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Abstract

A mathematical model for two strains of Malaria and Cholera with optimal control is studied
and analyzed to assess the impact of treatment controls in reducing the burden of the diseases in a
population, in the presence of malaria drug resistance. The model is shown to exhibit the dynamical
property of backward bifurcation when the associated reproduction number is less than unity. The
global asymptotic stability of the disease-free equilibrium of the model is proven not to exist. The
necessary conditions for the existence of optimal control and the optimality system for the model is
established using the Pontryagin’s Maximum Principle. Numerical simulations of the optimal control
model reveal that malaria drug resistance can greatly influence the co-infection cases averted, even in
the presence of treatment controls for co-infected individuals.
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1 Introduction

Malaria is one of the febrile illnesses and the most common deadly disease in the world caused by one or
more species of plasmodium. These are Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale,
Plasmodium malariae, and Plasmodium knowlesi. Approximately half of the world population is at risk
of malaria. Most of malaria cases and deaths occur in sub-Saharan Africa [1]. According to the World
Malaria Report 2018, there were about 228 million cases of malaria and an estimated 405 000 deaths in
2018 [2]. More than 50% of all cases were reported in six countries in Africa, with Nigeria recording 25%
of the total global cases. Other African countries include Democratic Republic of Congo (12%); Uganda
(5%); Cote d’Ivoire, Mozambique and Niger (4% each) [2].

Cholera is an acute, diarrheal disease caused by infection of the intestine with the toxigenic bacterium
Vibrio cholerae serogroup O1 or O139. About 2.9 million persons are estimated to be infected worldwide,
with roughly 95,000 deaths annually [3]. Mostly, the infection is mild or without symptoms, although
can sometimes be severe. “Approximately 10% of those infected with the cholera will develop severe
disease characterized by profuse watery diarrhea, vomiting, and leg cramps. In these people, rapid loss
of body fluids leads to dehydration and shock. Without treatment, death can occur within hours” [3].

Mathematical models have been used extensively in studying the behaviour of infectious diseases
[4, 5, 6, 7, 8, 9, 10, 11]. A lot of models have been developed for the dynamics of the co-infections of two
diseases [12, 13, 14, 15, 16, 17, 18]. In this study, we shall be investigating the impact of malaria drug
resistance on the co-infection malaria and cholera, using a mathematical model. Furthermore, optimal
control analysis shall be carried out on the model to assess the impact of some control strategies.

2 Model formulation

The total human population at time t, denoted by Nh(t), is divided into eleven mutually exclusive
classes, namely: susceptible humans (Sh(t)), untreated individuals with the sensitive malaria strain
(Im

us(t)), individuals treated of sensitive malaria strain (Im
ts(t)), infectious individuals with resistant malaria

strain (Im
r (t)), individual that recovered from malaria infection Rm(t)), indivdiduals with cholera infection

(Ic(t)), individuals who have recovered from cholera (Rc(t)), individuals untreated of sensitive malaria and
infected with cholera, (Im

usc(t)), infectious individual treated of sensitive malaria but with cholera infection
(Im

tsc(t)), individual with drug resistant malaria and cholera (Im
rc(t)), individuals who have recovered from

both malaria and cholera (Rmc(t)). Thus

Nh(t) = Sh(t) + Im
us(t) + Im

ts(t) + Im
r (t) +Rm(t) + Ic(t) +Rc(t) + Im

usc(t) + Im
tsc(t) + Im

rc(t) +Rmc(t) (1)

The total vector population Nv is divided int three mutually exclusive classes: susceptible vectors, Sv,
vectors infected with the sensitive malaria strain, Ivs, vectors infected with the resistant malaria strain
Ivr. Thus, Nv = Sv + Ivs + Ivr. Also, the bacteria population is given by (Bc). Hence, the two strain
malaria-cholera co-infection model is given by the following system of deterministic differential equations
(the flow diagram of the model is shown in Figure 1 and the associated variables and parameters of the
model are presented in Tables1 and 2, respectively):
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Table 1: Description of variables in the model equation

Variable Interpretation
SH Susceptible humans
Nh Human population
Imus Individuals with sensitive malaria strain
Imts Individuals treated for malaria infection
Rm Individuals who have recovered from malaria infection
Ic Individuals with cholera infection
Rc Individuals who have recovered from cholera
Imusc Individuals dually infected with sensitive malaria and Cholera
Imtsc Individuals who are treated of sensitive malaria and infected with cholera
Imrc Individuals co-infected with resistant malaria and Cholera
Rmc Individuals who have recovered from both malaria and cholera infections
Sv Susceptible vectors
Ivr Vectors with resistant malaria strain
Ivs Vectors with sensitive malaria strain
Bc Bacteria population

SH

IC IM
USC IM

US

IM
TSC IM

TS

RC IM
RC IM

R

RM

BC RMC

SV

IVSIVR

πh µh

ωmc

λms

λmr

λcl

ωc

ωm

πv µv

λvr λvs

µc + δc1

λms

fθ1

fθ2

λmr

fθ3

γc

ρc

σrρc

σtρc

ρc

λcl

hθ1(1− f)

θ1(1− f)(1− h)

τm2

µh + δm

αms

τm1

λcl

hθ2(1− f)

αmt

θ2(1− f)(1− h)
σm1σm2

λcl

hθ2(1− f)

µh

θ 3
(1

−
f
)(
1
−
h
)αmr

(µh + δm)

µh + δmr1

µv µv

µb

µc

(µh + δms2 + δc2)

(µh + φ2δms2 + δc2)

(µh + δmr2 + δc2)

µh

Figure 1: Schematic diagram of the model (2), with λms = βmbIvs
Nh

, λmr = βmbηrIvr
Nh

,

λcl = Bcϕ
κ+Bc

, λvs = βvb[Ius+ηt(Imts+I
m
tsc)]

Nh
, λvr = βvbεr(Imr +I

m
rc)

Nh
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dSh

dt
= πH −

βmb(IVS + ηrIvr)

Nh

Sh −
Bcϕ

κ+Bc

Sh − µhSh + ωmRm + ωcRc + ωmcRmc

dIm
us

dt
= βmb

Ivs
Nh

Sh − (τm1 + µh + αms + δms1)I
m
us −

Bcϕ

κ+Bc

Im
us +

βvbIvs
Nh

Rc + hθ1(1− f)Im
usc

dIm
ts

dt
= τm1I

m
us − (σm1 + µh + αmt + φ1δms1)I

m
ts −

Bcϕ

κ+Bc

Im
ts + hθ2(1− f)Im

tsc

dIm
r

dt
= σm1I

m
ts +

βmbηrIvr
Nh

Sh − (µh + αmr + δmr1)I
m
r −

Bcϕ

κ+Bc

Im
r +

βMbηrIvr
NH

Rc + hθ3(1− f)Im
rc

dRm

dt
= αmsI

m
us + αmtI

m
ts + αmrI

m
r − (µ+ ωm)Rm −

Bcϕ

κ+Bc

Rm

dIc
dt

=
βcϕ

κ+Bc

(Sh +Rm)− (δc1 + µh + γc)Ic −
βvbIvs
Nh

Ic −
βmbηrIvr
Nh

Ic

+ fθ1I
m
usc + fθ2I

m
tsc + fθ3I

m
rc

dRc

dt
= γcIc − (µh + ωc)Rc −

βmb(Ivs + ηrIvr)

