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Abstract

The damage of the novel Coronavirus disease (COVID-19) is reaching unprecedented scales.

There are numerous classical epidemiology models trying to quantify epidemiology metrics. Usually,

to forecast epidemics, classical approaches need parameter estimations, such as the contagion rate

or the basic reproduction number. Here, we propose a data-driven, parameter-free, geometric

approach to access the emergence of a pandemic state by studying the Forman-Ricci and Ollivier-

Ricci network curvatures. Discrete Ollivier-Ricci curvature has been used successfully to forecast

risk in financial networks and we suggest that those results can provide analogous results for

COVID-19 epidemic time-series. We first compute both curvatures in a toy-model of epidemic

time-series with delays, which allows us to create epidemic networks. By doing so, we are able

to verify that the Ollivier-Ricci and Forman-Ricci curvatures can be a parameter-free estimate

for identifying a pandemic state in the simulated epidemic. On this basis, we then compute

both Forman-Ricci and Ollivier-Ricci curvatures for real epidemic networks built from COVID-19

epidemic time-series available at the World Health Organization (WHO). Both curvatures allow

us to detect early warning signs of the emergence of the pandemic. The advantage of our method

lies in providing an early geometrical data marker for the pandemic state, regardless of parameter

estimation and stochastic modelling. This work opens the possibility of using discrete geometry to

study epidemic networks.

Keywords: COVID-19, SARS2, Forman-Ricci Curvature, Ollivier-Ricci curvature, Epidemiology, Topologi-

cal Data Analysis
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I. INTRODUCTION

Epidemic outbreaks represent a significant concern for global health. The COVID-19

outbreak has caught the attention of researchers worldwide due to its rapid spread, high

fluctuation in the incubation time and uncertain health and economic outcomes. One of the

urgent challenges of this outbreak concerns the development of a coordinated and continuous

data-driven feedback system that could quantify the spread and the risk of the epidemic,

without strongly depending on parameter estimation (such as the contagion rate or the

basic reproduction number) and even when data is heterogeneous or subject to noise. Such

a data-driven system would allow to develop adequate responses at different scales (global,

national or local) and to allocate limited resources in the most effective ways.

The current pandemic scenario is also challenging network science. Several papers are us-

ing network approaches to investigate spreading control, isolation policies and social distanc-

ing strategies as an attempt to provide a better understanding of the COVID-19 pandemic

[1–5]. Recent developments in topological and geometric data analysis [6–10] offer useful

perspectives regarding real data treatment, having yielded outstanding results over the past

years across many fields [11–14]. As an emerging and promising approach in network science

and complex systems more generally [15], topological and geometric data analysis describes

the shape of the data by associating data with high dimensional objects [6, 13, 16].

Among the numerous successful interdisciplinary applications of applied geometry and

topology, ranging from differentiating cancer networks [17] to modeling phase transitions

in brain networks [18], one idea in particular can be beneficial to infer the emergence of

a pandemic state from COVID-19 epidemic networks using network geometry. As this

approach is completely data-driven, it could provide a geometric way to give insights into the

pandemic without the need for parameter estimations. Our idea is inspired by earlier results

obtained for financial networks [19], where the authors showed that it was possible to relate

financial network fragility with the Ollivier-Ricci curvature of a network. Most importantly,

the Ollivier-Ricci curvature emerged as a data-driven ”crash hallmark” for major changes

in stock markets over the past 15 years. In their study of market fragility, they used these

geometric tools to analyse and characterize the interaction between the economic agents (the

nodes of a financial network) and their correlation levels (which defines the edges’ weights).

In addition, these tools also allowed them to track the curvature of the financial network
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as a function of time, i.e. how the shape of the financial network changed according to a

dynamic economic scenario.

As a result, the Ollivier-Ricci curvature emerged as a strong quantitative indicator of the

systemic risk in financial networks. Motivated by this result, we initially used this discrete

version of Ricci curvature for our approach to epidemic networks. From an implementation

perspective, however, the Forman-Ricci curvature has proved to be an alternative, simpler

discretization for computing the curvature. It empirically correlates with the Ollivier-Ricci

curvature even being purely combinatorial, with the added value that the Forman-Ricci

curvature has a faster computation time for large-scale, real-world networks [20]. Taking all

this features in consideration, here, we are going to compare our results for both Ollivier-

Ricci and Forman-Ricci discretizations applied to epidemic networks.

