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When a vaccine for COVID-19 becomes available, limited initial supply will raise the
question of how to prioritize the available doses and thus underscores the need for
transparent, evidence-based strategies that relate knowledge of, and uncertainty in,
disease transmission, risk, vaccine efficacy, and existing population immunity. Here,
we employ a model-informed approach to vaccine prioritization that evaluates the im-
pact of prioritization strategies on cumulative incidence and mortality and accounts
for population factors such as age, contact structure, and seroprevalence, and vaccine
factors including imperfect and age-varying efficacy. This framework can be used to
evaluate and compare existing strategies, and it can also be used to derive an optimal
prioritization strategy to minimize mortality or incidence. We find that a transmission-
blocking vaccine should be prioritized to adults ages 20-49y to minimize cumulative in-
cidence and to adults over 60y to minimize mortality. Direct vaccination of adults over
60y minimizes mortality for vaccines that do not block transmission. We also estimate
the potential benefit of using individual-level serological tests to redirect doses to only
seronegative individuals, improving the marginal impact of each dose. We argue that
this serology-informed vaccination approach may improve the efficiency of vaccination
efforts while partially addressing existing inequities in COVID-19 burden and impact.
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Introduction

SARS-CoV-2 has caused a public health and economic crisis worldwide. As of August 2020, there have

been over 25 million cases and 820,000 deaths reported (1). To combat this crisis, a variety of non-

pharmaceutical interventions have been implemented, including shelter-in-place orders, limited travel,

and remote schooling. While these efforts are essential to slowing transmission in the short-term, long-

term solutions—such as vaccines that confer immunity to SARS-CoV-2 infection—are urgently needed.

As the benefits of an effective vaccine for individuals and their communities may result in high and

widespread demand, it is critical that decision-making on vaccine distribution is transparent, particularly

in the initial phases when vaccine availability may be limited (2).

Here, we employ a model-informed approach to quantify the impact of COVID-19 vaccine prioriti-

zation strategies on cumulative incidence and mortality. Our approach explicitly addresses variation in

three areas that can influence the outcome of vaccine distribution decisions. First, we consider varia-

tion in the performance of the vaccine, including its overall efficacy, a hypothetical decrease in efficacy

by age, and the vaccine’s ability to block transmission. Second, we consider variation in the dynamics

and outcomes of infection by incorporating variation in both susceptibility to infection and the infec-

tion fatality rate by age. Third, we consider variation in the population, including the age distribution,

age-stratified contacts, and the existing fraction of seropositive individuals, with uncertainty, by age.

There are two main approaches to vaccine prioritization: (1) directly vaccinate those at highest risk

and (2) protect them indirectly by vaccinating those who do the most transmitting. For influenza, model-

based investigations of the tradeoffs between these strategies have led to recommendations that children

be vaccinated due to their critical role in transmission (3, 4). In the context of COVID-19 vaccination,

Matrajt et al. found that the tradeoff depends on vaccine efficacy, recommending direct vaccination of

the elderly when the vaccine is ineffective but indirect protection otherwise (5), while Gallagher et al.

showed the importance of indirect effects more broadly (6). The problem of vaccine prioritization also
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bears parallels to the more general problem of optimal resource allocation to reduce transmission, e.g.

with masks (7).

Our approach expands on previous literature in a number of ways. First, our model includes age-

stratified seroprevalence data and hypothetical age-varying vaccine efficacy. Second, we demonstrate

the generalizability of our model and recommendations by evaluating numerous geographic regions.

Third, we consider how the use of serological testing prior to vaccination can re-prioritize doses to

seronegative individuals, thereby increasing the effective number of available doses. Importantly, this

serology-informed dose redirection has the potential to ameliorate existing inequities in the burden and

impact of COVID-19. We identify an optimal vaccine allocation strategy and also evaluate five heuristic

strategies which, while sub-optimal, may be easier to implement.

Results

We evaluated the impact of vaccine prioritization strategies using an age-stratified SEIR model, because

age has been shown to be an important predictor or correlate of susceptibility (8–10), seroprevalence

(8, 11), severity (12–14), and mortality (15, 16). This model includes an age-dependent contact matrix,

susceptibility to infection, and infection fatality rate (IFR), allowing us to estimate cumulative incidence

and mortality via forward simulations. Cumulative incidence and mortality were then used as outcomes

by which to compare the impacts of vaccine prioritization strategies (see Methods).

We first examined the impact of five straightforward vaccine prioritization strategies for a hypotheti-

cal infection- and transmission-blocking vaccine of varying efficacy. The strategies prioritized vaccines

to children and teenagers, adults between ages 20 and 49, adults of 20 years or older, adults of 60 years or

older, and all individuals irrespective of age (all ages; see Figure 1A). Although not exhaustive, these five

strategies balance logistical simplicity while capturing a diverse set of possible outcomes from vaccine

safety and efficacy trials.