Nh

Rc

dBc

dt
= ρcIc + ρc(I

m
usc + σtI

m
tsc + σrI

m
rc)− µbBc

dIm
usc

dt
=

Bcϕ

κ+Bc

Im
us +

βMbIvs
Nh

Ic − µhI
m
usc − δms2Im

usc − δC2I
M
usc − τm2Im

usc − θ1Im
usc

dIm
tsc

dt
=

Bcϕ

κ+Bc

Im
ts + τm2I

m
usc − µhI

m
tsc − φ2δms2I

m
tsc − θ2Im

tsc − σm2I
m
tsc − δc2Im

tsc

dIm
rc

dt
= σm2I

m
tsc +

Bcϕ

κ+Bc

Im
r +

βvbηrI
m
r

Nh

Ic − µhI
m
rc − δmr2Im

rc − δc2Im
rc − θ3Im

rc

dRmc

dt
= θ1(1− f)(1− h)Im

usc + θ2(1− f)(1− h)Im
tsc + θ3(1− f)(1− h)Im

rc − (ωmc + µh)Rmc

dSv

dt
= πv −

βvb(I
m
us + ηtI

m
ts + ηrI

m
r )

Nh

Sv −
βvb(I

m
usc + ηtI

m
tsc + ηrI

m
rc)

Nh

Sv − µvSv

dIvs
dt

=
βvb(I

m
us + ηtI

m
ts)

Nh

Sv +
βvb(I

m
usc + ηtI

m
tsc)

Nh

Sv − µvIvs

dIvr
dt

=
βvbηrI

m
r

Nh

Sv +
βvbηrI

m
rc

Nh

Sv − µvIvr

(2)

G = (Sh, I
m
us, I

m
r ,c , Rc, Itsc, I

m
usc, Rmc, I

m
rc)ε<10

+ : N 6
π

µh

3 Mathematical analysis of the co-infection model

In this section, we qualitatively analyze the model (2) to better understand the dynamics of the co-
infection of drug-resistant Malaria and cholera in a population.

3.1 Basic properties of the Malaria-Cholera co-infection model

3.2 Positivity and boundedness of solutions

For the model (2) to be epidemiologically meaningful, it is important to prove that all its state variables
are non-negative for all time (t). In other words, solutions of the model system (2) with positive initial
data will remain positive for all time t > 0.

Theorem 3.1 Let the initial data Sh > 0, Im
us > 0, Im

ts > 0, Im
r > 0, Rm > 0, Ic > 0, Rc > 0, Bc > 0, Im

usc >
0, Im

tsc > 0, Im
rc > 0, Rmc > 0, Sv > 0, Ivs > 0, Ivr > 0. Then the solution of the model are positive for all

t > 0
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Proof. Let
t1 = sup{t > 0 : Sh > 0, Im

us > 0, Im
ts > 0, Im

r > 0, Rm > 0, Ic > 0, Rc > 0, Bc > 0, Im
usc > 0, Im

tsc > 0, Im
rc >

0, Rmc > 0, Sv > 0, Ivs > 0, Ivr > 0 ∈ [0, t]}. Thus, t1 > 0.
We have, from the first equation of the system (2) that

dSh

dt
= πh − (λvs + λvr + λcl + µh)Sh + ωmRm + ωcRc + ωmcRmc

dSh

dt
> πh − (λvs + λvr + λcl + µh)Sh

which can be re-written as

d

dt

Sh(t) exp

 t∫
0

(λvs(u) + λvr(u))du+ λcl(u) + µh(t)

 > πh exp

 t∫
0

(λvs(u) + λvr(u)du+ λcl(u)du) + µh(t)


Hence:

d

dt

Sh(t1) exp

 t1∫
0

(λvs(u) + λvr(u) + λcl(u))du+ µh(t)1

− Sh(0) > πh

∫ t1

0

exp

 x∫
0

(λvs(u) + λvr(u) + λcl(u))du+ µh(x)

 dx
so that

Sh(t1) > Sh(0) exp

− t1∫
0

(λvs(u) + λvr(u) + λcl(u))du− µht1

 + exp

− t1∫
0

(λvs(u) + λvr(u) + λcl(u))du− µht1


× ΠM

∫ t1

0

exp

 x∫
0

(λvs(u) + λvr(u) + λcl(u))du+ µh(x)

 dx > 0

Similarly, it can be shown that:
Im
us > 0, Im

ts > 0, Im
r > 0, Rm > 0, Ic > 0, Rc > 0, Bc > 0, Im

usc > 0, Im
tsc > 0, Im

rc > 0, Rmc > 0, Sv > 0, Ivs >
0, Ivr > 0.

3.3 Invariant regions

The co-infection model (2) will be analyzed in a biologically feasible region as follows. We first show that
the system (4) is dissipative in a proper subset D ⊂ R15

+ . The system (2) is split into two parts, namely
the human population (Nh) (with Nh = Sh + Im

us + Im
ts + Im

r + Rm + Ic + Rc + Im
usc + Im

tsc + Im
rc + Rmc), the

bacteria population, Bc and the vector population, (Nv) (with Nv = Sv + Ivs + Ivr).

Dh =

{
(Sh, I

m
us, I

m
ts, I

m
r , Rm, Ic, Rc, I

m
usc, I

m
tsc, I

m
rc, Rmc) :

Sh + Im
us + Im

ts + Im
r +Rm + Ic +Rc + Im

usc + Im
tsc + Im

rc +Rmc ≤
πh

µh

}
,

Db =

{
Bc : Bc ≤

(2ρc + ρcσt + ρcσr)πh

µhµb

}
Dv =

{
(Sv, Ivs, IMvr) :: Sv + Ivs + Ivr ≤

πv

µv

}
The following steps are followed to establish the positive invariance of D (i.e. solutions in D remain in
D for all time t > 0 ).
Adding human, bacteria and vector components of the differential system (2), respectively, gives

dNh

dt
= πh − µhNh(t)− [δms1I

m
us + φ1δms1I

m
ts + δmr1I

m
r + δc1Ic − δms2Im

usc − δc2Im
usc

− φ2δms2I
m
tsc − δmr2Im

rc − δc2Im
rc]

dBc

dt
= ρcIc + ρc(I

m
usc + σtI

m
tsc + σrI

m
rc)− µbBc(t)

dNv

dt
= πv − µvNv(t)

(3)
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From (3), we have that

πh − (µ+ 9δh)Nh ≤
dNh

dt
< πh − µhNh

πh − (µ+ 9δh)Nh ≤
dNh

dt
< πh − µhNh

dNv

dt
≤ πv − µvNv

where δh = min{δms1, φ1δms1, δmr1, δc1, δms2, δc2, φ2δms2, δmr2}
Using the Comparison theorem [19], we have that , Nh(t) ≤

πh

µh

and Nv(t) ≤
πv

µv

if Nh(0) ≤ πh

µh

and

Nv(0) ≤ πv

µv

respectively. Thus, the region D is positively invariant. Hence, it is sufficient to consider the

dynamics of the flow generated by the system (2) in D. In this region, the model can be considered as
being epidemiologically and mathematically well-posed [20]. Thus, every solution of the model (2) with
initial conditions in D remains in D for all time t ≥ 0 . Therefore, the ω−limit sets of the system (2) are
contained in D. Thus result is summarized thus.

Lemma 3.1 The region D = Dh ∪ Db ∪ Dv ⊂ R11
+ ×R+ ×R3

+ is positively-invariant for the model (2)
with initial conditions in R15

+ .

