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Abstract: The challenge of limited labeled data in the field of medical imaging and the 
need for large number of labeled data for training machine learning algorithms, and to 
measure the performance of image processing algorithms increases the demand to use 
synthetic images. The purpose of this paper is to construct synthetic and labeled Optical 
Coherence Tomography (OCT) data to solve the problems like having access to the 
accurate labeled data and evaluating the processing algorithms. In this study, a modified 
active shape model is used which considers the anatomical features of available images 
such as number and thickness of the layers and their associated brightness, the retinal 
blood vessels, and shadow information with wise consideration of speckle noise. The 
algorithm is also able to provide different datasets with varying noise level. The validity 
of our method for synthesis of retinal images is measured by two methods (qualitative 
assessment and quantitative analysis). 

Keywords: Optical Coherence Tomography, Labeled Data, Retina, Image Processing, 
Synthetic Image. 

 

1. Introduction 
Optical Coherence Tomography (OCT) is vastly used in the different fields like 
ophthalmology to provide cross sectional images from the eye.  Due to its high 
resolution, this technique has capability to depict the microstructures of a tissue and to 
discriminate different layers of biologic tissue. The purpose of retinal image analysis is 
development of computational and mathematical techniques to help ophthalmologists to 
diagnose diseases such as diabetes, glaucoma, etc., which may cause changes in 
thickness layers of the retina and the blood vessels [1, 2]. Different image processing 
methods have already been designed  for analyzing these images, with purpose of 
segmentation of the anatomical layers, segmentation of blood vessels and noise 
reduction methods [3-6].To evaluate the performance, limitations and clinical 
application of mentioned algorithms, the validation phase is mandatory [7]. A common 
method for validating medical image algorithms is the use of Ground Truth (GT) 
provided by medical experts. Obtaining GT images annotated by experts is a costly and 
difficult task. Recently, deep learning and convolutional neural network algorithms are 
shown to be potent to perform accurately in OCT image analysis, such as classification 
and segmentation [8, 9]. These techniques require a large amount of annotated data in 
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training phase, access to which is crucial for making correct decisions. Such big 
annotated dataset is rarely available in the field of medical image analysis. Therefore, 
synthetic data and augmentation methods have been developed to enhance the variety of 
medical data [10]. The primary methods for producing medical images were digital 
phantoms that followed simple mathematical models of human anatomy [11]. Several 
studies exist for producing synthetic retinal fundus images [10, 12, 13], CT scans [14, 
15] and OCT images [16-19] and several studies used synthetic data to compare and 
measure the performance of image processing algorithms [20-22]. The available 
literature on production of synthetic OCT images is categorized in Table 1. However, 
the realistic generation of high-quality medical images remains as an unresolved 
complexity to current computer vision methods. To the best of our knowledge, there are 
no public available databases of synthetic retinal OCT images, and providing labeled 
images for large image dataset is often out of access. 
 On the other hand, some synthetic images are not constructed based on real data and 
such fictional images do not describe the features of actual medical images. Making 
labeled data with high similarity to the reference image is therefore less explored. 
Furthermore, taking into account the anatomical features of the reference images, such 
as the number and thickness of the layers and their associated brightness, as well as 
blood vessels and the noise of the images, creates more realistic data. In our proposed 
method an automatic segmentation method is applied on OCT images and the results are 
then corrected by an expert. Such segmented data is fed to our synthetic data production 
method to make both image and the label simultaneously. In this research, we are 
looking for a new method to make OCT synthetic images that can overcome the 
shortcomings in the previous methods and provide an optimal solution set. An improved 
active shape model is used to construct synthetic data. The further fusion of the 
information in synthetic images produced by this model enables us to simulate the 
features of the reference image and apply the various effects of imaging conditions. 
These synthetic retinal images can be useful for confirming image analysis techniques, 
like segmentation, denoising, and a wide range of other applications. 
This paper is organized as follows. In Section 2, we describe the proposed method for 
generating the synthetic images. In Section 3 we report the result and our experiments to 
evaluate them. Finally, in Section 4 we discuss on the proposed method and give 
concluding remarks and hints for future work. 
 