We measured the reductions in cumulative incidence and mortality achieved by each strategy, varying
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Figure 1: Evaluation and Comparison of Prioritization Strategies (A) Distribution of vaccines for five
prioritization strategies: under 20, adults 20-49y, adults 20+, adults 60+ and all ages. For each strategy,
vaccines were distributed to the age groups of interest in proportion to population demographics. (B,
C, D) Percent reduction in deaths and (E, F, G) percent reduction in infections in comparison to an
unmitigated outbreak for an all-or-nothing vaccine with (B, E) 100% efficacy, (C, F) 75% efficacy, and
(D, G) 50% efficacy. Scenario includes country-specific contact matrix and demographics for Belgium
(17,18), and age-dependent susceptibility (9) and IFR (15). The lines end once everyone in the age group
has been vaccinated.

the vaccine supply between 1% and 50% of the total population, and varying vaccine efficacy of 100%,

75%, and 50%, assuming that vaccines were administered before transmission begins in the population.

We considered two ways to implement vaccine efficacy ve less than 100%: as an all-or-nothing vaccine,

where the vaccine only protects ve percent of people, or as a leaky vaccine, where vaccinated people are

ve percent protected against infection (see Methods).

Among the five strategies evaluated, and across all combinations of vaccine supply and vaccine

efficacy, direct vaccination of adults 60 years and older consistently reduced mortality substantially more

than alternative strategies (Figure 1B-D), followed by vaccination of adults 20+. In contrast, to minimize
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cumulative incidence, vaccination of adults 60+ performed the worst across all levels of vaccine efficacy.

For an all-or-nothing vaccine, prioritizing adults 20-49y minimized cumulative incidence across all levels

of vaccine supply and vaccine efficacy (Figure 1E,F,G). However, for a leaky vaccine with 50% efficacy,

prioritizing children and teenagers minimized cumulative incidence (Supplementary Figure S5).

To determine whether our findings were robust across countries, we analyzed the ranking of pri-

oritization strategies for demographics and modeled contact structures of Belgium (Figure 1) as well

as the United States, India, Spain, Zimbabwe and Brazil. Across these countries, direct vaccination of

adults 60+ minimized mortality irrespective of vaccine supply and for both types of vaccine efficacy at

100%, 75% and 50% (Supplementary Figs. S1, S2, S3, S4, and S5). Similarly, across countries, vaccina-

tion of adults 20-49y minimized infections for all levels of efficacy when assuming a perfectly effective

vaccine or an all-or-nothing vaccine with 75% and 50% efficacy (Supplementary Figures S6, S7, S9).

However, vaccinating children and teenagers was superior for a 50% effective leaky vaccine (Supple-

mentary Fig. S10), with no consistent best strategy for a 75% effective leaky vaccine (Supplementary

Fig. S8). The ranking of prioritization strategies thus depends on interactions between local context and

the properties of the vaccine.

We also considered whether the rankings of prioritization strategies to minimize deaths would change,

were a vaccine to block COVID-19 symptoms and mortality but not SARS-CoV-2 infection or transmis-

sion (Supplementary Text S2 and Supplementary Fig. S12) and found no meaningful changes in the

rankings of strategies.

Vaccines may not be equally effective across age groups in preventing infection or transmission, a

phenomenon known to affect influenza vaccines (19–22). To understand the impact of age-dependent

vaccine efficacy, we incorporated a hypothetical linear decrease in efficacy of both infection and trans-

mission prevention among those 60y and older (all-or-nothing: Figure 2A, leaky: Supplementary Figure

S16). For all-or-nothing vaccines, the most effective strategies remained the prioritization of adults 20-

49y to minimize cumulative incidence and the adults 60+ to minimize mortality.
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Figure 2: Age-dependent vaccine efficacy (A) Here we consider two vaccines: a perfectly effective
infection- and transmission- blocking vaccine (solid line), and a hypothetical age-dependent vaccine
efficacy (dashed line), assuming an all-or-nothing vaccine efficacy that decreases stepwise in equal in-
crements for each decade of age to a final ve of 50% for the 80+ age group. (B) Impact of these two
vaccines on the reduction in death. There is no change when vaccinating those under 20 or adults 20-49y
since the vaccine is assumed to work perfectly for those under 50 in both scenarios. Not pictured: Order
of age-targeting strategies to minimize cases remains the same as in the base case, favoring prioritization
of adults 20-49y.

Decreasing vaccine efficacy in older age groups diminished the benefits of any prioritization strategy

that included this age group (Figure 2B). The reduction in mortality changed most when prioritizing

vaccines to adults 60+, hinting that there might be a tipping point such that direct vaccination of the

adults 60+ would no longer be the best approach to minimizing mortality. We investigated a variety of

hypothetical vaccine efficacy curves to determine whether such a tipping point existed and if so, the new

mortality-minimizing strategy. Across various specifications of total vaccine supply, baseline vaccine

efficacy, and decreased efficacy among the adults 60+, the majority of scenarios had no tipping point and

continued to favor direct vaccination of the adults 60+ (Table 1 and Supplementary Table S2). However,

especially for leaky vaccines, in scenarios characterized by (i) high vaccine supply, (ii) high efficacy

for those under 50, (iii) onset of decreased efficacy at a relatively young age, and (iv) very low efficacy

among the oldest, vaccination of adults over 20 became the mortality-minimizing strategy. This analysis

therefore strongly suggests that direct vaccination of the adults 60+ is likely to be the most effective way
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Baseline efficacy Hinge Age
Assuming an all-or-nothing vaccine.

