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A co-infection model for Two-Strain Malaria and Cholera with Optimal
Control
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Abstract

A mathematical model for two strains of Malaria and Cholera with optimal control is studied
and analyzed to assess the impact of treatment controls in reducing the burden of the diseases in a
population, in the presence of malaria drug resistance. The model is shown to exhibit the dynamical
property of backward bifurcation when the associated reproduction number is less than unity. The
global asymptotic stability of the disease-free equilibrium of the model is proven not to exist. The
necessary conditions for the existence of optimal control and the optimality system for the model is
established using the Pontryagin’s Maximum Principle. Numerical simulations of the optimal control
model reveal that malaria drug resistance can greatly influence the co-infection cases averted, even in
the presence of treatment controls for co-infected individuals.
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1 Introduction

Malaria is one of the febrile illnesses and the most common deadly disease in the world caused by one or
more species of plasmodium. These are Plasmodium falciparum, Plasmodium vivazx, Plasmodium ovale,
Plasmodium malariae, and Plasmodium knowlesi. Approximately half of the world population is at risk
of malaria. Most of malaria cases and deaths occur in sub-Saharan Africa [I]. According to the World
Malaria Report 2018, there were about 228 million cases of malaria and an estimated 405 000 deaths in
2018 [2]. More than 50% of all cases were reported in six countries in Africa, with Nigeria recording 25%
of the total global cases. Other African countries include Democratic Republic of Congo (12%); Uganda
(5%); Cote d’Ivoire, Mozambique and Niger (4% each) [2].

Cholera is an acute, diarrheal disease caused by infection of the intestine with the toxigenic bacterium
Vibrio cholerae serogroup O1 or O139. About 2.9 million persons are estimated to be infected worldwide,
with roughly 95,000 deaths annually [3]. Mostly, the infection is mild or without symptoms, although
can sometimes be severe. “Approximately 10% of those infected with the cholera will develop severe
disease characterized by profuse watery diarrhea, vomiting, and leg cramps. In these people, rapid loss
of body fluids leads to dehydration and shock. Without treatment, death can occur within hours” [3].

Mathematical models have been used extensively in studying the behaviour of infectious diseases
[4, 15, 6l [7, 8, @, 10, 11]. A lot of models have been developed for the dynamics of the co-infections of two
diseases [12} [13] 14} [15] 16, 17, 18]. In this study, we shall be investigating the impact of malaria drug
resistance on the co-infection malaria and cholera, using a mathematical model. Furthermore, optimal
control analysis shall be carried out on the model to assess the impact of some control strategies.

2 Model formulation

The total human population at time ¢, denoted by N,(t), is divided into eleven mutually exclusive
classes, namely: susceptible humans (S,(t)), untreated individuals with the sensitive malaria strain
(I).(t)), individuals treated of sensitive malaria strain (I'.(t)), infectious individuals with resistant malaria
strain (IM(¢)), individual that recovered from malaria infection R, (t)), indivdiduals with cholera infection
(1.(t)), individuals who have recovered from cholera (R.(t)), individuals untreated of sensitive malaria and
infected with cholera, (I}..()), infectious individual treated of sensitive malaria but with cholera infection

(I} .(t)), individual with drug resistant malaria and cholera (I.(t)), individuals who have recovered from

TSC

both malaria and cholera (R,.(t)). Thus
Nu(t) = Su(t) + L5(8) + L) + L) + Ru(t) + Le(t) + Re(t) + 15 (1) + L5 (8) + L () + Rue(t) - (1)

The total vector population N, is divided int three mutually exclusive classes: susceptible vectors, S,
vectors infected with the sensitive malaria strain, I, vectors infected with the resistant malaria strain
L. Thus, N, = S, + I, + I,,. Also, the bacteria population is given by (B.). Hence, the two strain
malaria-cholera co-infection model is given by the following system of deterministic differential equations
(the flow diagram of the model is shown in Figure [I| and the associated variables and parameters of the
model are presented in Table and [2| respectively):
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Table 1: Description of variables in the model equation

Variable | Interpretation
Su Susceptible humans
Ny Human population
I, Individuals with sensitive malaria strain
I, Individuals treated for malaria infection
R, Individuals who have recovered from malaria infection
1. Individuals with cholera infection
R, Individuals who have recovered from cholera
I, Individuals dually infected with sensitive malaria and Cholera
. Individuals who are treated of sensitive malaria and infected with cholera
I, Individuals co-infected with resistant malaria and Cholera
R, Individuals who have recovered from both malaria and cholera infections
S, Susceptible vectors
L Vectors with resistant malaria strain
T Vectors with sensitive malaria strain
B Bacteria population
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Figure 1: Schematic diagram of the model ( . with A\, = %{IVS, An = %

H
A — Bop e 5vb[IUS+771 I +110)] Y _ Bvber (I +1}0)
[6) P H+BC NH M VR T NH



https://doi.org/10.1101/2020.08.18.20177329
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.08.18.20177329; this version posted September 10, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

dCZH o Bh,b(IVSN + Mlw) o ﬁc% 5= S B+ R+ B

% = 5bfvs — (T s+ Qs + 8 I — ﬁcgc I+ P ]sf R.+ho,(1 — ),

T T = (o o+ G+ B — 2 L1 = )T

dﬁ = oyt 4 Pobid e %I Su = (i + 0+ ) I — HB:;C L'+ “]Q{IR +hOy(1 = f)I
dj;“ = I+ DL+ g I — (p+ wy) Ry — K%gc R,

= L (S0 R) — (o g+ 0L = P - PO,

+ fO L, + fOI5 + fOS17

dﬁc = Yelo — (pw + we) Re — M(INWR

o et o+ 0u + 0, T) — B, ?
S = D gy B B Bl — Gl — Tl — L1

U _ ﬁﬁcg STt el = Dl = Gl = 0oL = Gl = bl

L L N N
The 0,0 PO =ML+ 0.0 = 0= DI A 0,0~ )1~ WL~ (@ + 1) Ruc
5, _, bt s + nh) g AL+ el + nhg

dc.lr;,s _ Bb(INJrnI) S+ ﬂvb(IS‘SCZ\Z UL

LN N PN

G = (S0, D I Ry Lo, I, Ry, IR - N < —

HY Tyus? TR ICH SCy Tusc?
H

3 Mathematical analysis of the co-infection model

In this section, we qualitatively analyze the model to better understand the dynamics of the co-
infection of drug-resistant Malaria and cholera in a population.