2. Material and Methods 

The data used in this paper is obtained from Heidelberg 3D OCT-HRA2-KT machine at 
Sadra Center of Ophthalmology in Isfahan. The size of each data is N × 512 × 496 
voxels, in which N is the number of cross-sectional images of each data, varying 
according to the quality of the imaging and decision of the ophthalmologist, between 
the 19 to 65. To make the model, 10 normal volume data (100 B scan images) is used in 
training satge. The proposed method can be summarized in 6 steps. 

2.1 Images Preparation For training 

 The training retinal images are segmented into nine boundaries [23] followed by 
accurate correction with an expert (Figure1). 
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FIGURE 1   Two samples of training images with automatic segmentation of layers. 

2.2. Active shape model 

The segmented retinal boundaries are then used as training dataset for active shape 
model [24] to produce new synthetic boundaries. We only incorporate the ASM for data 
synthesis and don’t use the localization step in this model. 
A point distribution model (PDM) is used to describe the shape variation in a training 
dataset. The shape model is used to construct new shapes similar to the ones in the 
training dataset. The location of the main points of each retinal layer of the image is 
determined by analyzing the geometric position of the similar points and construction of 
a point distribution model. This model includes a mean shape of the location of the 
points marked in the training stage and a number of parameters for controlling the main 
modalities of the changes in them. Changes in coordinates of these points describe the 
change in shape of training dataset. Suppose ix   is the vector of the n  points of shape i  

                                 (1) 
 

Procrustes analysis [25] is used to align shapes to maximize model specificity and 
reduce nonlinearity in shape distribution  Figure 2 shows the first and last layers before 
and after aligning. 
 

 
FIGURE 2   Effects of alignment on boundaries, a) first boundary, b) last boundary. 

Principal Component Analysis (PCA) then is applied on the aligned shape vectors. The 
mean shape of  aligned images and the covariance matrix  are calculated by [26]: 
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After analyzing the initial component, eigenvectors of covariance matrix are calculated 
so that the statistical properties of the shape can be obtained. Each shape can be 
estimated using the following equation: 
 
                                                   b×+= Pxmx                                                          (4) 

Where �� , � and � � ���, ��, … , ��
� , � � �1, … 

 are the mean shape of geometric 
location, eigenvectors of the correlation matrix corresponding to 
  largest eigenvalues 
and a vector of elements (b) containing the model parameters respectively.   Equation 4 
is the core of our synthetic model and allows us to create a new image by changing the 
values of � vector. These parameters have linear autonomy, although they may be 
interconnected nonlinearly. The limit on the values of these parameters is also 
determined by studying the distribution of them in the training images. In the meantime, 
we can determine a limited range for values to ensure that the parameters change within 
the permissible range. According to training data, since the changes of kb in the training 

set are equal to kλ (where
kλ is the �,th eigenvalue of �,the limitation can be defined as 

follows [27]: 
 
                                                     (5) 

 Each aligned sample of the training group shapes is displayed with one point in 2� 
dimensional space. So, a training group whit � image creates a � point cloud in 2� 
dimensions space. We assume that this cloud is almost elliptical in shape and its center 
can be known as the mean shape. The main diameters of the ellipse are obtained by 
decomposing the PCA on to the images. Each of the diameters represents a mode of 
change in which the landmarks change around each other to create similar shapes. 
Eigenvectors of covariance matrices that belong to the largest eigenvalues have 
produced the largest elliptical shape diameters, thus modeling the most important modes 
of change in objects. The variations of each eigenvector are equivalent to the eigenvalue 
corresponding to it, and so only the 
 modes with the highest eigenvalues can be used to 
describe the changes instead of using all 2� available modes. 
According to training data and by changing the first four parameters (
 � 4), similar 
examples of training shapes can be created. Each of these parameters represents one of 
the modes of change and models a particular type of variation. However, in our 
application we forced to put more limitation compared to equation (5) since some 
parameter values could make visually inconsistent and medically pathologic images. 
This issue is elaborated in results section. 