Tipping point when vaccine supply is:
5% of pop 15% of pop 25% of pop

50%
59 - - -
69 - - -
79 - - -

75%
59 - - 0.8%
69 - - -
79 - - -

100%
59 - - 3.9%
69 - - -
79 - - -

Table 1: Vaccine efficacy tipping point for various vaccine efficacy curves, defined by the baseline effi-
cacy and hinge age (See Supplementary Fig. S15). We define the tipping point as the vaccine efficacy
in the 80+ age group where the best strategy to minimize deaths changes from prioritizing the adults
60+ to adults 20+ to minimize deaths. “-” indicates that a tipping point does not exist. Model results
using contact matrix and age demographic for Belgium (17,18), assuming an all-or-nothing vaccine (See
Methods). See Supplementary Table S2 for leaky vaccine results.

to minimize mortality.

If naturally acquired antibodies correlate with protection from reinfection, seroprevalence will affect

vaccine prioritization in two ways. First, depending on the magnitude and age distribution of seropreva-

lence at the time of vaccine distribution, the ranking of strategies could change. Second, distributing

vaccines to seropositive individuals would reduce the marginal benefit of vaccination per dose.

To investigate the impact of vaccinating in mid-epidemic while potentially employing serology to

target the vaccine to seronegative individuals, we included age-stratified seroprevalence estimates in our

model by moving the data-specified proportion of seropositive individuals from susceptible to recovered

status. We then simulated two approaches to vaccine distribution. First, vaccines were distributed ac-

cording to the five prioritization strategies introduced above, regardless of any individual’s serostatus.

Second, vaccines were distributed with a serological test, such that seropositive individuals would not be

vaccinated, allowing their dose to be given to someone else. In a sub-population i with seroprevalence

θi, reallocating vaccines in this manner leads to an effective gain of an additional θi/(1 − θi) doses for

each originally allocated dose.
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Figure 3: Incorporating higher seroprevalence: Percent reduction in cumulative incidence and deaths
when incorporating high age-dependent seroprevalence from New York City in August 2020 (mean =
26.9%). Vaccines were distributed with (dashed) and without (solid) paired serology tests. Scenario
includes contact matrix and demographics for the US, and New York City seroprevalence estimates (23)
(See Table S1).

We tested this serology-informed modeling approach by including age-stratified seroprevalence es-

timates, demographics, and age-contact structure from New York City in August 2020 (23) (Figure 3)

in evaluations of the previous five prioritization strategies. The ranking of strategies to minimize mor-

tality (Figure 3A) and incidence (Figure 3B) remained unchanged: prioritizing adults 60+ most reduced

mortality and prioritizing adults 20-49y most reduced incidence, regardless of whether vaccination was

limited to only seronegative individuals. These rankings were unchanged when we used age-stratified

seroprevalence estimates, demographics, and age-contact structure from Belgium in July 2020 (Supple-

mentary Figure S13) to test the consistency of results.

Preferentially vaccinating seronegative individuals yielded large additional reductions in cumulative

incidence/mortality in locations with higher seroprevalence (New York City (23), August 2020 mean:

26.9%, Fig. 3) and modest reductions in locations with low seroprevalence (Belgium (11), July 2020

mean: 4.5%, Fig. S13). These results remained unchanged when statistical uncertainty, due to sample

size and imperfect test sensitivity and specificity, were incorporated into the model (24) (Fig S13).

Rather than adhering to one of the five pre-specified strategies, we next asked whether an optimal
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Figure 4: Optimal allocation for minimizing cases: (A) Optimal vaccine distribution for three vaccine
supplies: 10% (top), 20% (middle), 30% (bottom). (B) Percent reduction in cases when vaccines are
distributed according to the optimization algorithm (yellow) and the five straightforward strategies. (C)
Percent of each age group to vaccinate to minimize infections. Scenario includes country-specific contact
matrix and demographics for Belgium (17, 18).

prioritization existed which outperformed all others, given age-stratified data on serology, contact struc-

ture, and demographics. To do so, we use a nonlinear optimization approach which searched over all

possible prioritization strategies, subject to a specified total vaccine supply.

To demonstrate the use of this optimization in practice, we computed optimal strategies using Bel-

gian data, deriving incidence-minimizing strategies for vaccine supplies of 10%, 20% and 30% of the

total population. For a 10% total supply, the optimal strategy immunizes only those aged 30-49 (Figure

4A; top), while a 20% supply leads to expanded vaccination of some aged 10-29. A 30% total supply
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leads to broader vaccination of those 10-49 with a small fraction of vaccines prioritized for those 50-

59 (Figure 4A; bottom). All optimal strategies for minimizing incidence prioritize multiple age groups

before completely vaccinating any given age group (Figure 4C). In contrast, to minimize mortality, vac-

cines with equal efficacy across age groups should be prioritized to the oldest first, starting from the

very oldest in the population and moving down the age range (Supplementary Fig. S14). The opti-

mal strategy suppressed the epidemic at a vaccine supply of only 42% (Figure 4B), outperforming, as

expected, the five pre-specified strategies. We caution that this optimal allocation strategy depends on

country- and time-specific variables included in the modeled scenario (in this case, ve = 100% and R0 =

2.6, and no age-dependence of efficacy), and of course on assumptions about age-specific susceptibility,

transmissibility, etc.