This paper is structured as follows: In the section II, we provide the definitions of Ollivier-

Ricci and Forman-Ricci curvatures, respectively, followed by our introduction of ”epidemic

networks”, as well as network filtration. In section III, we describe our results for epidemic

COVID-19 networks using the discrete Ricci curvatures for synthetic and real data. Finally,

in section IV, we present the conclusions and wider implications of our work.

II. METHODS

This section discusses both the Olliver-Ricci and Forman-Ricci curvatures, as well as the

filtration methods that we will apply applied.

A. Ollivier-Ricci Curvature

The Ollivier-Ricci curvature for networks is defined as follows [20, 21]: Let G = (V,E)

be a weighted undirected graph, where V and E denote its vertices and edges, respectively.

The path length function d : V ×V → R+ defined as the length of the shortest path between

two nodes induces a metric for the set of nodes of G. The neighborhood of a node x ∈ V

is the subset of nodes connected to x by an edge, and is denoted by πx. Let α ∈ [0, 1] and

x ∈ V . We define mα
x , a probability measure over the set of nodes as
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mα
x(y) =


α if y = x

(1− α)/ deg(x) if y ∈ πx
0 otherwise

. (1)

Finally, the Olliver-Ricci curvature of an edge e = (x, y) ∈ E is defined as

κ(x, y) = 1−
W (mα

x ,m
α
y )

d(x, y)
, (2)

where W is the discrete Wasserstein distance ([9]) given by

W (mα
x ,m

α
y ) = inf

µ∈Π(mαx ,m
α
y )

∑
x′,y′∈V

d(x′, y′)µ(x′, y′). (3)

Here, Π(mα
x ,m

α
y ) denotes the set of all probability measures µ : V ×V → R+ that satisfy∑

y′∈V

µ(x′, y′) = mα
x(x′),

∑
x′∈V

µ(x′, y′) = mα
y (y′). (4)

.

In this way, the computation of the Ollivier-Ricci curvature, in equation (2), requires

solving an optimization and linear programming problem provided by equations (3) and

(4), respectively. In our work, we set α = 0.5. Although Ollivier-Ricci discretization has

numerous applications across fields [19, 22, 23], the implementation can be time consuming

when compared to other discrete version of network curvatures. For this reason, we used

and compared, alternatively, the combinatorial version of the Forman-Ricci curvature, as

discussed below.

B. Forman-Ricci Curvature

The Forman-Ricci curvature is simply defined as follows [20, 24]: Let G = (V,E) be an

undirected graph. A p-cell in G is a space that is homeomorphic to an open disk of dimension

p. As illustrated in FIG. 1, nodes are 0-cells, edges are 1-cells, triangles are 2-cells and so

on. The set of all p-cells in a graph G is the p-skeleton of G. We define a CW-complex

as the union of all p-skeletons [24, 25, 25]. We illustrate a CW-complex in FIG. 2. The

Forman-Ricci curvature of a graph is calculated from its p-cells. Considering a CW-complex

obtained from the graph and given two p-cells α1 and α2, we denote that α1 is contained in

the boundary of α2 by α1 < α2.
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FIG. 1: Illustration of p-cells of CW-complexes for p ∈ {0, 1, 2, 3}.

FIG. 2: Example of a CW-complex and its p-cells, in this case, p ∈ {0, 1, 2, 3}.

We say that α1 and α2 are neighbors, if at least one of the following conditions are fulfilled

[24]:

1. There is a (p+ 1)-cell β such that α1 < β and α2 < β;

2. There is a (p− 1)-cell γ such that γ < α1 and γ < α2.

We say that α1 and α2 are parallel neighbors if only one of the conditions 1 and 2 is true

(but not simultaneously). If both 1 and 2 are true, α1 and α2 are said transverse neighbors.