3.4 Basic reproduction number of the co-infection model (2)

The Malaria-Cholera co-infection model (2) has a DFE, obtained by setting the right-hand sides of the
equations in the model (2) to zero, given by

ξ0 = (S*
h, I

m*
us , I

m*
ts , I

m*
r , R

*
m, I

*
c , R

*
c, B

*
c, I

m*
usc, I

m*
tsc, I

m*
rc , R

*
mc, S

*
v, I

*
vs, I

*
vr)

=
(πh

µh

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
πv

µv

, 0, 0
) (4)

The matrices F and V , for the new infection terms and the remaining transfer terms, evaluated at the
disease free equilibrium (DFE) are, respectively, given by

F =



0 0 0 0 0 0 0 0 βmb 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 βmbηR
0 0 0 0 ϕSh

K 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

βvbSv

Nh

ηtβvbSv

Nh
0 0 0 βvbSv

Nh

ηtβvbSv

Nh
0 0 0

0 0 βvbηrSv

Nh
0 0 0 0 βvbηrSv

Nh
0 0



V =



H1 0 0 0 0 G1 0 0 0 0
τm1 H2 0 0 0 0 G2 0 0 0
0 −σm1 H3 0 0 0 0 G3 0 0
0 0 0 H4 0 −fθ1 fθ2 −fθ3 0 0
0 0 0 −ρc µ −ρc ρcσt ρcσr 0 0
0 0 0 0 0 H5 0 0 0 0
0 0 0 0 0 0 H6 0 0 0
0 0 0 0 0 0 σm1 H7 0 0
0 0 0 0 0 0 0 0 H8 0
0 0 0 0 0 0 0 0 0 H9


where

H1 = τm1 + µh + αms + δms1, H2 = σm1 + µh + αmt + φ1δms1, H3 = µh + αmr + δmr1, H4 = δc1 + µh + γc

H5 = µh + δms2 + δc2 + τm2 + θ1, H6 = φ1δms2 + µh + θ2σm2 + δc2, H7 = δmr2 + µh + δc2 + θ3
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The basic reproduction number of the Malaria-Cholera co-infection model (2), using the approach illus-
trated in van den Driessche and Watmough [21], is given by R0 = max{R0hp,R0cl} where R0m and R0c

are, respectively, the Malaria and Cholera associated reproduction numbers, given by

R0ms =

√
b2βmβv(H2 + ηtτm1)S*

v

H1H2µvN *
h

R0mr =

√
b2η2

rβmβvS∗v
H3µvN *

h

and

R0cl =
ϕS*

hρc

µbκH4

3.5 Local asymptotic stability of disease-free equilibrium (DFE) of the co-infection
model (2)

Lemma 3.2 The DFE, ξ0, of the Malaria-Cholera co-infection model (2) is locally asymptotically stable
if R0 < 1, and unstable if R0 > 1.

Proof
The local stability of the co-infection model is analysed by the Jacobian matrix of the system (2) at ξ0,
given by:

J(ξ0) =



−µh 0 0 0 ωm 0 ωc −ϕS*h
κ

0 0 0 ωmc 0 −βmb −βmηrb
0 −H1 0 0 0 0 0 0 G1 0 0 0 0 βmb 0
0 τm1 −H2 0 0 0 0 0 0 G2 0 0 0 0 0
0 0 σm1 −H3 0 0 0 0 0 0 G3 0 0 0 0
αm2 αmt αmr −D1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −H4 0
ϕS*h
κ

fθ1 fθ2 fθ3 0 0 0 0
0 0 0 0 0 γc −D2 0 0 0 0 0 0 0 0
0 0 0 0 0 ρc 0 −µb ρc ρcσt ρcσr 0 0 0 0
0 0 0 0 0 0 0 0 −H5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 τm2 −H6 0 0 0 0 0
0 0 0 0 0 0 0 0 0 σm2 −H7 0 0 0 0
0 0 0 0 0 0 0 0 G4 G5 G6 −D3 0 0 0
0 −Φ −Φηt −Φηr 0 0 0 0 −Φ −Φηt −Φηr 0 −µv 0 0
0 Φ Φηt 0 0 0 0 0 Φ Φηt 0 0 0 −µv 0
0 0 0 Φηr 0 0 0 0 0 0 Φηr 0 0 0 −µv


with,

H1 = τm1 + µh + αms + δms1, H2 = σm1 + µh + αmt + φ1δms1, H3 = µh + αmr + δmr1, H4 = δc1 + µh + γc

H5 = µh + δms2 + δc2 + τm2 + θ1, H6 = φ1δms2 + µh + θ2σm2 + δc2, H7 = δmr2 + µh + δc2 + θ3

G1 = hθ1(1− f), G2 = hθ2(1− f), G3 = hθ3(1− f), G4 = θ1(1− f)(1− h), G5 = θ2(1− f)(1− h)

G6 = θ3(1− f)(1− h), D1 = µh + ωm, D2 = µh + ωc, D3 = µh + ωmc, Φ =
βvbS

∗
v

N∗h

The eigenvalues are λ1 = −D1, λ1 = −D2, λ3 = −D3, λ4 = −H5, λ5 = −H6, λ6 = −H7, λ7 = −µh,
λ8 = −µv and the solutions of the characteristic polynomials:

λ2 + (H3 + µv)λ+ µvH3 (1−R2
0mr) = 0, (5)

,

λ3 + (H1 +H2 + µv)λ
2 +

(
H1H2 + µvH1 + µvH2 −

b2βmβvS
*
v

N *
h

)
λ+ µvH1H2(1−R2

0mt), (6)

and
λ2 + (µb +H4)λ+ µbH4(1−R0cl) (7)

Applying the Routh-Hurwitz criterion, the quadratic equations (5), (6) and (7) will have roots with neg-
ative real parts if and only if R0 < 1. As a result, the disease-free equilibrium, ξ0 is locally asymptotically
stable if R0 < 1.
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3.6 Global asymptotic stability(GAS) of the disease-free equilibrium(DFE) ξ0 of the
co-infection model (2)

The approach illustrated in [22] is used to investigate the global asymptotic stability of the disease free
equilibrium of the co-infection model. In this section, we list two conditions that if met, also guarantee
the global asymptotic stability of the disease-free state. First, system (2) must be written in the form:

dX

dt
= F (X, I)

dI

dt
= G(X, I), G(X, 0) = 0

(8)

where X ∈ Rm denotes (its components) the number of uninfected individuals and I ∈ Rn denotes (its
components) the number of infected individuals including latent, infectious, etc. U0 = (X∗, 0) denotes the
disease-free equilibrium of this system. The conditions (H1) and (H2) below must be met to guarantee
local asymptotic stability:
(H1): For dX

dt = F (X, 0), X∗is globally asymptotically stable (GAS),

(H2): G(X, I) = AI − Ĝ(X, I)X,G(X, I) ≥ 0 for (X, I) ∈ Ω,
where A = D1G(X∗, 0) is an M-matrix (the off-diagonal elements of A are nonnegative) and Ω is the
region where the model makes biological sense. If System (2) satisfies the above two conditions then the
following theorem holds:

Theorem 3.2 The fixed point U0 = (X∗, 0) is a globally asymptotic stable (GAS) equilibrium of (2)
provided that R0 < 1 (LAS) and that assumptions (H1) and (H2) are satisfied

dX

dt
= F (X, I) =


πH − βmb(IVS+ηrIvr)

Nh
Sh − Bcϕ

κ+Bc
Sh − µhSh + ωmRm + ωcRc + ωmcRmc

αmsI
m
us + αmtI

m
ts + αmrI

m
r − (µ+ ωm)Rm − Bcα

κ+Bc
Rm

γcIc − (µh + ωc)Rc − βmb(Ivs+ηrIvr)
Nh

Rc

θ1(1− f)(1− h)Im
usc + θ2(1− f)(1− h)Im

tsc + θ3(1− f)(1− h)Im
rc − (ωmc + µh)Rmc

πv − βvb(Imus+ηtI
m
ts+ηrI

m
r )