Discussion

This study demonstrated the use of an age-stratified modeling approach to evaluate and compare vac-

cine prioritization strategies for SARS-CoV-2. After accounting for country-specific age structure, age-

contact structure, infection fatality rates, and seroprevalence, as well as the age-varying efficacy of a

hypothetical vaccine, we found that across countries those 60y and older should be prioritized to min-

imize deaths. This recommendation is robust because of the dramatic differences in IFR by age. Our

model identified a few scenarios in which prioritizing all adults over 20 would provide greater mortal-

ity benefits than prioritizing older adults. These scenarios were restricted to the conditions of a large

enough vaccine supply, very low efficacy in older adults, very high efficacy in younger adults, and de-

clines in efficacy starting at 49 or 59, for a leaky vaccine, and even more restrictive conditions for an

all-or-nothing vaccine. Moreover, the advantage of prioritizing all adults vs. older adults was small even

with these conditions. Thus, we conclude that for mortality reduction, prioritization of older adults is a

robust strategy that will be optimal or close to optimal to minimize mortality for virtually all plausible

vaccine characteristics.
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In contrast, the ranking of infection-minimizing strategies depended on whether we considered an

all-or-nothing vaccine or a leaky vaccine. Modeling all-or-nothing vaccines led to consistent recommen-

dations to prioritize adults 20-49y across efficacy values and countries. However, for leaky vaccines, pri-

oritization shifted toward children and teenagers for vaccine efficacy of 50%, in line with prior work (5).

We also found that the transition point between top-ranked strategies varied by country demographics

and contact patterns when considering a leaky vaccine. Because a vaccine is likely to have properties

of both leaky and all-or-nothing models, empirical data on vaccine performance could help resolve this

difference in model recommendations, recognizing that such data are difficult to obtain in practice (see,

e.g. (25, 26)).

While any pre-specified age-based prioritization strategy can be evaluated using this model, we

showed how prioritization can be optimized to meet goals of either minimizing incidence or minimizing

death most efficiently. Critically, this approach showed that an incidence-minimizing strategy prioritizes

doses to those 10-59y, while a mortality-minimizing strategy prioritizes direct vaccination of the 60+

population. This finding is a consequence of the high infection fatality rates among the adults 60+ and

an inability of lower incidence alone to provide indirect protection. However, a vaccine with declining

efficacy among the elderly could change optimal strategies, highlighting the importance of age-stratified

estimates of vaccine efficacy.

Due to the expedited testing and approvals process, it is not yet clear whether the first-generation of

COVID-19 vaccines will be approved for the elderly or those under 18y (27, 28). While our conclusions

assumed that the vaccine would be approved for all age groups, both the evaluation and optimization

approaches introduced here can be tailored to evaluate a subset of approaches restricted to those within

the age groups for which a vaccine is licensed, using open-source tools such as those that accompany

this manuscript. Furthermore, we considered two possible goals of vaccination: minimizing cumulative

incidence or mortality. Our framework could also be adapted to include more morbidity, age-specific

data in order to consider other goals of vaccination, such as minimizing hospitalizations or economic
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costs, or maximizing quality-adjusted life years.

We demonstrated that there would be value in pairing individual-level serological tests with vacci-

nation, inclusive of the uncertainties in existing seroprevalence surveys (24), particularly in locations

where seroprevalence rates are high. However, the marginal gain in effective vaccine supply, relative to

no serological testing, must be weighed against the challenges of serological testing prior to vaccination.

Delays in serological tests results would impair vaccine distribution.

Equitable vaccine distribution among social and demographic groups is a major concern for vaccine

allocation strategies, and one our model did not explicitly address. Nevertheless, vaccinating seronega-

tive individuals could help to ensure equitable allocation as long as natural infection confers protection

at least as good as vaccination and vaccines are distributed to specific geographical areas for exclu-

sively local use. For instance, in a hypothetical neighborhood with high seroprevalence, vaccinating

only seronegatives would extend the local positive direct and indirect benefits of vaccination, but only if

doses were reallocated locally. In this way, serology could allow locales which suffered larger burdens

to extend their doses further. We caution that changing distribution in response to seroprevalence and

rebalancing doses away from high seroprevalence neighborhoods could create a double blow of high

initial burden followed by seroprevalence-based deprioritization during vaccination.

Our recommended strategies depend on the contact matrix, which is affected by social distancing. We

used pre-pandemic contact matrices (17) with the goal of returning to normal life once a vaccine is avail-

able. The scenarios modeled here did not incorporate physical distancing or other non-pharmaceutical

interventions, which we would expect to persist if vaccination coverage is incomplete. Our framework

could easily be adapted to pandemic-era contact matrices like the CoMix survey (29). Doing so will

indeed be critical, as mobility restrictions fluctuate.