In FIG.1 we illustrate a simple example of both parallel and transverse neighbors. In

FIG. 3 we illustrate the transverse and parallel neighbors of a fixed edge e = (x, y) in a

CW-complex for p = 1. The p-th Forman curvature for an unweighted p-cell α is given by

[24].
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FIG. 3: Example of parallel and transverse neighbors for an undirected graph. The nodes

x and y have 5 and 3 neighbors, respectively. Following the definition, the edge e = (x, y)

has 4 parallel neighbors (dotted edges) and 2 transverse neighbors (dashed edges).

Fp(α) = #{(p+ 1)-cells β > α}

+#{(p− 1)-cells γ < α}

−#{parallel neighbors of α}. (5)

In this work we are considering vertices, edges, and triangles only, i.e., p = 1. Therefore the

Forman-Ricci curvature reduces to

F(e) = #{2-cells β > e}+ 2

−#{parallel neighbors of e}. (6)

For example, in FIG. 3, the blue triangle is a (2-cell), which is bounded by the blue edge

and two dashed edges (1-cells), while nodes are 0-cells. Applying (6) for e = (x, y), we have:

one triangle (2-cell) that contains e = (x, y), as well as 4 parallel neighbors. Therefore,

F(e) = 1 + 2 − 4 = −1. The average Ricci curvature is the mean of the curvatures of all

edges, for both discretizations. We also extend the definition for the nodes as the mean

of Ricci curvatures of the adjacent edges. In analogy with [19] and other applications of
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discrete versions of Ricci curvatures [17, 22, 26, 27], we provide evidence that the Forman-

Ricci curvature can be used to indicate the risk and vulnerability of reaching a pandemic

state.

C. Epidemic Networks

After this illustrative explanation of the Forman-Ricci curvature, we can now introduce

the concept of epidemic networks. In fields where network science is applicable [28], and

particularly in network neuroscience [29], weighted networks are build based on correlations

between nodes of a network, or any other similarity measure. Similarly, in studies of financial

networks [19, 30] , the resultant weighted network is built from Pearson correlations between

financial time-series [30]. In contrast, in most of the network approaches to epidemiology

[31, 32], the structure of the contagion network is considered, i.e., the focus is studying an

epidemic in a network [32].

Here, following the network science approaches in neuroscience and economy, we introduce

an epidemic network as a weighted network, where nodes are locations and the weights are

defined by the Pearson correlation coefficient between two epidemic time-series. As far as

we know, this way of defining an epidemic network from correlations was not yet introduced

in the literature on network epidemiology. Therefore, not much is known regarding the

relationship between our epidemic network approach and classic network epidemiology. This

question deserves further investigation and can draw inspiration from other fields confronted

with similar issues, in particular neuroscience [33, 34],

In this paper, we create an epidemic network consisting of edges and links, based on

the reported epidemic time-series. We define each spatial domain of the epidemic as the

node of a network. The links between two locations are based on the Pearson correlation

coefficient (or any similarity measure) between their epidemic time-series. We chose the

links of the network according to the Pearson’s correlation coefficient between two locations

in descending order, which means that we include the strongest links in the network first,

until the network reaches a state with a single or minimal number of clusters. Later in the

paper, we discuss the sensitivity of our results to our choice of the threshold. The strategy

for thresholding is based on the concept of filtration, which, for instance, [10] was used in

neuroscience for classifying disease and control groups [18, 35].
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More precisely, let G = (V,E) be a simple weighted graph. We denote the set of filtrated

edges Eε by Gε = (V,Eε), where

Eε = {e ∈ E; we ≥ 1− ε}, (7)

and we is the weight of the edge e. Once the edges’ weights are in the interval [−1, 1], ε

runs over the interval [0, 2], and then Gε ⊂ G. In order to ignore redundant information for

the time-varying analysis, we are going to find the critical treshold value, εc, such that the

graph still keeps the relevant connections of the skeleton structure. This threshold value is

defined as follows:

εc = inf{ε ∈ [0, 2] ; |Gε| = |G|}, (8)

where | · | denotes the number of connected components (β0) of the graph.