Nh
Sv − βvb(Imusc+ηtI

m
tsc+ηrI

m
rc)

Nh
Sv − µvSv



G(X, I) =



βmb
Ivs
Nh
Sh −H1I

m
us − Bcϕ

κ+Bc
Im
us + βvbImus

Nh
Rc −G1I

m
usc

τm1I
m
us −H2I

m
ts − Bcϕ

κ+Bc
Im
ts + βvbηtImts

Nh
Rc −G2I

m
tsc

σm1I
m
ts + βmbηrIvr

Nh
Sh −H3I

m
r − Bcα

κ+Bc
Im
r + βvbηrImr

NH
Rc −G3I

m
rc

βcα
κ+Bc

(Sh +Rm)−H4Ic − βvb(Imus+ηtI
m
ts)

Nh
Ic − βvbηrIc

Nh
Ic + fθ1I

m
usc + fθ2I

m
tsc + fθ3I

m
rc

ρcIc + ρcH5 − µbBc

Bcϕ
κ+Bc

Im
us + βvbImus

Nh
Ic −H6I

m
usc

Bcϕ
κ+Bc

Im
ts + βvbηtImts

Nh
Ic −H7I

m
tsc

σm2I
m
tsc + Bcϕ

κ+Bc
Im
r + βvbηrImr

Nh
Ic −H8I

m
rc

βvb(Imus+ηtI
m
ts)

Nh
Sv −H9Ivs + βvb(Imusc+ηtI

m
tsc)

Nh
Sv

βvbηrImr
Nh

Sv −H9Ivr + βvbηrImrc
Nh

Sv


where X denotes the number of non-infectious individuals and I denotes the number of infected individ-
uals.

F (X, 0) =


πh − µhSh

0
0
0

πv − µSv


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A =



−H1 0 0 0 0 G1 0 0 βmb 0
τm1 −H2 0 0 0 0 G2 0 0 0
0 σm1 −H3 0 0 0 0 G3 0 βmηrb

0 0 0 −H4
ϕS*h
κ

fθ1 fθ2 fθ3 0 0
0 0 0 ρc −µb ρc ρcσt ρcσr 0 0
0 0 0 0 0 −H5 0 0 0 0
0 0 0 0 0 τm2 −H6 0 0 0
0 0 0 0 0 0 σm2 −H7 0 0

βvbS
*
h

N*
h

βvbηtS
*
h

N*
h

0 0 0
βvbS

*
h

N*
h

βvbηtS
*
h

N*
h

0 −µv 0

0 0
βvbηrS

*
h

N*
h

0 0 0 0
βvbηrS

*
h

N*
h

0 −µv



AI =



−H1I
m
us +G1I

m
usc + βmbIvs

τIm
us −H2I

m
ts +G2I

m
tsc

σm1I
m
ts −H3I

m
r +G3I

m
rc + βmbηrIvr

−H4Ic + fθ1I
m
usc + fθ2I

m
tsc + fθ3I

m
rc

ρcIc + µbBc + ρcI
m
usc + σtρcI

m
tsc + σrρcI

m
rc

−H6I
m
usc

−H7I
m
tsc

σm2I
m
tsc −H8I

m
rc

−H9Ivs
−H10Ivr



Ĝ(X, I) = AI −G(X, I) =



βmbIvs(1− Sh
Nh

) + Bcϕ
k+Bc

Im
us − βvbImus

Nh
Rc

Bcϕ
k+Bc

Im
ts − βvbηtImts

Nh
Rc

βvbηrIvr(1− Sh
Nh

) + Bcϕ
k+Bc

Im
r − βvbηrImr

Nh
Rc

Bcϕ
k+Bc

(Sh +Rm) + βvb(Imus+ηI
m
ts)

Nh
Ic + βvbηrIc

Nh
Ic

− Bcϕ
k+Bc

Im
us − βvbImus

Nh
Ic

− Bcϕ
k+Bc

Im
ts − βvbηtImts

Nh
Ic

− Bcϕ
k+Bc

Im
r − βvbηrImr

Nh
Ic

−βvb(Imus+ηtI
m
ts)

Nh
Sv + βvb(Imusc+ηtI

m
tsc)

Nh
Sv

−βvbηrImr
Nh

Sv − βvbηrImrc
Nh

Sv


It is clear from the above, that, Ĝ(X, I) � 0. Hence the DFE may not be globally asymptotically stable,
suggesting the possibility of a backward bifurcation.

3.7 Backward bifurcation analysis of the full co-infection model (2)

In this section, we shall seek to determine the type of bifurcation the model (2) will exhibit, using the
approach illustrated by Castillo-Chavez and Song [23]. We establish the result below

Theorem 3.3 Suppose a backward bifurcation coefficient a > 0, (with a defined below), when R0 < 1

a = −2βmb(ν2ω14 + ηrν4ω15)

N∗h
(ω2 + ω3 + ω4 + ω5 + ω6)−

2βmbω6

N *
h

[(ω14 + ηrω15)ν6 − ν9ω14 − ν11ω15]

− 2βvbν14(ω2 + ηtω3)

N∗2h

[
(ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7)x

*
13 − ω13N

*
h

]
− 2βvηrbν15ω4

N∗2h

[
(ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7)x

*
13 − ω13N

*
h

]
then model (2) undergoes the phenomenon of backward bifurcation at R0 = 1. If a < 0, then the system
(2) exhibits a forward bifurcation at R0 = 1.

Proof
Suppose

ξe = (S**
h , I

m**
us , I

m**
ts , I

m**
r , R**

m , I
**
c , R

**
c , B

**
c , I

m**
usc , I

m**
tsc , I

m**
rc , R

**
mc, S

**
v , I

**
vs , I

**
vr)
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represents any arbitrary endemic equilibrium of the model. The existence of backward bifurcation will
be studied using the Centre Manifold Theory by Castillo-Chavez and Song [23]. To apply this theory, it
is appropriate to do the following change of variables.
Let

Sh = x1, I
m
us = x2, I

m
ts = x3, I

m
r = x4, Rm = x5, Ic = x6, Rc = x7, Bc = x8, I

m
usc = x9, I

m
tsc = x10, I

m
rc = x11,

Rmc = x12, Sv = x13, Ivs = x14, Ivr = x15

Moreover, using the vector notation

X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15)
T

the model (2) can be re-written in the form

dX

dt
= f = (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15)

T

as follows:

dx1
dt

= πH −
βmb(x14 + ηrx15)

Nh

x1 −
x8ϕ

κ+ x8
x1 − µhx1 + ωmx5 + ωcx7 + ωmcx12 := f1

dx2
dt

= βmb
x14
Nh

x1 − (τm1 + µh + αms + δms1)x2 −
x8ϕ

κ+ x8
x2 +

βmbx14
Nh

x7 + hθ1(1− f)x9 := f2

dx3
dt

= τm1x2 − (σm1 + µh + αmt + φ1δms1)x3 −
x8ϕ

κ+ x8
x3 + hθ2(1− f)x10 := f3

dx4
dt

= σm1x3 +
βmbηrx15
Nh

x1 − (µh + αmr + δmr1)x4 −
x8ϕ

κ+ x8
x4 +

βmbηrx15
NH

x7 + hθ3(1− f)x11 := f4

dx5
dt

= αmsx2 + αmtx3 + αmrx4 − (µ+ ωm)x5 −
x8ϕ

κ+ x8
x5 := f5

dx6
dt

=
x8ϕ

κ+ x8
(x1 + x5)− (δc1 + µh + γc)x6 −

βmbx14
Nh

x6 −
βmbηrx15
Nh

x6

+ fθ1x9 + fθ2x10 + fθ3x11 := f6

dx7
dt

= γcx6 − (µh + ωc)x7 −
βmb(x14 + ηrx15)