Our study relies on both global and country-specific estimates of epidemiological parameters and

therefore highlights key quantities that must be estimated as part of effective vaccine prioritization. In

local contexts, these include age-structured seroprevalence and IFR, which vary by geographic region
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(15, 16, 30). Globally, key parameters include the degree to which antibodies protect against reinfection

or severity of disease and relative infectiousness by age. From vaccine trials, we also need evidence of

efficacy in groups vulnerable to severe outcomes, including the elderly. Additionally, it will be critical

to measure whether the vaccine protects only against symptomatic disease, or whether it also blocks

infection and transmission of SARS-CoV-2. If the vaccine does not block transmission or only protects

against severe infection, the public health community will need to clearly communicate this to the public

to discourage risky behavior that could increase negative externalities on the most vulnerable who cannot

be vaccinated.

The role of children during this pandemic has been unclear. Under our assumptions about suscepti-

bility by age, children are not the major drivers of transmission in communities. Thus, our results differ

from the optimal distribution for influenza vaccines, which prioritize school-age children and adults age

30-39 (4). However, both the relative susceptibility and relative infectiousness of SARS-CoV-2 by age

remain uncertain. While it is unlikely that susceptibility to infection is constant across age groups (8),

we ran our model to test the sensitivity of this parameter. Under the scenario of constant susceptibility

by age, vaccinating those under 20 has a greater impact on reducing cumulative cases than before, but

the overall ranking of strategies remains the same (Supplementary Figures S17, S18). In our model, we

assumed constant infectiousness (conditional on contact) by age, but a better understanding of this is

paramount to accurately modeling disease dynamics.

Our study is subject to a number of limitations. First, our evaluation and optimization strategy

considers variation in disease severity only by age. However, there are other factors that are have been

shown to correlate with disease outcomes, such as treatment and healthcare access and comorbidities,

which may correlate with factors like rural vs urban location, socioeconomic status, sex (31, 32), and

race and ethnicity (33), that are not accounted for in this study. Inclusion of these factors in a model

would be possible, but only with statistically sound measurements of both their stratified contact rates

and disease outcomes. Even in the case of age stratification, contact surveys have typically not surveyed
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those 80 years and older, yet it is this population that suffers dramatically more severe COVID-19 disease

and higher infection fatality rates. We extrapolated contact matrices to those older than 80, but direct

measurements would be superior.

Our study also considers variation in disease risk only by age, via age-structured contact matrices,

while many discussions around COVID-19 vaccine distribution have thus far focused on prioritizing

healthcare or essential workers (34, 35). Contact rates, and thus transmission potential, vary greatly not

only by occupation and age but also by living arrangement (e.g., congregate settings, dormitories), neigh-

borhood and mobility (36–39), and whether the population has a coordinated and fundamentally effective

policy to control the virus. With a better understanding of population structure during the pandemic, and

risk factors of COVID-19, these limitations could be addressed. Meanwhile, the robust findings in favor

of prioritizing those age groups with the highest IFR to minimize mortality could potentially be extended

to prioritize those with comorbidities that predispose them to a high IFR, since the strategy of prioritizing

the older age groups depends on direct rather than indirect protection.

Vaccine prioritization is not solely a question of science but a question of ethics as well. A hallmark

of the COVID-19 pandemic, as with other global diseases, is one of inequalities and disparities. While

our modeling efforts incorporate key parameters that focus on age and minimizing incidence and death

within a simply structured population, other considerations are crucial, from equity in allocation between

countries down to disparities in access to the benefits of vaccination within individual communities.

Thus, the model’s simplistic representation of vulnerability (age) should be augmented over time with

better information on the correlates of infection risk and severity. Fair vaccine prioritization should avoid

further harming disadvantaged populations. We suggest that pairing serological testing with vaccination

in the hardest hit populations is one possible equitable way to extend the benefits of vaccination in

settings where vaccination might otherwise not be deemed cost-effective.
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Methods

We used a continuous-time, ODE-based compartmental model stratified by age. The model compart-

ments (Si, Ei, Ii, Ri, Vi), described below, represent mutually exclusive epidemiological states stratified

by age group i, i ∈ {0-9, 10-19, . . . , 70-79, 80+}. We assume that people are initially susceptible,

unless they have been effectively vaccinated or have infection-derived antibodies, assuming antibodies

are protective against reinfection. Susceptible people (S) transition to the exposed state (E) after effec-

tive contact with an infectious individual. After a latent period, exposed individuals become infectious

(I). After an infectious period, individuals move to a recovered state (R). We assume that recovered

individuals are no longer infectious and are immune to reinfection. The duration of time spent in each

compartment, in expectation, is specified in Table S1. Model equations were solved using lsoda ODE

solver from the package ‘deSolve’, R version 3.6.0 (40).

The force of infection, λi for a susceptible individual in age group i is

λi = βi
∑
j

cij
Ij
Nj

,

where βi is the probability of a successful transmission given contact with an infectious individual, cij

is the number of age-j individuals that an age-i individual contacts per day, and Ij/Nj is the probability

that a random age-j individual is infectious. To calculate the basic reproductive number, R0, we define

the next-generation matrix as

M = DβCDdI ,

where Dβ is a diagonal matrix with diagonal entries βi, C is the country-specific contact matrix, and

DdI is a diagonal matrix with diagonal entries dI , where dI is the infectious period. R0 is the absolute

value of the dominant eigenvalue of M .