3.1 Basic properties of the Malaria-Cholera co-infection model
3.2 Positivity and boundedness of solutions

For the model to be epidemiologically meaningful, it is important to prove that all its state variables
are non-negative for all time (¢). In other words, solutions of the model system with positive initial
data will remain positive for all time ¢ > 0.

Theorem 3.1 Let the initial data S, > 0,1 > 0,1 > 0,I" > 0,R, > 0,1, >0,R, > 0,B, > 0,I" >

’ us ’ TS Y TR ? Tusc

0,I. > 0,1} >0,R,. >0,S, >0,I> 0,1, >0. Then the solution of the model are positive for all
t>0
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Proof. Let
t1 =sup{t >0:S,>0,I,>0,1%>01I">0R,>0I >0R.>0DB. >0} >0 >01I} >

0,R,.>0,8 >0,1,>0,I,>0¢€][0,t]}. Thus, t; > 0.
We have, from the first equation of the system that

ds,

dt
ds,

dt

which can be re-written as

= 7TII - ()\\/'S + )\VR + ACL + /‘LII)SII + wMR]\I + WCRC + wMCRMC

> My — ()\\fs + )\VR + )\CL + MII)SII

d

7 {SH(t) exp [/()\vs(u) + Ave(w))du + Aow(u) + ,uH(t)] } > Ty exp [/(A\g(u) + Ave(u)du + A (u)du) + ,uH(t)]

Hence:

t

d e [ / Ohvs (1) + Ava (1) + Aer (w))d + uH(m)] dz

a {SH(tl) €Xp [/()\\s(u) + AVR(U) + )\(:L(U))du + HH(t)ll } - SH(O) > 7TH/

0

so that

SH(tl) > SH(O) exp [— /(Avs(u) + A\'R(u) + )\CL(U))dU - HHtll + exp [— /()\\q(’u) + Avk (u) + )\(‘,L(U))du - HHtll

0 0

x Iy /Ot1 exp [/(/\\s(u) + Ave () + Ao (w))du + ug(x)] dr >0

0

Similarly, it can be shown that:
n>o1n>0,0>0R,>01I >0R.>0B.>01I% >01I >0,1">0R,>0,5 >0,1, >

) TS ) Tusc ) T TSC Y TRC

0,1, > 0.

3.3 Invariant regions

The co-infection model will be analyzed in a biologically feasible region as follows. We first show that
the system is dissipative in a proper subset D C fﬁf. The system is split into two parts, namely
the human population (N,) (with N, =S, + I\ + I + I' + R, + I. + R. + )i .+ I\ + I + R,.), the

bacteria population, B, and the vector population, (NV,) (with N, =S, + I + I,,,).
R Cy Tusc? TTSC? TRC?

DH_{(SH?IXN‘H;’IM?RMaImR I, I, I RMC):

SuA Lo+ L+ L7+ Ry + Lo+ Re + Iy + Lo + L + Ry < m}7

H

D, = {B‘ . B, < 2Pt o +p€”“)“}

Pt s
e
Dv = {(va I\fsv IMVR) = S\; + Ivs + Ivn S }
oy
The following steps are followed to establish the positive invariance of D (i.e. solutions in D remain in
D for all time ¢ > 0 ).
Adding human, bacteria and vector components of the differential system , respectively, gives

dN,
dt

= Ty — ,LI/HNH(t) - [53’15111\1

us

- ¢25\132I¥ic - 51\11(2-[;2 - 6@2I:L]

dB. (3)
o = Pelet pellie + oulie + oulie) — paBe(t)

dN,
dt

+ (Z)l(slxlslIITws + 5MRII§ + 5(71](7 - 51\152181% - 5(‘,2[1\[

usc

=1, — Ny (1)
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From (3)), we have that

dNy
7TH_(/~L+95H)NH§ <7TH_,UHNH

dt
dNy
ﬂ-H_(M_‘_Q(SH)NHS dt <7TH_,U/HNH
dN,
< 7 — N,
a =" H

Where 51{ = min{aMsla qblémsl? 63&31) 6(:17 6MSQ7 6(;27 ¢2531527 6MRQ}

Tr\’ . . . .. . . . . . .
N,(0) < — respectively. Thus, the region D is positively invariant. Hence, it is sufficient to consider the

dynamics 2)f the flow generated by the system in D. In this region, the model can be considered as
being epidemiologically and mathematically well-posed [20]. Thus, every solution of the model with
initial conditions in D remains in D for all time ¢ > 0 . Therefore, the w—limit sets of the system are
contained in D. Thus result is summarized thus.

Lemma 3.1 The region D = D, UD,UD, C 9‘&1 X Ry X 9%5’; is positively-invariant for the model
with initial conditions in %f.