Nh

x7 := f7

dx8
dt

= ρcx6 + ρc(x9 + σtx10 + σrx11)− µbx8 := f8

dx9
dt

=
x8ϕ

κ+ x8
x2 +

βmbx14
Nh

x6 − (µh + δms2 + δC2 + τm2 + θ1)x9 := f9

dx10
dt

=
x8ϕ

κ+ x8
x3 + τm2x9 − (µh + φ2δms2 + θ2 + σm2 + δc2)x10 := f10

dx11
dt

= σm2x10 +
x8ϕ

κ+ x8
x4 +

βmbηrx15
Nh

x6 − (µh + δmr2 + δc2 + θ3)x11 := f11

dx12
dt

= θ1(1− f)(1− h)x9 + θ2(1− f)(1− h)x10 + θ3(1− f)(1− h)x11 − (ωmc + µh)x12 := f12

dx13
dt

= πv −
βvb(x2 + ηtx3 + ηrx4)

Nh

x13 −
βvb(x9 + ηtx10 + ηrx11)

Nh

x13 − µvx13 := f13

dx14
dt

=
βvb(x2 + ηtx3)

Nh

x13 +
βvb(x9 + ηtx10)

Nh

x13 − µvx14 := f14

dx15
dt

=
βvbηrx4
Nh

x13 +
βvbηrx11
Nh

x13 − µvx15 := f15

(9)
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J(ξ0) =



−µh 0 0 0 ωm 0 ωc −ϕx*1
κ

0 0 0 ωmc 0 −βmb −βmηrb
0 −H1 0 0 0 0 0 0 G1 0 0 0 0 βmb 0
0 τm1 −H2 0 0 0 0 0 0 G2 0 0 0 0 0
0 0 σm1 −H3 0 0 0 0 0 0 G3 0 0 0 0
αm2 αmt αmr −D1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −H4 0
ϕx*1
κ

fθ1 fθ2 fθ3 0 0 0 0
0 0 0 0 0 γc −D2 0 0 0 0 0 0 0 0
0 0 0 0 0 ρc 0 −µb ρc ρcσt ρcσr 0 0 0 0
0 0 0 0 0 0 0 0 −H5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 τm2 −H6 0 0 0 0 0
0 0 0 0 0 0 0 0 0 σm2 −H7 0 0 0 0
0 0 0 0 0 0 0 0 G4 G5 G6 −D3 0 0 0
0 −Φ −Φηt −Φηr 0 0 0 0 −Φ −Φηt −Φηr 0 −µv 0 0
0 Φ Φηt 0 0 0 0 0 Φ Φηt 0 0 0 −µv 0
0 0 0 Φηr 0 0 0 0 0 0 Φηr 0 0 0 −µv


with,

H1 = τm1 + µh + αms + δms1, H2 = σm1 + µh + αmt + φ1δms1, H3 = µh + αmr + δmr1, H4 = δc1 + µh + γc

H5 = µh + δms2 + δc2 + τm2 + θ1, H6 = φ1δms2 + µh + θ2σm2 + δc2, H7 = δmr2 + µh + δc2 + θ3

G1 = hθ1(1− f), G2 = hθ2(1− f), G3 = hθ3(1− f), G4 = θ1(1− f)(1− h), G5 = θ2(1− f)(1− h)

G6 = θ3(1− f)(1− h), D1 = µh + ωm, D2 = µh + ωc, D3 = µh + ωmc, Φ =
βvbx

∗
13

N∗h

Consider the case when R0mr = 1. Assume, further, that thee product βmηr is chosen as a bifurcation
parameter. Solving for βmηr = β* from R0mr = 1 gives

β*
mη

*
r = β∗ =

µvN
*
hH3

bηrβvS*
v

Evaluating the Jacobian of the system (9) at the DFE, J(ξ0), and using the approach in Castillo-Chavez
and Song [23], we have that J(ξ0) has a right eigenvector (associated with the non-zero eigenvalue) given
by

w = [ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, ω10, ω11, ω12, ω13, ω14, ω15]
T

where,

ω1 =
1

µh

[
ωmω5 +

ωcγcϕx
*
1

µbκD2H4

− H1

Φ(1 + ηtτm1)
− βvβ

2
mη

2
rb3σm1τm1

µ3
vN

*
h (1− b)H1H3

]
ω2 =

βmb

µvH1

, ω3 =
βmbτm1
µvH1

, ω4 =
σm1βmbτm1

µ2
v(1− b)H1H3

ω5 =
βmb[αm2µv(1− b)H3 + αmtµv(1− b)H3τm1 + αmrσm1βmbτm1]

µ2
v(1− b)H1H3D1

ω6 =
ϕx*

1

µbκH4

, ω7 =
γcϕx

*
1

µbκH4D2

, ω8 =
H4κ

ρcϕx*
1

ω9 = ω10 = ω11 = ω12 = 0

ω13 = − 1

µv

[
Φβmb(1 + ηtτm1)

µvH1

+
Φηrσm1βmbτm1
µ2

v(1− b)H1H3

]
, ω14 =

H1

βmbΦ(1 + ηtτm1)

ω15 =
βvβmηrσm1τm1b

2

µ3
vN

*
h (1− b)H1H3
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Similarly, the components of the left eigenvector of J(ξ0)|β=β∗mη∗r , v = (ν1, ν2, ..., ν15), satisfying v.w = 1,
are given by:

ν1 = ν5 = ν7 = ν12 = ν13 = 0, ν2 = ν2 > 0

ν3 =
1

H2

[
σm1Φηr
µvH3

+
Φηtβmbν2

µv

]
, ν4 =

Φηr
µvH3

, ν6 =
ρc

µbH1

, ν8 =
κH1

ρcϕx*
1

ν9 =
µbH1G2ϕx

*
1ν2 + ϕx*

1fθ1ρc + µbH
2
1κ

µbH1H5ϕx*
1

, ν10 =
G2ν3 + fθ2ν6 + ρcσtν8 + σm2ν11

H6

ν11 =
G3ν4 + fθ3ν6 + ρcσrν8 + Φηrν15

H7

, ν14 =
βmbν2
µv

, ν15 =
H3

Φβmbη2
r

The non-zero second partial derivatives of the functions fi(i = 1, ..., 15) are given by