We scaled the estimated age-susceptibility βi from Davies et al. (9) to obtain anR0 = 2.6 in Belgium,

and used the same βi for all countries (29). Thus, the realized R0 changes by country according to the

contact matrix and demographics.
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The R0 for SARS-CoV-2 has been estimated between 2.1 and 3.1, with a mean of 2.6 (29). We ran

the Belgian scenario for this range ofR0 to test the sensitivity of our results. The ranking of the strategies

remained the same for all simulated values of R0 (Supplementary Fig. S11).

We used synthetic country-specific contact matrices from Prem et al. (17). These matrices include

four types of contact: home, work, school, and other. We combined their 5-year age bins into 10-

year age bins, and extrapolated an 80+ age group (See Supplementary Text S1). We used country age

demographics from the UN World Population Prospects 2019 (18).

We ran simulations to completion of the outbreak, when the total number of infectious people in

compartment I was less than 1. To compare the impact of different vaccination prioritization strategies,

we calculated the cumulative number of infections and deaths. To estimate the total number of deaths,

we multiplied the cumulative number of infections for each age group at the end of the simulation by an

age-dependent IFR (15), and thus assumed deaths negligibly impacted transmission.

In the simplest version of the model, the vaccine is assumed to be transmission- and infection- block-

ing, and to work with 100% efficacy. To incorporate vaccinations, we initialized the model by dividing

the total population of each age group between the susceptible compartment (S) and vaccinated compart-

ment (V ), according to the vaccine prioritization strategy and number of vaccines available. The model

was seeded with one infected person in each age group i, unless all age-i individuals were vaccinated.

We also implemented age-dependent vaccine efficacy, ve. A vaccine with less than perfect efficacy

can either be a leaky vaccine, where vaccinated people are ve percent protected against infection, or an

all-or-nothing vaccine, where the vaccine effectively protects ve percent of people but does not work

in (1- ve) percent of people (See Supplementary Text S3). Since the vaccine efficacy is unknown at

this time, we ran simulations with both types of vaccine efficacy. The type of vaccine efficacy does

not change the ranking of the prioritization strategies (all-or-nothing vaccine: Results, leaky vaccine:

Supplementary Fig. S16).

To incorporate age-dependent vaccine efficacy, we used a three parameter vaccine efficacy curve to
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define a baseline ve, hinge age and final ve (Supplementary Fig. S15). We assumed that the vaccine

efficacy starts at a baseline ve for all ages younger than the hinge age, then decreases stepwise in equal

increments for each decade of age to a final ve for the 80+ age group. We define the vaccine efficacy

tipping point as the final ve where the best strategy switches from vaccinating the adults 60+ directly to

minimize deaths. We estimated this point using the bisection method (41) for various for baseline ve and

hinge ages (Table 1 and S2).

To incorporate serology and compare areas with differing naturally-acquired immunity, we used

data and seroprevalence estimates from New York City and Belgium (11, 23). We inferred the true

seroprevalence distributions for these seroprevalence estimates when the sensitivity and specificity of

the antibody test was available, according to (24). To assess how sensitive the model results are to the

seroprevalence, we sampled from these distributions 100 times to get seroprevalence estimates for each

age group, and then ran the simulation forward for each estimate. To set our initialization parameters,

we moved the corresponding proportion of seropositive individuals into the recovered compartment, R.

There are two ways to implement a vaccination strategy with seropositive individuals in the popu-

lation: either vaccinate people regardless of serostatus, or pair the vaccine strategy with a serological

test. That way, if someone is seropositive, they will not be vaccinated under the assumption that innate

immunity is protective against reinfection. Without a paired serology test, the initial conditions for our

model were

Vi(0) = vi −NiP (vaccinatedi)P (seropositivei),

Ri(0) = seropositivei,

for an age group i, where vi is the number of people of age i vaccinated according to a given vacci-

nation strategy, P (vaccinatedi) is the probability that an individual of age i is vaccinated according to a

given vaccine allocation strategy, and P (seropositivei) is the probability that a person of age i is seropos-

itive. If an individual is both seropositive and vaccinated, they are put in the recovered compartment, R.
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Alternatively, when vaccinating with paired serology tests, the initial conditions are

Vi(0) = vi,

Ri(0) = seropositivei.

Finally, we inverted the problem and asked: given serology, a certain vaccine efficacy, contact struc-

ture, and demographics, what would be the optimal prioritization of vaccines? For this, we used a con-

strained optimization algorithm cobyla from the package ‘NLopt’. The constraints on our system were

vaccinating a minimum of 0% and a maximum of 100% people in each age group, and fixing the total

amount of vaccine supply. For the constrained optimization, we initially allocated vaccines uniformly

across all age groups, with noise to make the initialization stochastic. Then, we ran the optimization

algorithm 50 times for vaccine supply varying between 1% and 50% of the population and stored the

allocation that performed best.
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S1 Extrapolating contact matrix to 80+

We made two adaptations to the contact matrices from Prem et al. (17) First, we combined their five year

age bins into ten year bins to match our model’s age bins. Second, we extrapolated their final age bin

(75+) to add an 80+ age bin. To extrapolate, we copied the contact rates from 70-79 y.o. to our new row

and column for 80+, along the diagonal. Then we filled in the end of our new row and column with the

70-79 y.o. contact rates with 0-9 y.o., assuming interactions with 0-9 y.o. are similar for people 70+.