III. GEOMETRIC APPROACH TO EPIDEMIC NETWORKS

A. Toy Model

As a proof of concept, we decided to first investigate whether the Forman-Ricci curvature

is able to indicate the risk of a pandemic in a toy-model. For this, we simulated an epidemic

network obtained from synthetic epidemic time-series. We will first build this simple toy-

model heuristically and in a second step move towards the analysis of real COVID-19 data.

A simple way to access the number of cases in an epidemic network is to use the fractal

growth hypothesis, as observed in [36], where the daily number of cases n(t) in an epidemic

follows a power-law distribution with an exponential cutoff:

n(t) = Ktx exp(−t/t0), (9)

where, K, x and t0 are fitting parameters. In FIG. 4, we show examples of the fit between

(9) and the number of newly reported COVID-19 cases for seven countries, namely, Brazil,

China, Italy, Russia, Spain, United Kingdom, and United States. This fit suggests that (9)

paves a simple way for building a toy-model for epidemic time-series. We stress that our aim

here is not to find whether the best fit (or model) for the pandemic is exponential or power

law, which was already addressed in [36, 37]. Instead, our goal in generating synthetic data

9
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FIG. 4: COVID-19 per country. Illustration of the daily number of newly recorded cases

and fitting through fractal growth (dashed lines), Eq. (9), for a representative number of

countries.

Pi
Pj
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...
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FIG. 5: Illustration of the creation of epidemic networks based on the correlations between

epidemic time-series across spatial domains for a given time window. This approach allows

us to infer network signatures for epidemic outbreaks without relying on parameter

estimation of classic stochastic epidemic approaches.

for a pandemic is to provide a proof of concept for the applicability of both the Ollivier-Ricci

and the Forman-Ricci curvatures in epidemic networks.

Inspired by the above equation, we can suggest a phenomenological toy-model for gener-

ating epidemic time-series with noise that can capture the growth of an epidemic network.

We assume that in each node i of the epidemic network, the daily number of cases follows

10
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(a)

(b)

FIG. 6: Illustration of toy-model epidemic curves, both new cases (a) and cumulative cases

(b), according to (10) and its respective curvatures, with white noise parameter σ = 0.01.

a fractal epidemic growth with Gaussian noise wi(t) and a time delay di in relation to the

11
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epicenter:

ni(t)=

wi(t) if t ≤ di

Ki(t− di)xi exp
(
− (t−di)

ti0

)
+ wi(t) if t > di

. (10)

We now illustrate that we can infer the emergence of a pandemic state using both Ollivier-

Ricci and Forman-Ricci curvatures. The starting point for creating a fractal epidemic net-

work is based on simulating epidemic time-series with delays from (10). In a second step,

we define the weights of the epidemic network through the Pearson correlation coefficient

between time-series ni(t) and nj(t). The temporal epidemic network is computed for a

given time window, and the process is repeated for the next time window, thus obtaining

an evolving network. This approach is inspired by network analysis in other fields, such as

neuroscience [29] or finance [30]. We illustrate the delayed epidemic time-series, its Pearson

correlation matrix and its corresponding network for a given time point in FIG. 5, resulting

in a time evolving network.

The third step is to infer the fragility of the time evolving epidemic network by tracking

geometric changes in this network as a function of time. More specifically, we observe the

mean changes in both discrete version s of the Ricci curvatures [38] for a selected moving

window for each location affected by the epidemic and use the network curvature as an

indicator for its fragility and risk. Given the recent results using discrete versions of the

Ollivier-Ricci curvature as indicator of risk across fields, both theoretically and empirically

[17, 19, 22, 26, 27], we hypothesize that the application to epidemic networks would follow

similar behavior. We also implemented the Forman-Ricci curvature in an attempt to obtain

an alternative, computationally efficient, geometric result.

We then investigate a simulated time-series with delays in (10). We generated 50 time-

series with parameters Ki, xi, di, and ti0 randomly chosen in the interval Ki ∈ [0, 20],

xi ∈ [0, 5], di ∈ [10, 21], and ti0 ∈ [0, 1]. We also included a small white noise with zero

mean and variance of σ = 0.01. The inclusion of white noise wi(t) in our toy-model was

very important to destroy biased correlations that appear at the end of the outbreak (i.e.,

possible high correlation values that could appear between two exponentially decaying time-

series). FIG. 6 shows that the epidemic curve generated from our toy-model in Eq. (10)

is compatible with an epidemic outbreak and contrasts the simulated epidemic curve with

both Forman-Ricci and Ollivier-Ricci curvature s.