∂2f2
∂x1∂x14

=
∂2f2

∂x7∂x14
= −βmbx

*
1

N∗2h

+
βmb

N∗h
,

∂2f2
∂x2∂x14

=
∂2f2

∂x3∂x14
=

∂2f2
∂x4∂x14

=
∂2f2

∂x5∂x14
=

∂2f2
∂x6∂x14

= −βmbx
*
1

N∗2h

∂2f4
∂x1∂x15

=
∂2f4

∂x7∂x15
= −βmbηrx

*
1

N∗2h

+
βmbηr
N∗h

,

∂2f4
∂x2∂x15

=
∂2f4

∂x3∂x15
=

∂2f4
∂x4∂x15

=
∂2f4

∂x5∂x15
=

∂2f4
∂x6∂x15

= −βmbηrx
*
1

N∗2h

∂2f6
∂x6∂x14

= −βmb

N *
h

,
∂2f6

∂x6∂x15
= −βmbηr

N *
h

,
∂2f9

∂x6∂x14
=
βmb

N *
h

,
∂2f11
∂x6∂x15

=
βmbηr
N *

h

∂2f14
∂x1∂x2

=
∂2f14
∂x2∂x2

=
∂2f14
∂x2∂x4

=
∂2f14
∂x2∂x5

=
∂2f14
∂x2∂x6

=
∂2f14
∂x2∂x7

= −βvbx
*
13

N *2
h

∂2f14
∂x1∂x3

=
∂2f14
∂x3∂x4

=
∂2f14
∂x3∂x5

=
∂2f14
∂x3∂x6

=
∂2f14
∂x3∂x7

= −βvbηtx
*
13

N *2
h

∂2f14
∂x2∂x3

=
βvbx

*
13

N *2
h

− βvbx
*
13ηt

N *2
h

,
∂2f14
∂x23

= −2βvbx
*
13ηt

N *2
h

,
∂2f14
∂x2∂x13

=
βvb

N *
h

,
∂2f14
∂x3∂x3

=
βvbηt
N *

h

∂2f15
∂x1∂x4

=
∂2f15
∂x2∂x4

=
∂2f15
∂x3∂x4

=
∂2f15
∂x4∂x5

=
∂2f15
∂x4∂x6

=
∂2f15
∂x4∂x7

= −βvbηrx
*
13

N *2
h

∂2f15
∂x24

= −2βvbηr
N *2

h

,
∂2f15
∂x4∂x13

=
βvbηr
N *

h

The associated bifurcation coefficients defined by a and b, given by:

a =
n∑

k,i,j=1

νkωiωj
∂2fk
∂xi∂xj

(0, 0) and b =
n∑

k,i=1

νkωi
∂2fk

∂xi∂β∗hp
(0, 0),

are computed to be

a = −2βmb(ν2ω14 + ηrν4ω15)

N∗h
(ω2 + ω3 + ω4 + ω5 + ω6)−

2βmbω6

N *
h

[(ω14 + ηrω15)ν6 − ν9ω14 − ν11ω15]

− 2βvbν14(ω2 + ηtω3)

N∗2h

[
(ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7)x

*
13 − ω13N

*
h

]
− 2βvηrbν15ω4

N∗2h

[
(ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7)x

*
13 − ω13N

*
h

]
(10)

and

b =

20∑
k,i=1

νkωi
∂2fk
∂xi∂β∗

(0, 0) = (ω14 + ηrω15)ν2 > 0

Since the bifurcation coefficient b is positive, it follows from Theorem 4.1 in Castillo-Chavez and Song [23]
that the model (2), or the transformed model (9), will undergo the phenomenon of backward bifurcation
if the coefficient, a, given by (10) is positive.
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4 Analysis of the optimal control model

dSh

dt
= πH −

βmb(IVS + ηrIvr)

Nh

Sh −
Bcϕ

κ+Bc

Sh − µhSh + ωmRm + ωcRc + ωmcRmc

dIm
us

dt
= βmb

Ivs
Nh

Sh − (τm1 + µh + αms + δms1)I
m
us −

Bcϕ

κ+Bc

Im
us +

βvbIvs
Nh

Rc + hu1(t)θ1(1− f)Im
usc

dIm
ts

dt
= τm1I

m
us − (σm1 + µh + αmt + φ1δms1)I

m
ts −

Bcϕ

κ+Bc

Im
ts + hu2(t)θ2(1− f)Im

tsc

dIm
r

dt
= σm1I

m
ts +

βmbηrIvr
Nh

Sh − (µh + αmr + δmr1)I
m
r −

Bcϕ

κ+Bc

Im
r +

βMbηrIvr
NH

Rc + hu3(t)θ3(1− f)Im
rc

dRm

dt
= αmsI

m
us + αmtI

m
ts + αmrI

m
r − (µ+ ωm)Rm −

Bcϕ

κ+Bc

Rm

dIc
dt

=
βcϕ

κ+Bc

(Sh +Rm)− (δc1 + µh + γc)Ic −
βvbIvs
Nh

Ic −
βmbηrIvr
Nh

Ic

+ fu1(t)θ1I
m
usc + fu2(t)θ2I

m
tsc + fu3(t)θ3I

m
rc

dRc

dt
= γcIc − (µh + ωc)Rc −

βmb(Ivs + ηrIvr)

Nh

Rc

dBc

dt
= ρcIc + ρc(I

m
usc + σtI

m
tsc + σrI

m
rc)− µbBc

dIm
usc

dt
=

Bcϕ

κ+Bc

Im
us +

βMbIvs
Nh

Ic − µhI
m
usc − δms2Im

usc − δC2I
M
usc − τm2Im

usc − u1(t)θ1Im
usc

dIm
tsc

dt
=

Bcϕ

κ+Bc

Im
ts + τm2I

m
usc − µhI

m
tsc − φ2δms2I

m
tsc − u2(t)θ2Im

tsc − σm2I
m
tsc − δc2Im

tsc

dIm
rc

dt
= σm2I

m
tsc +

Bcϕ

κ+Bc

Im
r +

βvbηrI
m
r

Nh

Ic − µhI
m
rc − δmr2Im

rc − δc2Im
rc − u3(t)θ3Im

rc

dRmc

dt
= u1(t)θ1(1− f)(1− h)Im

usc + u2(t)θ2(1− f)(1− h)Im
tsc + u3(t)θ3(1− f)(1− h)Im

rc − (ωmc + µh)Rmc

dSv

dt
= πv −

βvb(I
m
us + ηtI

m
ts + ηrI

m
r )

Nh

Sv −
βvb(I

m
usc + ηtI

m
tsc + ηrI

m
rc)

Nh

Sv − µvSv

dIvs
dt

=
βvb(I

m
us + ηtI

m
ts)

Nh

Sv +
βvb(I

m
usc + ηtI

m
tsc)

Nh

Sv − µvIvs

dIvr
dt

=
βvbηrI

m
r

Nh

Sv +
βvbηrI

m
rc

Nh

Sv − µvIvr

(11)

The control functions, u1(t), u2(t), and u3(t) are bounded, Lebesgue integrable functions. The control
u1(t) represents treatment efforts for co-infected individuals in Im

usc compartment. u2(t) represents treat-
ment efforts for co-infected individuals in Im

tsc compartment. The control u3(t) represents treatment
efforts for co-infected individuals in Im

rc compartment. The controls u1, u2, u3 satisfies 0 ≤ u1, u2, u3 ≤ 1.
The optimal control system examines scenarios where the number of co-infected cases and the cost of
implementing the controls u1(t), u2(t), and u3(t) are minimized subject to the state system (11). For
this, we consider the objective functional

J
[
u1, u2, u3

]
=

∫ T

0

[
Im
usc(t) + Im

tsc(t) + Im
rc(t) +

B1

2
u21 +

B2

2
u22 +

B3

2
u23
]
dt (12)

T is the final time. We seek to find an optimal control, u∗1 , u
∗
2 , u
∗
3 , such that

J(u∗1 , u
∗
2 , u
∗
3 ) = min{J(u∗1 , u

∗
2 , u
∗
3 )|u1, u2, u3 ∈ U} (13)

where U = {(u∗1 , u∗2 , u∗3 )} such that u∗1 , u
∗
2 , u
∗
3 are measurable with 0 ≤ u∗1 ≤ 1, 0 ≤ u∗2 ≤ 1, 0 ≤ u∗3 ≤ 1,

for t ∈ [0, T ] is the control set. The Pontryagin’s Maximum Principle [28] gives the necessary conditions
which an optimal control pair must satisfy. This principle transforms (11), (12) and (13) into a problem

13
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of minimizing a Hamiltonian, H, pointwisely with regards to the control functions, u1, u2, u3:

H = Im
usc(t) + Im

tsc(t) + Im
rc(t) +

B1

2
u21 +

B2

2
u22 +

B3

2
u23 +

B4

2
u24

+ λSh

[
πH −

βmb(IVS + ηrIvr)

Nh

Sh −
Bcϕ

κ+Bc

Sh − µhSh + ωmRm + ωcRc + ωmcRmc

]
+ λImus

[
βmb

Ivs
Nh

Sh − (τm1 + µh + αms + δms1)I
m
us −

Bcϕ

κ+Bc

Im
us +

βvbIvs
Nh

Rc + hu1(t)θ1(1− f)Im
usc

]
+ λImts

[
τm1I

m
us − (σm1 + µh + αmt + φ1δms1)I

m
ts −

Bcϕ

κ+Bc

Im
ts + hu2(t)θ2(1− f)Im

tsc

]
+ λImr

[
σm1I

m
ts +

βmbηrIvr
Nh

Sh − (µh + αmr + δmr1)I
m
r −

Bcϕ

κ+Bc

Im
r +

βMbηrIvr
NH

Rc + hu3(t)θ3(1− f)Im
rc

]
+ λRm

[
αmsI

m
us + αmtI

m
ts + αmrI

m
r − (µ+ ωm)Rm −

Bcϕ

κ+Bc

Rm

]
+ λIc

[ βcϕ

κ+Bc

(Sh +Rm)− (δc1 + µh + γc)Ic −
βvbIvs
Nh

Ic −
βmbηrIvr
Nh

Ic + fu1(t)θ1I
m
usc + fu2(t)θ2I

m
tsc + fu3(t)θ3I

m
rc

]
+ λRc

[
γcIc − (µh + ωc)Rc −

βmb(Ivs + ηrIvr)

Nh

Rc

]
+ λBc

[
ρcIc + ρc(I

m
usc + σtI

m
tsc + σrI

m
rc)− µbBc

]
+ λImusc

[ Bcϕ

κ+Bc

Im
us +

βMbIvs
Nh

Ic − µhI
m
usc − δms2Im

usc − δC2I
M
usc − τm2Im

usc − u1(t)θ1Im
usc

]
+ λImTSC

[ Bcϕ

κ+Bc

Im
ts + τm2I

m
usc − µhI

m
tsc − φ2δms2I

m
tsc − u2(t)θ2Im

tsc − σm2I
m
tsc − δc2Im

tsc

]
+ λImrc

[
σm2I

m
tsc +

Bcϕ

κ+Bc

Im
r +

βvbηrI
m
r

Nh

Ic − µhI
m
rc − δmr2Im

rc − δc2Im
rc − u3(t)θ3Im

rc

]
+ λRmc

[
u1(t)θ1(1− f)(1− h)Im

usc + u2(t)θ2(1− f)(1− h)Im
tsc + u3(t)θ3(1− f)(1− h)Im

rc − (ωmc + µh)Rmc

]
+ λSv

[
πv −

βvb(I
m
us + ηtI

m
ts + ηrI

m
r )

Nh

Sv −
βvb(I

m
usc + ηtI

m
tsc + ηrI

m
rc)

Nh

Sv − µvSv

]
+ λIvs

[βvb(I
m
us + ηtI

m
ts)

Nh

Sv +
βvb(I

m
usc + ηtI

m
tsc)

Nh

Sv − µvIvs
]

+ λIvr
[βvbηrI

m
r

Nh

Sv +
βvbηrI

m
rc

Nh

Sv − µvIvr
]

(14)

Theorem 4.1 For an optimal control set u1, u2, u3 that minimizes J over U , there are adjoint variables,
λ1, λ2, ..., λ15 satisfying

−∂λi
∂t

=
∂H
∂i

and with transversality conditions

λi(tf ) = 0, where, i = Sh, I
m
us, I

m
ts, I

m
r , Rm, Ic, Rc, Bc, I

m
usc, I

m
tsc, I

m
rc, Rus, Sv, Ivs, Ivr. (15)

Furthermore,

u∗1 = max

{
0,min

(
1,

[(λ9 − fλ6)− (1− f)(1− h)λ12 − h(1− f)λ2]θ1I
m
usc

B1

)}
,

u∗2 = max

{
0,min

(
1,

[(λ10 − fλ6)− (1− f)(1− h)λ12 − h(1− f)λ3]θ2I
m
tsc

B2

)}
,

u∗3 = max

{
0,min

(
1,

[(λ11− fλ6)− (1− f)(1− h)λ12 − h(1− f)λ4]θ3I
m
rc

B3
,

)}
,

(16)

Proof of Theorem 4.1
Suppose U∗ = (u∗1, u

∗
2, u
∗
3) is an optimal control and Sh, I

m
us, I

m
ts, I

m
r , Rm, Ic, Bc, I

m
usc, I

m
tsc, I

m
rc, Rus, Sv, Ivs, Ivr.

are the corresponding state solutions. Applying the Pontryagin’s Maximum Principle [28], there exist

14
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adjoint variables satisfying:

−dλSh

dt
=
∂H
∂Sh

, λSh(tf ) = 0, −dλI
m
us

dt
=
∂H
∂Im

us

, λImus(tf ) = 0, −dλI
m
ts

dt
=
∂H
∂Im

ts

, λImts(tf ) = 0,

−dλI
m
r

dt
=
∂H
∂Im

r

, λImr (tf ) = 0,−dλRm

dt
=

∂H
∂Rm

, λRm(tf ) = 0, −dλIc
dt

=
∂H
∂Ic

, λIc(tf ) = 0,

−dλIc
dt

=
∂H
∂Ic

, λIc(tf ) = 0, −dλBc

dt
=
∂H
∂Bc

, λBc(tf ) = 0

−dλI
m
usc

dt
=

∂H
∂Im

usc

, λIusc(tf ) = 0, −dλI
m
tsc

dt
=

∂H
∂Im

tsc

, λImtsc(tf ) = 0

−dλI
m
rc

dt
=
∂H
∂Im

rc

, λImrc(tf ) = 0, −dλRmc

dt
=

∂H
∂Rmc

, λRmc(tf ) = 0

−dλSv

dt
=
∂H
∂Sv

, λSv(tf ) = 0, −dλIvs
dt

=
∂H
∂Ivs

, λIvs(tf ) = 0, −dλIvr
dt

=
∂H
∂Ivr

, λIvr(tf ) = 0

(17)

with transversality conditions;
Sh = Im

us = Im
ts = Im

r = Rm = Ic = Bc = Im
usc = Im

tsc = Im
rc = Rus = Sv = Ivs = Ivr. = 0 We can determine the

behaviour of the control by differentiating the Hamiltonian, H with respect to the controls(u1, u2, u3, u4)
at t. On the interior of the control set, where 0 < uj < 1 for all (j = 1, 2, 3, 4), we obtain

0 =
∂H
∂u1

= B1u
∗
1 − θ1Im

usc[λ9 − fλ6 − (1− f)(1− h)λ12 − h(1− h)λ2],

0 =
∂H
∂u2

= B2u
∗
2 − Im

tscθ2[λ10 − fλ6 − (1− f)(1− h)λ12 − h(1− f)λ3],

0 =
∂H
∂u3

= B3u
∗
3 − Im

rcθ3[λ11 − fλ6 − (1− f)(1− h)λ12 − h(1− f)λ4],

(18)