3.4 Basic reproduction number of the co-infection model

The Malaria-Cholera co-infection model has a DFE, obtained by setting the right-hand sides of the
equations in the model to zero, given by
o= (S, 0. "R, IR, B, I I I'"" R ,S,,II,)

H? TUS ?7TS 7 "R ) M) T C? C? TUSC? TTSC? TRC MC) V?TVS) TVR

H A% 4
= (51+0,0,0,0,0,0,0,0,0,0,0,7*,0,0) W

H

The matrices F' and V, for the new infection terms and the remaining transfer terms, evaluated at the
disease free equilibrium (DFE) are, respectively, given by

0 0 0 0 0 0 0 0 Bb 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Bubng
0 0 0 0 2 9 0 0 0 0
0 0 0 0 0 0 0 0 0 0
F=1 9 0 O 0 0 0 0 0o 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
BvbSv rBvbSy BybSy Nz BvbSy
VN ams oo oo 4§ sms oo o
Ny Ny
H o0 0 0 0 G 0 0 0 0
w H, 0 0 O 0O G 0 0 0
0 -0 H, 0 0 0 0 G, 0 0
0 0 0 H, 0 —f6 f0, —f6, 0 0
V= 0 0 0 —pe B —pc PO POy 0 0
O 0 0 0 0 H. 0 0 0 0
o o o o0 O 0O H, 0O 0 0
o 0 o0 0 0 0 o, H 0 0
0O 0 0 0 0 0 0 0 H, 0
O 0 0 0 0 0 0 0o 0 H,

where

Hl — TMl + ,Ufn + a]\IS + 5}\4317 H2 — O-Ml + ,Ufn + a]\IT + ¢15]\1317 HS — ,un + aMR + 6MR1’ H4 - 5(,‘1 + MII + ’YC
H5 ,uu + 5]\152 + 502 + TMQ + 617 HG - ¢161\152 + ,Ufn + 920-1\42 + 6C27 H7 - 5MR2 + ,uu + 502 + 03

6
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The basic reproduction number of the Malaria-Cholera co-infection model , using the approach illus-
trated in van den Driessche and Watmough [21], is given by Ro = max{Ruw, Roc.} Where Ry, and R,
are, respectively, the Malaria and Cholera associated reproduction numbers, given by

Rows = \/b2ﬁ)15"(H2 + nTTMl)S\*r

H1H2,LLVN;

b2n2 B0, S¥
R [PRBOS:
Hsp N, H

and

3.5 Local asymptotic stability of disease-free equilibrium (DFE) of the co-infection
model

Lemma 3.2 The DFE, &,, of the Malaria-Cholera co-infection model 1s locally asymptotically stable
if Ry < 1, and unstable if Ry > 1.

Proof
The local stability of the co-infection model is analysed by the Jacobian matrix of the system at &,
given by:

—MUn 0 0 0 Wnm 0 We WfH 0 0 0 Whic 0 */BMb *ﬁMﬁR b
0 -H 0 0 0 0 0 0 G 0 0 0 0 Bub 0
0 7na -—H 0 0 0 0 0 0 G 0 0 0 0 0
0 0 om —Hs 0 0 0 0 0 0 Gs 0 0 0 0
oz o o —Di 00 0 0 0 0 0 0 0 0 0
0 0 0 0 0 —-Hy, 0 L IR (N 0 0 0 0
0 0 0 0 0 % —-Dy O 0 0 0 0 0 0 0
J&)=1 o o 0 0O 0 pe 0  —m  pe  peor peow O 0 0 0
0 0 0 0 0 0 0 0 —H; 0 0 0 0 0 0
0 0 0 0 0 0 0 0 T2 —Hg 0 0 0 0 0
0 0 0 0 0 0 0 0 0 owe —H: 0 0 0 0
0 0 0 0 0 0 0 0 G, Gs Ge —-Ds 0 0 0
0 - *‘I)'I']T 7¢77R 0 0 0 0 - *@WT 7©nR 0 — Wy 0 0
0 > Dy 0 0 0 0 0 o Dy 0 0 0 —u 0
0 0 0 P 00 0 0 0 0 D, 0 0 0 —fby
with,

Hl - Tl\ll + /J/H + ams + 51\1517 H2 - al\ll + NH + O[M'[‘ + ¢15|\1s19 HS - IJ/H + Oél\m + 51\1[117 H4 - 601 + ,U/H + 7(:
H5 = WUy + 5x152 + 6(?2 + Tu2 + 017 H() == ¢16MS2 + My + 020-1\12 + 6(‘,27 H? == 5]\11{2 + My + 5(‘,2 + 93
Gi=h0(1—f), Go=hb,(1—f), Gy=hO,(1—Ff), Gi=0,1—f)(1—h), Gy=0,(1—f)(1—h)

L bS
G6:93(1_f)(1_h)7 D, = Uy + Wy, DQZMH+O‘)C7 D3:NH+WMC,7 ® = IBN*\
The eigenvalues are \y = —D;, A, = —D,y, \s = =D, \y, = —H;, \s = —Hg, A\ = —H:, A\ = —p,
As = —u, and the solutions of the characteristic polynomials:
)\2 + (HS + lu\))\ + NVHS (1 - RgMR) = 07 (5)
3 2 bQﬁM/BvS\t 2
A+ (H1 + H, + ,Uv)/\ +\HH, + pHy + pHy, — T A+ M\'HIHQ(l - ROMT)7 (6)
and
A+ (i + HON+ i Hy (1 — R (7)

Applying the Routh-Hurwitz criterion, the quadratic equations , @ and will have roots with neg-
ative real parts if and only if R, < 1. As a result, the disease-free equilibrium, &, is locally asymptotically
stable if R, < 1.
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3.6 Global asymptotic stability (GAS) of the disease-free equilibrium(DFE) &, of the
co-infection model

The approach illustrated in [22] is used to investigate the global asymptotic stability of the disease free
equilibrium of the co-infection model. In this section, we list two conditions that if met, also guarantee
the global asymptotic stability of the disease-free state. First, system must be written in the form:

dx
= F(X, D)

b ®)
o = G(X.1).G(X,0)=0

where X € R™ denotes (its components) the number of uninfected individuals and I € R™ denotes (its
components) the number of infected individuals including latent, infectious, etc. Uy = (X ™, 0) denotes the
disease-free equilibrium of this system. The conditions (H1) and (H2) below must be met to guarantee
local asymptotic stability:

(H1): For dX = F(X,0), X*is globally asymptotically stable (GAS),

(H2): G(X, ) = Al - G(X,)X,G(X,I)> 0 for (X,I) € Q,

where A = D1G(X*,0) is an M-matrix (the off-diagonal elements of A are nonnegative) and € is the
region where the model makes biological sense. If System satisfies the above two conditions then the
following theorem holds:

Theorem 3.2 The fized point Uy = (X*,0) is a globally asymptotic stable (GAS) equilibrium of
provided that Ry <1 (LAS) and that assumptions (H1) and (H2) are satisfied