Lastly, to account for increased housing in long term living facilities for 80+ y.o., we decreased their

contacts for 0-60 y.o. by 10% and added it to the 70 and 80 y.o. contacts. Thus, 80+ year-olds have

the same total number of contacts as 70-79 year-olds, but relatively fewer among 0-69-year-olds and

proportionally more among 70+ year-olds.

S2 Non-transmission blocking vaccine

We considered a vaccine that prevents severe manifestations of COVID-19 infection, including death,

but does not block transmission of SARS-CoV-2. To implement, we used an SEIR model according to
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the schematic:

where the superscript V denotes vaccination. The force of infection depends on the vaccination state

of the susceptible individual such that

λSi = βi
∑
j

cij
(Ij + ωIVj )

Nj

and

λSV
i
= αβi

∑
j

cij
(Ij + ωIVj )

Nj

where α scales the relative susceptibility to infection for susceptible individuals who were vaccinated

and ω scales the infectiousness of vaccinated individuals who are infected with SARS-CoV-2. The

impact of this non-transmission blocking model on minimizing incidence and mortality are shown in

Supplementary Fig. S12 for α = ω = 1 and α = ω = 0.5. When α = ω = 1, there are no

indirect effects of vaccination. The ranking of the strategies remains the same as a vaccine that blocks

transmission of the virus: prioritize vaccines to adults 20-49y to minimize incidence and adults 60+ to

minimize mortality.

S3 Implementing vaccine efficacy: leaky vs all-or-nothing

A vaccine with less than perfect efficacy can either be a leaky vaccine, where vaccinated people are ve

percent protected against infection, or an all-or-nothing vaccine, where the vaccine effectively protects
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ve percent of people but does not work in (1- ve) percent of people. We considered both types of vaccine

efficacy (leaky vaccine: Results, all-or-nothing vaccine: Supplementary Fig. S16). To implement, we

used an SEIR model with initial conditions according to the following schematic:
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Supplementary Figures

Figure S1: Impact of vaccine prioritization strategies on minimizing mortality in multiple countries,
assuming 100% vaccine efficacy. Scenarios include country-specific contact matrices and demographics
(17, 18).
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Figure S2: Impact of vaccine prioritization strategies on minimizing mortality in multiple countries, as-
suming an all-or-nothing vaccine with 75% vaccine efficacy. Scenarios include country-specific contact
matrices and demographics (17, 18).
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Figure S3: Impact of vaccine prioritization strategies on minimizing mortality in multiple countries,
assuming a leaky vaccine with 75% vaccine efficacy. Scenarios include country-specific contact matrices
and demographics (17, 18).
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Figure S4: Impact of vaccine prioritization strategies on minimizing mortality in multiple countries, as-
suming an all-or-nothing vaccine with 50% vaccine efficacy. Scenarios include country-specific contact
matrices and demographics (17, 18).
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Figure S5: Impact of vaccine prioritization strategies on minimizing mortality in multiple countries,
assuming a leaky vaccine with 50% vaccine efficacy. Scenarios include country-specific contact matrices
and demographics (17, 18).
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https://www.overleaf.com/project/5f4694df967d7e0001f3fbe6

Figure S6: Impact of vaccine prioritization strategies on minimizing cumulative incidence in multiple
countries, assuming 100% vaccine efficacy. Scenarios include country-specific contact matrices and
demographics (17, 18).

S9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.08.20190629doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.08.20190629
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S7: Impact of vaccine prioritization strategies on minimizing cumulative incidence in multiple
countries, assuming an all-or-nothing vaccine with 75% vaccine efficacy. Scenarios include country-
specific contact matrices and demographics (17, 18).
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Figure S8: Impact of vaccine prioritization strategies on minimizing cumulative incidence in multiple
countries, assuming a leaky vaccine with 75% vaccine efficacy. Scenarios include country-specific con-
tact matrices and demographics (17, 18).
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Figure S9: Impact of vaccine prioritization strategies on minimizing cumulative incidence in multiple
countries, assuming an all-or-nothing vaccine with 50% vaccine efficacy. Scenarios include country-
specific contact matrices and demographics (17, 18).
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Figure S10: Impact of vaccine prioritization strategies on minimizing cumulative incidence in multi-
ple countries, assuming a leaky vaccine with 50% vaccine efficacy. Scenarios include country-specific
contact matrices and demographics (17, 18).
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Figure S11: Varying R0: Percent reduction in deaths (top) and infections (bottom) with Belgian contact
matrix and age demographics. According to (29) meta-analysis, R0 for SARS-CoV-2 is estimated to be
2.6±0.5. Hence, we simulated R0 = 2.1 (left), 2.6 (middle) and 3.1 (right) by scaling the age-dependent
susceptibility to infection, βi. The comparison of our five strategies remains the same across these values
of R0: prioritize adults 60+ to minimize deaths and prioritize adults 20-49y to minimize infections.
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Figure S12: Model results for a vaccine that blocks severe manifestations of COVID-19 but does not
block transmission of SARS-CoV-2. Here α denotes the relative susceptibility to infection for susceptible
individuals who were vaccinated and ω denotes the relative infectiousness of vaccinated individuals
who are infected with SARS-CoV-2 (See Supplementary Text S2). We also denote V ES = 1 − α,
V EI = 1− ω, V EP = efficacy against progression.