Therefore, we have that [29]

u∗1 =
[(λ9 − fλ6)− (1− f)(1− h)λ12 − h(1− f)λ2]θ1I

m
usc

B1
,

u∗2 =
[(λ10 − fλ6)− (1− f)(1− h)λ12 − h(1− f)λ3]θ2I

m
tsc

B2
,

u∗3 =
[(λ11− fλ6)− (1− f)(1− h)λ12 − h(1− f)λ4]θ3I

m
rc

B3
,

(19)

u∗1 = max

{
0,min

(
1,

[(λ9 − fλ6)− (1− f)(1− h)λ12 − h(1− f)λ2]θ1I
m
usc

B1

)}
,

u∗2 = max

{
0,min

(
1,

[(λ10 − fλ6)− (1− f)(1− h)λ12 − h(1− f)λ3]θ2I
m
tsc

B2

)}
,

u∗3 = max

{
0,min

(
1,

[(λ11− fλ6)− (1− f)(1− h)λ12 − h(1− f)λ4]θ3I
m
rc

B3
,

)}
,

(20)

5 Numerical simulations

Figure 2 shows the simulation of the total number of individuals untreated of sensitive strain and co-
infected with cholera, when there is no drug resistance. it is observed that a total of 1,590 co-infected
cases were averted. However as presented in Figure 3 when there is drug resistance, a total of 237 co-
infection cases were averted. figure 4 shows the simulations of the total number of individuals treated
of sensitive malaria strain and co-infected with cholera. It is observed that a total of 2,527 co-infection
cases were prevented, when there is no resistance. However, when there is malaria drug resistance, as
depicted figure 5, a total of 116 co-infection cases were averted. Figure 6 depicts the simulations of the
total number of individuals co-infected with resistant malaria and cholera. It is seen that in the absence
of malaria drug resistance, the treatment control applied prevented a total of 36,350 co-infection cases.
However, in the presence of malaria drug resistance, as shown Figure 7 a total of 40,590 co-infection
cases were averted when the treatment control is applied. It is imperative to note that in the presence of
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treatment controls, more co-infection cases were averted when there is drug resistance, than whne there
is no drug resustance, for co-infected individuals in compartments Im

usc and Im
tsc. However, it is observed

that for co-infected individuals in compartment Im
rc, more co-infection cases were averted in the presence

of malaria drug resistance than when there is no drug resistance, when treatment controls are applied
in both cases. This points to the fact that malaria drug resistance can greatly influence the co-infection
cases averted, even in the presence of treatment controls for co-infected individuals.

Table 2: Description of parameters in the model (2).

Parameter Description Value (per day) References

πh Recruitment rate for humans 100 [24]
πv Recruitment rate for vectors 1000 [24]
βm Probability of humans getting infected with malaria 0.181 [27]
βv Probability of vectors getting infected with malaria 0.181 [27]
b average biting rate for vectors 0.5 [26]
ϕ Bacteria contact rate for humans 0.05 [13]
µh Natural death rate for humans 1

(70×365)
Assumed

µv Natural death rate for vectors 1
15
, 0.143 [24]

ωm Malaria waning rate 1
(60×365)

[24]

ωc Cholera waning rate 0.001 [27]
ωmc co-infected waning rate 0.001-0.02 [13]
θ1, θ2, θ3 Recovery rate of co-infected 0.5 Assumed
γc Recovery rate of cholera infected 0.07 [27]
αms Recovery rate from sensitive malaria strain 0.0078 [10, 27]
αmt Recovery rate from sensitive malaria strain for treated individuals 0.1404 [10, 27]
αmr Recovery rate from resistant malaria strain 0.0078 [10, 27]
ηt modification parameter for reduced infectiousness of treated individuals 0.8 [10]
ηr modification parameter for reduced infectiousness of malaria resistant individuals variable
τm1, τm2 Rate of administration of antimalarial drugs variable
σm1, σm2 rate of resistance development to antimalarial drugs variable
f fraction of co-infected who recover from malaria only 0.2 Assumed
h fraction of co-infected who recover from cholera only 0.5 Assumed
ρc cholera infected contribution to aquatic 0.7 Assumed
σt, σr modification parameters 0.9 Assumed
δms1, δms2 Malaria induced death rates 0.05-0.1 [13, 25]
δmt Malaria induced death rates for treated individuals 0.05 Assumed
δc1, δc2 Cholera induced death rates 0.0001 Assumed
φ1, φ2 Modification parameters 0.7 Assumed
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Figure 2: Simulations of the model (2) showing the total number of untreated of sensitive strain and
co-infected with cholera, when there is no drug resistance. Here, σm1 = σm2 = 0. All other parameters as
in Table 2
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Figure 3: Simulations of the model (2) showing the total number of untreated of sensitive strain and
co-infected with cholera, when there is drug resistance. Here, σm1 = σm2 = 0.4. All other parameters as
in Table 2

Figure 8 shows the simulation of the total number of infected individual at different initial conditions.
It is observed that the resistant strain drives the sensitive strain to extinction when both reproduction
numbers are greater than unity, with (1 < R0ms < R0mr). both strains co-exist with the sentitive
strains dominating the resistaant strain when both reproduction number are greater than umity (1 <
R0mr < R0ms). Likewise when both reproduction numbers are greater than unity with (R0ms = 3.54103 ≈
3.54688 = R0mr),both strain co-exist with th sensitive strain dominating but not driving the resistant
strain to extinction.

6 Conclusion

In this work, we have considered and analyzed a mathematical model for two strains of Malaria and
Cholera with optimal control. The model assessed the impact of treatment controls in reducing the
burden of the two diseases in a population, in the presence of malaria drug resistance. The model
was shown to exhibit the dynamical property of backward bifurcation when the associated reproduction
number is less than unity. The global asymptotic stability of the disease-free equilibrium of the model
was proven not to exist. The necessary conditions for the existence of optimal control and the optimality
system for the model is established using the Pontryagin’s Maximum Principle. Numerical simulations
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Figure 4: Simulations of the model (2) showing the total number of treated of sensitive strain and co-
infected with cholera, when there is no drug resistance. Here, σm1 = σm2 = 0. All other parameters as in
Table 2
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Figure 5: Simulations of the model (2) showing the total number of treated of sensitive strain and co-
infected with cholera, when there is drug resistance. Here, σm1 = σm2 = 0.4. All other parameters as in
Table 2

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time (years)

In
di

vi
du

al
s 

co
−i

nf
ec

te
d 

w
ith

 
re

si
st

an
t m

al
ar

ia
 a

nd
 c

ho
le

ra

 

 

No treatment controls
Treatment controls implemented

Figure 6: Simulations of the model (2) showing the total number of individuals co-infected with resistant
malaria and cholera, when there is no drug resistance. Here, σm1 = σm2 = 0. All other parameters as in
Table 2
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Figure 7: Simulations of the model (2) showing the total number of individuals co-infected with resistant
malaria and cholera, when there is drug resistance. Here, σm1 = σm2 = 0.4. All other parameters as in
Table 2
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Figure 8: Simulations of the model (2) showing the total number of infected individuals at different
initial conditions. Here, βm = 7.034, β7 = 7.09, ηr = 1.2, (so that R0ms = 4.94013 < R0mr = 9.50072).
All other parameters as in Table 2
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Figure 9: Simulations of the model (2) showing the total number of infected individuals at different
initial conditions. Here, βm = 7.034, β7 = 7.09, ηr = 0.5, (so that R0ms = 4.94013 > R0mr = 3.95863).
All other parameters as in Table 2
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Figure 10: Simulations of the model (2) showing the total number of infected individuals at different initial
conditions. Here, βm = 5.034, βv = 5.09, ηr = 0.625, (so that R0ms = 3.954103 ≈ R0mr = 3.54688). All
other parameters as in Table 2

of the optimal control model revealed that malaria drug resistance can greatly influence the co-infection
cases averted, even in the presence of treatment controls for co-infected individuals
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