Bub(Ivs+nel B
™y — = ( V;VH s \R) SH - H_ﬁg S ,UfnSu + wMRM + ch + wMCR]\IC

OéusIS; + a]\rr-[Ts + aMRIR (,LL + w\I)RM - Hficg( R

o F(X> I) = ,YCIC - (HH + wc)Rc - BMb(IVS—:nKIVR) R,

_ Bvb(lus+77T11\"é+77RIM)S _ B\ ( Isc+77TITsc+77R RC)S _ S
Ny Na v vy

v A\

BMbES’H HlI\T _ BCSO Il\l _|_ ﬁVbjusR G I]\]

Us Kk+Bc"us usc

&
~ H.IL— S I+ PR R - Gl

O'MIIM + ﬁ]\ll}'@RI\/RS H [1\1 _ B(Oé ]’1\1 + ,8\ %7; R R _ G I]\I
fﬁrcgc (S“ + R“) H I (IU}’thTI%IS)I B\ %7[1:[& I“ + f9 Il\viw + fe?I?Lc + feﬁlrt:"
pole + poHs — 1, B,

Bcyp BybIY: M
nJrBCILs + USI H‘)Iusc

Boy IM + 5\b77TIT§I _ H7IM

Kk+Bc TS TSC

O'MQIM BMP IM + B\ bnulu I HSIM

TSC K

T L3

Us

G(X,I) =

Bvb (IUS+77TIT5)S _EIQI\b + 6\ b(L U§L+77T I5c) Sv
ﬂ\ bnR |{ S HngR + B\/bnRIKCS

where X denotes the number of non-infectious individuals and I denotes the number of infected individ-
uals.

Ty — Sy
0
F(X,0) = 0
0

T, — S,
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—H, 0 0 0 0 G 0 0 Bub 0
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0 0 0 Hy 235 1o, 16, 105 0 0
0 0 0 Pc —HMB Pc PcOr PcOr 0 0
A= 0 0 0 0 0 —Hs 0 0 0 0
0 0 0 0 0 Thi2 —Hs 0 0 0
0 0 0 0 0 0 On2 —H7 0 0
BubSy  BrbmSy 0 0 0 BvdSy  pvbmsy 0 e 0
Ny Ny . Ny Ny ;
0 0o  AmSso o 0 T L -
N;_; N; Vv
_Hl-[M + G IIMS( + /B\Ib-[vs
T — H, I, + G, I
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—H, .+ fO.L, + fO.I}, + fO,1},
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HQIVS
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Iy
BubL(1 — 5) + £ Al - BRI R,
B b T [s
k'ifg(‘ I’ilb B\ 77 } RC v
/BvbTIRIVR( - ) + it LSD I\I — B\’bn:IR R
I
kﬁcg(* (SH + RM) + 6\ ( %4»77 IS)I + IBVbnRICI
g ’ B DI
G(X,I) = AI—G(X, I) = k+©§i IM ﬁ; HU@I
_ If:gu I — By ]7\7[T 15 I.
B(<P Im Bv bT]RIR I
/Bvb(ILs""nIIMSS + ﬁ»b(fud"lr Tb()S

5\ bUR B S Bv bWRIm S
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It is clear from the above, that, G (X,I) # 0. Hence the DFE may not be globally asymptotically stable,
suggesting the possibility of a backward bifurcation.
3.7 Backward bifurcation analysis of the full co-infection model

In this section, we shall seek to determine the type of bifurcation the model will exhibit, using the
approach illustrated by Castillo-Chavez and Song [23]. We establish the result below

Theorem 3.3 Suppose a backward bifurcation coefficient a > 0, (with a defined below), when Ry < 1

25Mbw6
N,

28,b(vowyy + Nuywy;
a=— Bub(v, i]if* Ui lr’)(oJQ—|—u13—{—w,1—i—w5 + wg) —
28,bvy, (WQ + 77TW3)
- N*Q
Q/B\r'anylswzl
- N*Z [(

[(Wn + 77RW15)V6 — VoWyy — V11W15]

[(w1 + UJQ + W3 + CU4 + W5 + wG + (A}y)x;; - wlgN;]
Wy + Wy + Wy + Wy + ws + W + wy) Ty, — wlgN;]

then model undergoes the phenomenon of backward bifurcation at R, = 1. If a < 0, then the system
(2) ezhibits a forward bifurcation at R, = 1.

Proof
Suppose
5 (S** IM** IM** IM** R** I** R** B** IM** IM** IM** R** S** I** I**)

HY7UsS 7718 7R M?TC ) ¢ Y7usc ) TTSsC ) TRC Y MC? vV ) 7TVS? TVR
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represents any arbitrary endemic equilibrium of the model. The existence of backward bifurcation will
be studied using the Centre Manifold Theory by Castillo-Chavez and Song [23]. To apply this theory, it
is appropriate to do the following change of variables.

Let

Sy = a1, I = 9, I = 23, I = 24, Ry = @5, I = g, R. = 7, B. = g, I\, = wo, I, = w10, I = a1y,

RMC = 12, Sv = 13, Ivs = T14, IVR = T15
Moreover, using the vector notation
X — T
= (71, T2, T3, T4, T5, T6, T7, T8, T9, 10, T11, T12, T13, T14, T15)

the model can be re-written in the form

% = f = (f1. f2, f3, f1, 5. foo fro fss fo, fro, fuin, Frzs fiss fuas f15)"
as follows:
% =Ty — /Bmlb(xlzxj\z 77R3315):1;1 — ,iisisxl — LT+ Wy s + W7 F Wyel12 1= fi
% - me%fﬂfl — (Tas + fu + Qs + B2 — ﬁis ryt D “"]ﬁff” 27+ hoy(1 = flzg = f,
% = T2 — (O + fu + Qe + P16,1) T3 — RTS; w3+ h0y(1 — flaio == f,
% = 0uT3 + Wﬁm — (f + Qi+ Oyinr )4 — HTZS x4+ Wx7 Fh0,(1 = Plais = f,
% = QT2 + Q3 + g — (1 + wy) x5 — fij(is z5 = f,
906 _ B8P (0 1) — (8o + pn + o) — 0T Bubiis

dt K+ w3 N, 6 N
+ fbizg + fOrx10 + fO3211 = fo

d ]\[b R
% = YeT6 — (NH + wc)x7 - B (3214]\}: il xlS)m'? = f?