2.3. Finding the most similar reference image to each synthetic image 

To transfer some fundamental features such as local brightness, location of the vessels 
and the choroidal region from reference images to a synthetic image, the most similar 
image of the training set to the newly created image should be find. For this purpose, 
after aligning the images the similarity is measured based on the shape of the first 
boundary. This boundary is therefore divided to 3 sections and the central part is 
selected as a measure for finding similar B scans. A third-degree curve is fitted to this 
part and its parameters are extracted, and compared with the available reference images 
to find the most similar image to the given image. 
 

3 3k k kbλ λ− ≤ ≤
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2.4. Applying brightness to synthetic images 

After finding the most similar training image to the synthetic image, the average 
brightness of each layer in selected image is considered as the brightness of the various 
layers of the synthetic images. In this way, we can create images with different 
brightness levels which provide more variation in synthetic image and can model the 
intensity-variation in real images. Figure 3 shows samples from synthetic boundaries 
and compares the proposed intensity variated method with an easier strategy which 
obtains the intensities of each layer according to the mean intensity of that layer in 
training images (global intensity).  

 
FIGURE 3   Samples of Applying intensity to synthetic boundaries a) Synthetic 
boundaries b) Brightness levels selected with global model c) brightness levels 
selected with intensity variated model. 

2.5. Adding noise to synthetic images 

OCT images are often contaminated with the speckle noise. At this stage, a global 
speckle noise is applied with various standard deviations and images with different 
noise levels are created. The noise level can be considerate as a parameter to change the 
overall quality of synthetic images. Figure 4 shows the synthetic noisy images with 
different variance levels.  

 
FIGURE 4  Applying noise to images a) Reference image, b) Adding speckle noise  
with variance of 0.04 c) Adding speckle noise  with variance of 0.2. 

 
2.6. Inserting blood vessels  

To produce images with highest similarity to the reference image, blood vessels are also 
added to the image. Since the presence of shadows in the outer layers of the retina is the 
main factor determining the vessel location [28], after finding the reference image 
(section 2.3) the brightness profile of the pixels between the boundaries (OPL) and 
(BM) are computed. A moving average filter is applied to each intensity profile to 
estimate the drift line to be eliminated. Then a threshold is used to determine the 
minimum locations, which correspond to location of the vessels. If we select the 
threshold to be -1.5*std (intensity profile), the location of central point of vessels plus 
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the points around it corresponding to vessel width (v) will be extracted. In next step, we 
evaluated 3 different methods to add artificial vessels to synthetic image. 
In the first method, after locating the vessels, the brightness of the reference image in 
vessel location is directly copied into the synthetic image. The problem is that in such 
method the brightness is not adapted to the surrounding brightness values and 
accordingly, the resulted image may see weird (for instance the inserted vessel might be 
brighter than the background, which is not common in real images).  
To solve this problem, we made a new ASM model for vessel intensity construction 
(second method). During the training phase mean brightness value of each vessel (with 
width of V) is selected along with two sets of background brightness (with width of V). 
Therefore, a brightness profile with length of 3� is made for each vessel in training 
dataset. 
By selecting 20 samples of vessels with different widths and resizing them to equal size 
(9 pixels width), ASM is again used to construct new vessels using the equation 4. For 
each synthetic image the width and location of the vessels are selected from the 
reference images, and then synthetic vessels with altered width are placed on these 
locations.  
In third method, we normalized each synthetic vessel (from second method). For this 
purpose, we considered the local brightness of the location which will host the vessel 
and normalized the vessel brightness values to match to the host. 
Figure 5 shows the location of vessels in a reference image. Figure 6 compares the three 
methods for inserting blood vessels. 
Also designed to make the shape more perfect the choroid region and background of the 
reference image are transferred to the produced image; this will be visible in the results 
section. 

 
FIGURE 5  localization process for finding the vessels in a reference image, a) Mean of 
partial profiles for each column (located between boundaries 7 to 9) b) Applying a 
moving average filter and threshold c) Location of the blood vessels. 
 

