integrating knowledge from multiple models, where appropriate, with careful consideration of the 
assumptions and appropriate applications of each model, will strengthen response and 
preparedness ​[26]​. 
 
Our flexible modeling pipeline brings an important voice to this “conversation” of models, by 
allowing rapid and flexible specification and simulation of even very complex intervention 
scenarios, and providing flexibility to rapidly update models as our understanding of a disease 
changes. This approach only reaches its full potential when parameters are based on careful 
and ongoing consideration of the literature and available data. But, when appropriately used as 
part of an iterative approach to decision making, this pipeline can be a valuable tool for public 
health decision making.  
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Figures 
 

 
 
Figure 1 ​. Overview of the pipeline ​. The pipeline has four modules, each with specific inputs 
that can be specified by the user. First, we identify when and in which model locations 
epidemics are seeded using an air importation model or confirmed case data. Second, the 
epidemic seeding events are used to initiate the disease transmission model, which is informed 
by our epidemiological assumptions and intervention scenarios. The disease transmission 
model produces daily incident infection counts and infection prevalence. Next, we calculate 
health outcomes like hospitalizations and ICU admissions from these infection counts according 
to assumptions about health outcome risks and infection fatality ratios. Finally, these health 
outcomes may be summarized using templates and functions from the report generation 
component of the pipeline. 
 
 
  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.06.11.20127894doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.11.20127894
http://creativecommons.org/licenses/by/4.0/


 

 
 
Figure 2 ​: Time series of daily number of hospital beds needed across five possible 
intervention scenarios in a fictional location with nine counties. ​Lines represent results 
from 50 stochastic model simulations. Horizontal black lines represent the total hospital bed 
capacity in the fictional location, assumed to be n=8661 (3 beds per 1,000 population). The 
colored horizontal bars along the top visualize the effectiveness of interventions at a given time 
point along a dark blue to light blue spectrum; dark blue indicates a period with no reductions to 
transmission, while light blue indicates a period with more restrictive action (i.e., low 
transmissibility). In the fifth scenario, “Social Distancing Checker,” only 3 of 9 counties 
implement any non-pharmaceutical interventions, thus differentiating it from “Social Distancing 
Fixed”. 
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Figure 3 ​: Health outcome risks and logistical needs for fictional counties. ​In the 
scatterplots, each point indicates (A) the age-adjusted infection fatality ratio and (B) risk of ICU 
admission given hospitalization by mean age for a county within the United States. Data for the 
nine fictional counties in our vignette is marked by magenta triangles. (C) The heat maps 
display county-level ICU bed needs, shaded according to the log ratio above or below the 
assumed ICU bed capacity (secondary y-axis) in each county (primary y-axis) for three example 
intervention scenarios (panels). The salmon pink shading indicates periods of time where ICU 
bed needs exceed capacity in the fictional counties. 
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Figure 4 ​: County-level COVID-19 risk for three scenarios (Uncontrolled, Pulsed, Checker) 
in the fictional Location X. ​ Choropleths for model outcomes on June 1, 2020 of the (A-C) 
cumulative infection rate per 10,000 population and (D-F) number of patients currently admitted 
to the ICU per 10,000 population for the Uncontrolled, Social Distancing Pulsed, and Social 
Distancing Checker intervention scenarios. County-level variation in attack rates can arise from 
differences in risk of importation, mobility patterns connecting subdivisions, and differences in 
non-pharmaceutical interventions applied in each location. If location-specific health outcome 
risks are specified (as are age-standardized health outcome risks in this example), this may 
serve as another source of county-level variation.  
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