dﬂ?g (9)
= o6 + pe(T9 + 0210 + 00T11) — MaTs = [

dt

dl’ xT be 4

= Iy DM (o + G B i+ 020 1=
dr T

dtlo - K jig T3 + TyaX9 — (NH + ¢251\152 + 60,4+ 0w+ 502)1’10 = fm
d.’L‘ T Mb kL

d;l = 0210 + K —ii’g T4+ /B ]ZH - L6 — (IU'H + 5MR2 + 6c2 + 03)x11 = fll
dx

dig =0,(1 = f)(1 = h)xg + 0,(1 — f)(1 — h)z10 + 05(1 — f)(1 = h)x11 — (Wae + p) 12 := fo
dl‘13 — Bvb<$2 + nTm3 + /r’Rx4),fL' _ 5\b($9 + 77T$10 + /rlR'xll);Lv — €T = f
a N, & N, A
dflj vb xz + L Vb L + L

d;4 = B 2NH ! 3)9613 + Bibl 9NH77 10)31713 — 14 = fuy
dris _ pobmaa o Bbmrn o f

at N, BTN, s Ams = e
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—ps 0 0 0 wy O we = 0 0 0 wae 0 —Bub  —PBumwb
0 —-H 0 0 0 0 0 0 Gy 0 0 0 0 Bub 0
0 7nm —H 0 0 0 0 0 0 Gy 0 0 0 0 0
0 0 om —Hz; 0 0 0 0 0 0 Gs 0 0 0 0
e o o —D1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 —Hi 0 ZLfon f6 fOs 0 0 0 0
0 0 0 0 0 v -Dy 0 0 0 0 0 0 0 0
J (&) = 0 0 0 0 0 pe 0 —ws  po por  poow 0 0 0 0
0 0 0 0 0 0 0 0 -Hs 0 0 0 0 0 0
0 0 0 0 0 0 0 0 T2  —Hs 0 0 0 0 0
0 0 0 0 0 0 0 0 0 owe —H: 0 0 0 0
0 0 0 0 0 0 0 0 Gy Gs Gs —D; 0 0 0
0 —-® —®p —-Dn, O 0 0 0 —® —®p —Dp 0 —puy O 0
0 o Dy 0 0 0 0 0 o Dy 0 0 0  —puv 0
0 0 0 P 0 0 0 0 0 0 e 0 0 0 —fbv
with,

Hl - TMI + /'I’II + O‘Ms + 51\1515 H2 - O-Ml + ;uu + am + ¢15MSI7 HS - MII + aMR + 5]\IR17 H4 - 601 + ,Ufn + /70
H5 - Mu + 5MS? + 602 + TMQ + 01) -HG - ¢16MSQ + Hu + 020-1\12 + 6@'2; H? - 5]\1R2 + Mu + 6c2 + 93
G1 :hel(l_f), G2 :heg(l_f), G3 :heg(l_f), G1 :0](1_f)(1_h/), G5:62(1_f)(1_h)

_ Buba,

G6:03(1_f)(]—_h)5 Dl:,un_}'wma D2:M11+wc; D3:H11+w1\107 (I) N*

Consider the case when Ry, = 1. Assume, further, that thee product §,m, is chosen as a bifurcation
parameter. Solving for B,n, = 8° from R, = 1 gives

_ )U’VN: H3
-~ nBS:
Evaluating the Jacobian of the system @ at the DFE, J (&), and using the approach in Castillo-Chavez

and Song [23], we have that J(§p) has a right eigenvector (associated with the non-zero eigenvalue) given
by

Bun, = B

T
W = w1, w2, W3, Wi, Ws, W6, W7, W8, W9, W10, W11, W12, W13, Wid, W15)

where,
W, = i waS + WC’YCQO‘TI _ -Hl o 6»’6*1377§b30-hr117-1\11
/’LH /J/HK/DQH4 (p(]. + 77’]‘7-1\11) IU’E’NH(]' - b)H]H3
/BM b /61\1 bTMl Om1 BM bTMl
Wy = = =

wH T uH YT (- b)HH,
_ Bublonepe (1 = b)Hy + ot (1 — 0) H Ty + 0001 BubTint]
N p2(1 —b)H, H,D,
_em o e His
fakH, psk D, PP,

Wy = Wiy = Wy = wys =0
_ 1 ®/8Mb(1 + nTTl\Il) (PTIRUMIBMI)TMI _ Hl
Wiy = —— + 2 , Wi =
My )ule :u’v(l - b)Hle B}ubq)(l + nTTMl)
w — ﬁv /8]\4 77R Om1Tu1 b2
P N (1 - b)H, Hy
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Similarly, the components of the left eigenvector of J(&o)|g=gsns:, v = (v1,12, ..., v15), satisfying v.w = 1,
are given by:

M=V =V =Vp=V3=0, vh=0v,>0

1 0-]\11@77R, + q)nTBMbV2 (I)T’R pc HHl
Vg = — , Uy = , Ug = , Ug = -
TH, | poH, iy YU HS N e H] T pepr;
Ue = #BH1G2<P1'IV2 + Sﬁfffelpc + /’I’BHE’K" - G2V3 + f921/6 + PO Vs + Oyl
! NBH1H590$I 7 v Hg
P Gsvy + fOs05 + peovs + Pnvys b= Bubv, B H,
11 — H7 ) 14 — /,Lv 9 15 — (I)IB\IbT]é
The non-zero second partial derivatives of the functions f;(i = 1,...,15) are given by
82f2 o 62f2 - _ﬁmb$91ﬂ ﬂMb
81‘18$14 N 81‘78:614 N NH*2 N:7
3Pf  Pfs P Ofy  0fa _ Bubx)
02120714 N 0x30x14 - 0240714 - 0x50x14 o 0x60x14 - N:Q
82f4 _ 82f4 _ _B}\Ibnin menR
0x10115 O0x70x15 N:2 N ’
a2f4 _ 62f4 _ 62f4 _ 62f4 _ a2f4 _ _ﬁMbT]Rl'I
81‘28$15 81‘38:615 al‘4a$15 (91758:615 8x68m15 N:Q
82f6 _ _me anG _ _ﬁl\lbnlt 82f9 _ ﬂl\lb anll _ /menu
8.73685614 N: ’ 81’683:15 NH* ’ 83:689514 Ng ’ 83:683515 Ng
Pfu _ Pha _ Pfu _ Pfu P Pfu _ Biba,
8%‘181‘2 8.%28.%2 8.%2(9%4 8%28.%5 81’282126 81‘26%’7 N;Q
Pfu _ Pfu _ Ofu_ Pfu _ Pha B,
0x10x3  0x30x4  Ox30x5  Ox30T6  O130T7 N
fa _ Bbxy,  Bbxiy  Pfu o 28.bai Pfu _Bb  Pfiu _ Bibn,
81'28.733 N;Z N;Q ’ 6x§ N;;? ’ 8x28x13 N; ’ 81’38.%3 N;
fis _ 0fis _ 05 Phis _ Phs _ Phs _ Bbmay,
0x10x4  Ox90x4  Ox30T4  OT40T5  OT40T6  Ox4077 N2
82f15 _ _26\'[7771( 82]015 _ /Bvbnu
8%2 N;Q ’ 83748.%13 N;
The associated bifurcation coefficients defined by a and b, given by:
02 fr, 0 f
Z VpWiWj (O 0) and b= Z vpw; ———(0,0),
k,,j=1 Oz a k=1 Ox a *
are computed to be
28,b(Vowyy + Nty 205,.bws
= - 6 ( 2 1;;[* i 15) (Wz +ws; +wy +ws + W6) - BN* ‘ [(WM + 77RW15)V6 — Vg — Vuwls]
26,bvy, (ws + Nyw: . .
_ 2 145\[; M) [(w1 + Wy + ws + Wy + ws + w + wr )T, — wwNH] (10)
268,m.bvsw X
— % (w1 4 ws + ws + wy + ws + ws + wo) @y, — wiz N, |
and
b—Zuw O fi (0,0) = (w4 + Mawis)v, > 0
k gr .08 14 T TeWis5) V2

k=1

Since the bifurcation coefficient b is positive, it follows from Theorem 4.1 in Castillo-Chavez and Song [23]
that the model , or the transformed model @D, will undergo the phenomenon of backward bifurcation
if the coefficient, a, given by is positive.
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4 Analysis of the optimal control model

d;;“ =y — 5mb(Isz—i; hln) Sy — micgc Sy — Sy + Wy Ry + woRe + wye Rye
dﬁ = 5Mb]I\ZSH — (T + s+ s + G ) I3 — nicfac I+ & Ji’[[ R+ huy(t)0,(1 = [,
T = Tl = (0 i+ O GG I — L s (1)0,(1— )T
T = ot + P (0 2 PR (00,1 - )1
dz“" = Wl @D+ oy — (0 w,)R, — K%gc R,
= L (S0t R) — (g 0L = B - PO,
+Jur (T + fua()0uT + Fus(DOT
B ot = ()R, — Do ) “‘b(I"S]\Z il o) p
= e+ D+ o + ) — B
T = D gy B B Bl — Gl — Tl — i (DO I
T = B I bl — il = 08l — ua(O0 T — ol T,
R A Y R N e O
Tl — w000 = )1 = W w0001 — = WL+ us(O (0 = )1 = WL = (e + ) Rac
L N SN PR RS A P
iy BB | AU g
i DI | Al

(11)

The control functions, uq(t), us(t), and ug(t) are bounded, Lebesgue integrable functions. The control
u1(t) represents treatment efforts for co-infected individuals in I'% compartment. us(t) represents treat-
ment efforts for co-infected individuals in I compartment. The control ug(t) represents treatment
efforts for co-infected individuals in I}, compartment. The controls u, ug, uz satisfies 0 < uq, ug, uz < 1.
The optimal control system examines scenarios where the number of co-infected cases and the cost of
implementing the controls s (t), us(t), and us(t) are minimized subject to the state system (LI). For

this, we consider the objective functional

_ r M M M Bl 2 B2 2 B3 2
J[ul’ Uz, u3] - [IIJSC(t) + ITSC(t) + IRC(t) + 7”1 + 7”2 + 7ui]dt (12)
0
T is the final time. We seek to find an optimal control, u},u;, u;, such that
J(uy,uy,uy) = min{J(uy, uy, uy ) |uy, ug,us € U} (13)

where U = {(u},u},u¥)} such that u},us,u; are measurable with 0 < u} < 1,0 <uj < 1,0 < wu} <1,
for t € [0,T] is the control set. The Pontryagin’s Maximum Principle [28] gives the necessary conditions
which an optimal control pair must satisfy. This principle transforms , and into a problem

13
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of minimizing a Hamiltonian, H, pointwisely with regards to the control functions, u,, u,, us:

By 9 B3z o9 By,

B
H =L (1) + DL (1) + Do) + ol + Foud + Pl +

2
Mb I + RI\'R BC
+ )\SH |:7TH _ ﬁ ( V?VH Ui )SH — - +gc SH — MHSH —+ wMRM + CL)CRC + chRMc]
IVS M BC M VbIVS M
+ /\I{\vls [/BMbFHSH - (7_1\11 + Hou + Qg + 51\'151)IUS - K +<.)OBC IL'S + ﬁNH RC + h'LLl (t)01(1 - f)Ius(]