We observe that the curvature is constant before the starting of the simulated epidemic,

12
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grows during its progression and reaches its maximum during the peak of the simulated

outbreak. After the end of the simulated epidemic, the curvature comes back to its initial

level. These results are robust when considering alternative approaches and technical choices:

First, there are alternative ways for computing discrete curvatures, such as the application of

Menger and Haantjes curvatures [39], as well as Ricci flow for community detection [40] and

for feedback control [27]. In particular, we verified that our approach works for the Oliver-

Ricci curvature and for the weighted version of the Forman-Ricci curvature. However, for

rapid convergence purposes during the COVID-19 pandemics, we also decided to compare

the unweighted Forman-Ricci curvature with the Ollivier-Ricci curvature. Second, we also

tested the sensitiveness of our approach to different threshold values. We find that the

Forman-Ricci curvature is able to identify the risk of an epidemic in both synthetic and

real data for threshold values ε ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75} , apart from ε = 2,

which leads to a fully connected graph and thus constant Forman-Ricci curvature. Third,

we verified that our approach also works for different correlation metrics. We tested the

Spearman and Kendall correlation coefficient instead of Pearson’s, which yielded analogous

results, despite the time of processing, which may vary according to the chosen correlation

coefficient.

B. Geometric Analysis of COVID-19 Data

Having illustrated that we can use the Ricci curvatures as estimators for the risk of reach-

ing a pandemic state in a toy-model for epidemic networks, we are now ready to test whether

the discrete Ricci curvatures are a reliable network fragility measure for identifying the risk

of a pandemic state for real COVID-19 data available from the World Heath Organization

(WHO). In FIG. 7 we illustrate both the epidemic curve and the Ricci curvatures for the

COVID-19 database [41]. The computation codes are freely available on Github [42–44].

Both discrete curvatures were based on the python code provided at [45]. We also provide

Forman-Ricci computation in real time at local scales in [46].

As in the simulated data, both curvatures show different geometric signatures indicating

the beginning of the pandemic. Remarkably, we observe that the curvatures of the epidemic

network may indicate early warning sign s for the emergence of the pandemic state, as

the curvatures changes weeks before the exponential growth in number of cases is observed

13
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and the WHO declares COVID-19 as a pandemic (see FIG. 7, in red). FIG. 8 provides an

additional geographical illustration of the distribution of the Forman-Ricci curvature across

countries for two time windows in March 2020.

IV. CONCLUSION

We conclude that the Ricci curvature s metric used in this paper might be a strong

indicator for the identification of a pandemic state in COVID-19 epidemic networks and,

consequently, could have the potential to become a data-driven, geometric approach in

epidemiology more generally. Both curvatures presented similar results when it comes to

detection of geometric signatures on the epidemic network. Another added value of this ge-

ometric approach, in contrast to the classical stochastic and modelling simulations, is that

the results emerge intrinsically and empirically independent of parameter estimations for

the pandemic. The Forman-Ricci discretization is purely combinatory and differs substan-

tially from the Ollivier-Ricci computation. However, the Forman-Ricci curvature presents

some advantages, e.g., less noise and quicker computational convergence. We tested this

geometric approach for synthetic data generated by the fractal model, but the extension of

this framework to other epidemic models deserves further investigation. Lastly, our work

could pave the way for parameter-free and geometric approaches to epidemic networks and

open the possibility for studying epidemics from a geometric perspective.
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(a)

(b)

FIG. 7: Reported epidemic cases per time window, both new cases (a) and cumulative

cases (b), contrasted with its Ricci curvatures for the same time period. In red, we indicate

the moment when the WHO declared COVID-19 as a pandemic. We used a time window

of 7 days.
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(a) (b)

FIG. 8: Illustration of the distribution of the Ollivier-Ricci curvature (a) and Forman-Ricci

curvature (b) for three different time windows based on new cases corresponding to periods

before, during, and after the beginning of the COVID-19 pandemic.
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