S15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.08.20190629doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.08.20190629
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S13: Incorporating Low Seroprevalence: We ran 100 simulations of the model for the Belgian
simulation, including uncertainty in the initial number of seropositive individuals from (11) according
to (24) (See Methods), and plotted the corresponding percent reduction in deaths (A) and infections (C).
The variation over these 100 runs is small and barely noticeable. In (B) and (D), comparison of vaccine
distribution with (dashed) and without (solid) paired serology tests for the seroprevalence estimates from
(11). To minimize infections/deaths, distributing vaccines to the adults 20-49y/adults 60+ remains the
most strategic option.
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Figure S14: Optimal allocation for minimizing deaths (A) Optimal vaccine distribution for three vac-
cine supplies: 10% (top), 20% (middle), 30% (bottom) (B) Percent reduction in cases when vaccines are
distributed according to the optimal allocation strategy (yellow) and the five straightforward strategies.
The optimal allocation curve performs the best. (C) Percent of each age group to vaccinate according to
the optimal vaccine distribution for minimizing deaths across different amounts of total vaccine supply.
We note with caution that these particular optima are sensitive to assumptions about the relationship
between vaccine efficacy and age.
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Figure S15: Three-parameter vaccine efficacy curve, defined by the baseline vaccine efficacy, hinge
age and final vaccine efficacy (labeled here as the tipping point). For most vaccine efficacy curves
tested, prioritizing the elderly has the greatest impact on minimizing deaths. However, depending on the
parameter values of this curve, there are regimes that result in a strategy other than prioritizing vaccines
to adults 60+, indicated here as the green region.

Figure S16: (A) Here we consider two vaccines: a perfectly effective infection- and transmission- block-
ing vaccine (solid line), and a hypothetical age-dependent vaccine efficacy (dashed line), assuming a
leaky vaccine efficacy that decreases stepwise in equal increments for each decade of age to a final ve
of 50% for the 80+ age group. (B) Impact of these two vaccines on the reduction in death. There is no
change when vaccinating those under 20 or adults 20-49y since the vaccine is assumed to work perfectly
for those under 50 in both scenarios. Not pictured: Order of age-targeting strategies to minimize cases
remains the same as in the base case, favoring prioritization of adults 20-49y.
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Figure S17: Constant susceptibility to infection: (A,B,C) Percent reduction in infections and (D,E,F)
percent reduction in deaths in comparison to an unmitigated outbreak for a vaccine with 100% (A,D),
75% (B,E) and 50% (C,F) vaccine efficacy. Scenario includes constant susceptibility to infection across
all ages with an R0 = 2.6, an all-or-nothing vaccine efficacy and country-specific contact matrix and
demographics for Belgium (17, 18).
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Figure S18: Constant susceptibility to infection: (A,B) Percent reduction in infections and (C,D)
percent reduction in deaths in comparison to an unmitigated outbreak for a vaccine with 75% (A,C)
and 50% (B,D) vaccine efficacy. Scenario includes constant susceptibility to infection across all ages
with an R0 = 2.6, a leaky vaccine efficacy and country-specific contact matrix and demographics for
Belgium (17, 18).
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Supplementary Tables

Parameter Description Value Reference
dE Incubation period 3 days (9)
dI Infectious period 5 days (9)

βi
Relative susceptibility to

infection for age-i individuals*

[0.4, 0.38, 0.79,
0.86, 0.8, 0.82,

0.88, 0.74, 0.74]
(9)

IFR Infection fatality rate
[0.001, 0.003, 0.01,

0.04, 0.12, 0.40,
1.36, 4.55, 15.24]

(15)

Ni
Number of people in

age group i
country-specific demographic data (18)

θi
Percent of seropositive

age-i individuals

New York**:
[32.0, 31.29, 24.9,
24.9, 26.4, 27.9,

25.75, 22.15, 20.7]

Belgium:
[3.76, 8.98, 7.01,
5.62, 2.73, 3.71,
2.07, 2.64, 3.48]

(11, 23)

cij

Number of age-j individuals
contacted by an age-i

individual per day

Country-specific contact matrix
(home, work, school and other)

(17)

Table S1: Model parameters.
* Relative susceptibility shown here is scaled in practice to give R0 of interest.
** To relate NYC seroprevalence estimates from (23) to age bins by decade, we computed
θi = (

∑
j θj)/10 where j is the ages in bin i.
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Baseline efficacy Hinge Age
Assuming a leaky vaccine.

Tipping point when vaccine supply is:
5% of pop 15% of pop 25% of pop

50%
59 - - -
69 - - -
79 - - -

75%
59 - - 0.8%
69 - - -
79 - - -

100%
59 5.9% 8.6% 13.3%
69 - - -
79 - - -

Table S2: Vaccine efficacy tipping point between prioritizing adults 60+ and adults 20+ to minimize
deaths. We define the tipping point as the vaccine efficacy in the 80+ age group where the best strategy
to minimize deaths changes (See Supplementary Fig. S15). Model results using Belgian contact matrix
and age demographic.
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