BC 1 M
+ )‘I%Is [TMlI(I}; - (O'Ml t T Qe+ ¢15ms1)1¥2 - K _‘_% I;s + hu?(t)92(1 - f)ITSC]
Mb RIVR M Bc M b RIVR M
g [owt + 5]35 = (i Q- B )Y — +S;C o4 B ]\Z Re + hus(t)05(1 — £)I1]
+ Ay [0l + 0l I — (14 wy) Ry — B p ]
Ry | Gus g Mrdpg MrL g v )Ly K+ BC M
c vvas ]\Ib RIVR, M M
P [, ) = G 90T = 0= B fua (00,1, + fua(00.T2 + fus(0)
Mb Ivs + RI\/'R
+ ARe [%Ic — (pw + we) Re — WRC]
+ Ape [pele + pe(li + 0uli + 0uly) — pu Be]
BC M A bIVS M M M M
+ AI&%C |:/€ _’_gc IUs + IB\JIVH IC - IU’HIUSC - 6MS?IUSC - 50?[35{9‘ - TM?IUSC - ul(t)elelsc]
+)\ M [ BCSO I]\I +7_ I]\I _ IM 7¢ 6 IM —u (t)e IM — 0 IM 76 IM ]
ITSC /‘€+BC TS M2+ use Mol g 2¥Ms25rse 2 25 rsc M2+ e 2+ rsc

g b RIM
CALUTThy RS P N KO 0 RV )

By
+ A oLt + I+
IRC[ e e 4 Bt N,

+ )\RMC [ul(t)el(l - f)(l - h)IS;(; + U2(t)92(1 - f)(l - h)ﬁgc + u3(t)(93(1 - f)(l - h)I;; - (UJMC + HH)RMC]

5Vb(IM' + T]TIM' + nHIM) ﬁ\,b(IM, . + n’]'IM~ o + nI{IM‘)
A [, — us TS R Sv _ Usc TSC RO Sv — 1y Sv
Fs[r N, N, o]
Bub(Lis + mu13y) By, + mIi.)
A [P S N S, — pL]
ﬁv bnRIM BV b??RIM
>\ y : SV = S\f - VI\’K
+ AL [ N, + N, I ]

(14)

Theorem 4.1 For an optimal control set uy, us, ug that minimizes J over U , there are adjoint variables,
A1, A2, ..., A5 satisfying

on_ o
ot 0i
and with transversality conditions
A7,(tf) = 07 where, 1= SHaIslsvI;IgaI[]:lyRmIcaRcaBmIglsw]-imIlséaRl'sys\r'alvsalvre- (15)

Furthermore,

(Ao = fAe) = (1 = f)(A = h)A, — h(1 — f)A2]911§§c> }
By ’
(Ao = fAe) = (1 = ) ;}j)/\m —h(1— f)>\3}921}“ic) } ’ (16)

uj = max {0, min (1,

uy = max {0, min (1,

. _ {0 : (1 (Al = fAe) = (1= [ = M)A — A(1 = [)M]O3 15 >}
uz = max § U, mwn | 1, Bs ) )

Proof of Theorem [4.1]
Suppose U* = (uj,u3,u3) is an optimal control and S,, I, I, I, R,,, I, Bo, I)L ., I ., I R, Sy, Lys, L.

Hy Tyus? “T1s) "R €y “usc? TTsc) TRC?

are the corresponding state solutions. Applying the Pontryagin’s Maximum Principle [2§], there exist
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adjoint variables satisfying:

_d/\SH _OH dApu OH dAp _ OH

i " asy Mol =00 —pm=ans Amlt) =0 —=gR =g Alty) =0,
—dzf‘[ = gg[, Apy(ty) = Oy—dilf“ = %, Ary(tr) =0, —d;fc . gZ’ AL (t) =0,
S =0, ~ZE =S s =0 N

dAdIt = (ZH Al (ty) =0, dilfff@c = aalH A (ty) =0
_d/c\ifc - gf Any(ty) =0, —dkdi““ = 8(3;5{07 ARy (tf) =0

with transversality conditions;
Spy=I,=D=1'=R,=1.=B. =1\ =1 =1, =R;= S, = I,s = I, = 0 We can determine the
behaviour of the control by differentiating the Hamiltonian, H with respect to the controls(uy, ug, us, u4)

at t. On the interior of the control set, where 0 < u; < 1 for all (j = 1,2,3,4), we obtain

oM .
0= 5, = Buui— 0T Do — f6 — (1= f)(1 = h)Aw — h(1 = R)Ag),
oM R
0= 87152 = BQUZ — IfSCHQ[)\w - f)\(j — (1 — f)(l — h>)\12 — h(l _ f))\3], (18)
oM .
0= 5y = Bots = LD = FAs = (1= F)(1 = WA = h(1 = F)Ad),

Therefore, we have that [29]

(Mo — fA6) = (1= f)(1 = h)Aiy = h(1 = f)Xa]01 1),

uyp = B ;
= (Ao — fe) — (1= )(1 ; M)A — h(1 — f))\g}QQIT“;C7 19)
2
ul = (A1l = fAe) = (1= [)(L = h)Aiz = h(1 = f)Aa]O3 T3
Bs ’
. {0 , (1 [(Ao — fA6) — (1 = )L = h)Aw — h(1 — f)Az]911320> }
u; = max 4 0,min (1, B, ,
u;‘ — max {07 min <17 [()‘10 - f)\6) - (1 - f)(l ; h)>\12 - h(l - f))\3}92‘[¥;c> } 7 (20)
2
uh = maz {0’ i <1’ [(M1—=fre) —(1— f)(lB— h)Ai — h(1 — f)M]@zI;L’) } ,
3

5 Numerical simulations

Figure [2] shows the simulation of the total number of individuals untreated of sensitive strain and co-
infected with cholera, when there is no drug resistance. it is observed that a total of 1,590 co-infected
cases were averted. However as presented in Figure 3| when there is drug resistance, a total of 237 co-
infection cases were averted. figure [4] shows the simulations of the total number of individuals treated
of sensitive malaria strain and co-infected with cholera. It is observed that a total of 2,527 co-infection
cases were prevented, when there is no resistance. However, when there is malaria drug resistance, as
depicted figure [5] a total of 116 co-infection cases were averted. Figure [6] depicts the simulations of the
total number of individuals co-infected with resistant malaria and cholera. It is seen that in the absence
of malaria drug resistance, the treatment control applied prevented a total of 36,350 co-infection cases.
However, in the presence of malaria drug resistance, as shown Figure [7] a total of 40,590 co-infection
cases were averted when the treatment control is applied. It is imperative to note that in the presence of
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treatment controls, more co-infection cases were averted when there is drug resistance, than whne there
is no drug resustance, for co-infected individuals in compartments I} and I'... However, it is observed
that for co-infected individuals in compartment I, more co-infection cases were averted in the presence
of malaria drug resistance than when there is no drug resistance, when treatment controls are applied

in both cases. This points to the fact that malaria drug resistance can greatly influence the co-infection

cases averted, even in the presence of treatment controls for co-infected individuals.