 
FIGURE 6   Inserting blood vessels, a) Reference image, b) First method c) Second 

method d) Third method. 
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3. Results 

In this section we first discuss the limitations that we exposed in selection of �� for 
generating normal data. Then we show examples of  synthetic data for qualitative 
evaluation, and finally use segmentation and denoising methodes  to evaluate  our 
method quantitatively. 
As shown in Figure 7, �� parameter is responsible for modeling the overall curvature of 
RPE and values exceeding 2��� create over shoot on the first and second boundary 
(weird data); �� parameter describes the thickness of the layers, (especially RNFL) and 
weird data is produced for values less than �2���. �� Parameter shows the amount of 

drooping in macular region and falls out of normal population below the �3��� value. 
�� Parameter also models the relative thickness of B scans, and its values in the 
predefined range make acceptable data. As explained in section 2.2 other parameters 
have more unobtrusive effects, such as angles and curvature shapes. Therefore, we 
decided that these initial parameters are sufficient for modeling different OCT data.  

 

FIGURE 7   Effects of varying the first four parameters of model.  

Sample results of the proposed method for making synthetic OCT images using the 
features based on the most similar B scans in the training set (reference image) are 
shown in Figure 8. The reference B scan and the noise free synthetic image are shown 
in Figure 8.a and 8.b. As shown in Figure 8.c, speckle noise is then added to produce a 
synthetic noisy B scan. In Figure 8.d, the synthetic model of the blood vessels as well as 
the choroid layer, are added to the image. The validity of our method for synthesis of 
retinal images is measured by two methods (qualitative assessment and quantitative 
analysis). 
For qualitative assessment, 40 randomly selected synthetic images were observed by an 
ophthalmologist to confirm the fallowing properties: the correct order of the blitheness 
for the layers, the correct shadow effect in lower layers, correct thickening of the RNFL 
layer in NASAL region, and consistency of choroidal region with properties of the 
vessels and the layers. All 40 sampled had the mentioned criteria successfully. 
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FIGURE 8 Different stages of Synthetic OCT data for 3 prototypes,   a) Reference image, 
b) Noise free synthetic image, c) Adding noise to the synthetic image, d) Adding synthetic 
blood vessels.  

 
To demonstrate applicability of our method in validation of retinal image analysis 
algorithms, we provide 2 frameworks for quantitative analysis: measurement of 
segmentation performance and monitoring the denoising performance. In first step, the 
performance of an automatic segmentation algorithm in different noise levels of synthetic 
data is tested on 15 randomly selected two-dimensional synthetic data. Figure 9 shows 
samples of synthetic images with our method and corresponding segmentations. The tested 
segmentation method is a semiautomatic method based on live wire theory [29].The mean 
signed and unsigned border positioning errors for each border with different noise levels 
are presented in Tables 2 and 3.  

 
FIGURE 9   Segmentation results, a) Synthetic images, b) Synthetic boundaries, c) 

Segmentation boundaries. 
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In second framework, we tested a number of famous denoising algorithms to demonstrate 
the performance of our dataset in evolution of denoising method. BM3d [30] is a baseline 
algorithm in image denoising which achieved competitive results. We also use the method 
described in [31] to evaluate the generated images. This method is a numerical optimization 
framework based on the maximum-posterior estimation of noise-free OCT image and 
combines a novel speckle noise model, derived from local statistics of empirical spectral 
domain OCT (SD-OCT) data, with a Huber variant of total variation regularization for edge 
preservation.  This method is expected to exhibit satisfying results in terms of speckle noise 
reduction as well as edge preservation. The results of using these two methods on 15 
randomly selected synthetic images with three different speckle noise levels with variances 
of (0.04, 0.09, 0.2), are presented with PSNR value in table 4. Furthermore, Figure10 and 
11 demonstrates the performance of both methods on two samples of our synthetic data 
with different noise variations. 

 

FIGURE 10 First samples for comparison of denoising methods, a) Synthetic noisy images, 
b) BM3d method, c) Li method [31]. 