Table 2: Description of parameters in the model .

Parameter Description Value (per day) References
T Recruitment rate for humans 100 [24]

Ty Recruitment rate for vectors 1000 [24]

By Probability of humans getting infected with malaria 0.181 27

By Probability of vectors getting infected with malaria 0.181 27

b average biting rate for vectors 0.5 [26]

® Bacteria contact rate for humans 0.05 [13]

L Natural death rate for humans m Assumed
Ly Natural death rate for vectors 1=,0.143 [24]

W Malaria waning rate m [24]

We Cholera waning rate 0.001 127

Whic co-infected waning rate 0.001-0.02 [13]
01,02, 0; Recovery rate of co-infected 0.5 Assumed
Yo Recovery rate of cholera infected 0.07 127

Qs Recovery rate from sensitive malaria strain 0.0078 [107 27]
e Recovery rate from sensitive malaria strain for treated individuals 0.1404 [10} 27]
Omr Recovery rate from resistant malaria strain 0.0078 [10, 27]
Nr modification parameter for reduced infectiousness of treated individuals 0.8 [10]

i modification parameter for reduced infectiousness of malaria resistant individuals  variable

Tarly T2 Rate of administration of antimalarial drugs variable

Oml, OM2 rate of resistance development to antimalarial drugs variable

f fraction of co-infected who recover from malaria only 0.2 Assumed
h fraction of co-infected who recover from cholera only 0.5 Assumed
Pe cholera infected contribution to aquatic 0.7 Assumed
Or, Ox modification parameters 0.9 Assumed
Ousl, Ons2 Malaria induced death rates 0.05-0.1 [13] 25]
Sur Malaria induced death rates for treated individuals 0.05 Assumed
dc1, Oc2 Cholera induced death rates 0.0001 Assumed
o1, P2 Modification parameters 0.7 Assumed
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Figure 2: Simulations of the model showing the total number of untreated of sensitive strain and
co-infected with cholera, when there is no drug resistance. Here, o,; = 0,, = 0. All other parameters as

in Table |2|
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Figure 3: Simulations of the model showing the total number of untreated of sensitive strain and
co-infected with cholera, when there is drug resistance. Here, 0,;, = 0,, = 0.4. All other parameters as

in Table

Figure [§|shows the simulation of the total number of infected individual at different initial conditions.
It is observed that the resistant strain drives the sensitive strain to extinction when both reproduction
numbers are greater than unity, with (1 < Ry < Row). both strains co-exist with the sentitive
strains dominating the resistaant strain when both reproduction number are greater than umity (1 <
Rourx < Roys). Likewise when both reproduction numbers are greater than unity with (R, = 3.54103 ~
3.54688 = Rx),both strain co-exist with th sensitive strain dominating but not driving the resistant

strain to extinction.

6 Conclusion

In this work, we have considered and analyzed a mathematical model for two strains of Malaria and
Cholera with optimal control. The model assessed the impact of treatment controls in reducing the
burden of the two diseases in a population, in the presence of malaria drug resistance. The model
was shown to exhibit the dynamical property of backward bifurcation when the associated reproduction
number is less than unity. The global asymptotic stability of the disease-free equilibrium of the model
was proven not to exist. The necessary conditions for the existence of optimal control and the optimality
system for the model is established using the Pontryagin’s Maximum Principle. Numerical simulations
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Figure 4: Simulations of the model showing the total number of treated of sensitive strain and co-

infected with cholera, when there is no drug resistance. Here, 0,;, = 0,, = 0. All other parameters as in
Table
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Figure 5: Simulations of the model showing the total number of treated of sensitive strain and co-

infected with cholera, when there is drug resistance. Here, o,; = 0,, = 0.4. All other parameters as in
Table |2|
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Figure 6: Simulations of the model showing the total number of individuals co-infected with resistant
malaria and cholera, when there is no drug resistance. Here, o,, = 0,, = 0. All other parameters as in
Table
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Figure 7: Simulations of the model showing the total number of individuals co-infected with resistant

malaria and cholera, when there is drug resistance. Here, o,;, = 0,, = 0.4. All other parameters as in
Table
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Figure 8: Simulations of the model showing the total number of infected individuals at different
initial conditions. Here, 3, = 7.034, 8; = 7.09,n, = 1.2, (so that R, = 4.94013 < R, = 9.50072).
All other parameters as in Table |2|

x 10"

Sensitive strain (ROMS=4.94013)

Infected population
=

Resistant strain (ROMR=3.95863)
0.5 i
0 | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Time (years)

Figure 9: Simulations of the model showing the total number of infected individuals at different
initial conditions. Here, 3, = 7.034, 8; = 7.09,n, = 0.5, (so that Ry, = 4.94013 > R, = 3.95863).
All other parameters as in Table
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Figure 10: Simulations of the model (2) showing the total number of infected individuals at different initial
conditions. Here, 8, = 5.034, 8, = 5.09, 7, = 0.625, (so that R, = 3.954103 = R, = 3.54688). All
other parameters as in Table |Z|

of the optimal control model revealed that malaria drug resistance can greatly influence the co-infection
cases averted, even in the presence of treatment controls for co-infected individuals
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