 
FIGURE 11 Second samples for comparison of denoising methods, a) Synthetic noisy 
images, b) BM3d method, c) Li method. 
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4. Conclusion 

Unlike other studies on OCT synthesis [16, 17], which only rely on segmented data from 
internal limiting membrane (ILM), outer segment layer (OSL) and retinal pigment 
epithelium (RPE), the proposed method is more detailed by incorporating information from 
nine layers of retina. ASM method is also novel in producing new OCT shape parameters. 
Furthermore, model construction for making the blood vessels is totally new in this paper. 
One more emphasized characteristics of the proposed method is production of labeled data 
which makes it an ideal candidate for performance measurement of segmentation 
algorithms. Finally, created images can be used to train deep learning algorithms for layer 
segmentation which need abundant number of labeled data. 
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Table 1. A review of related work 

 
Table 2: Summary of mean signed border positioning errors (mean ± std). 

Noise 
levels 

B1 B2 B3 B4 B5 B7 B8 B9 

V=0.04 
 

-1.25±0.81 -0.84±1.17 -1.28±0.61 -1.44±0.78 -0.53±0.41 -1.91±0.50 -1.76±0.58 0.02±0.92 

V=0.09 
 

-1.51±0.78 -0.73±0.39 -1.26±0.43 -1.60±0.90 -0.42±0.25 -2.42±0.24 -1.89±0.88 0.21±1.01 

V=0.2 
 

-1.54±0.16 -0.76±0.28 -1.22±0.60 -2.27±1.08 -0.26±0.69 -2.10±1.26 -1.95±0.74 0.10±1.03 

Table 3: Summary of mean unsigned border positioning errors (mean ± std). 

Noise 
levels 

B1 B2 B3 B4 B5 B7 B8 B9 

V=0.04  
 

1.89±0.33 1.231±0.12 1.40±0.51 1.55±0.60 1.32±0.46 1.95±0.39 1.81±0.55 1.02±0.19 

V=0.09  
 

1.98±0.27 1.26±0.22 1.51±0.41 2.03±0.68 1.10±0.13 2.34±0.19 2.14±0.63 1.25±0.36 

V=0.2  
 

1.91±0.20 1.39±0.15 1.56±0.41 2.45±1.03 1.15±0.25 2.15±1.18 2.00±0.72 1.24±0.36 

 

Table4. PSNR values. 

Speckele noise 
variance 

PSNR dB 
 (BM3d method) 

PSNR dB  (Li 
method) 

PSNR dB  
(Nois free synthetic 

images)  
0.04 36.83 37.25 27.31 
0.09 32.34 33.10 24.88 
0.2 26.11 31.56 21.48 

 

Feature added to synthetic image  
Number of 
synthetic 

data 

 
Segmentation 

method 

 
Number 

of segmentation 
layer 

 
method 

 
OCT system 

 
Data set 

 
Investigator 

Intensity 
of layers 

pathology and 
textural 

information 
noise 

Blood 
vessel 

* - * - 10 manual 3(ILM, OSL, 
RPE) 

 

Mathematical 
models 

Carl Zeiss Meditec, 
Dublin, CA, USA 

10 healthy 
volunteers 

 Serranho. 
2011[16]. 

* - * * 14 manual 7 (NFL-GCL, IPL, 
INL, OPL, ONL, 

PRL, RPE) 
 

Statistical 
Model 

within three 
different C-Scan 
volumes 

14 animals Kulkarni. 
2011[19].  

- - * * Not 
Determined 

manual 2(ILM, RPE) 
 

Appearance 
Models 

Spectralis CT, 
Heidelberg 
Engineering and 
Cirrus HD-OCT, 
Carl Zeiss Meditec 

20000OCT 
scans of 
over 1000 
patients 

Montuoro. 
2014[18]. 

* * * - 5 manual 2(ILM, RPE) 
 

Mathematical 
Models 

 5pathologies 
such as cysts  

Shahrian. 
2016[17]. 
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