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Abstract 

Background: Randomised controlled trials (RCTs) with continuous outcomes usually only 

examine mean differences in response between trial arms. If the intervention has 

heterogeneous effects, then outcome variances will also differ between arms. Power of an 

individual trial to assess heterogeneity is lower than the power to detect the same size of 

main effect.  

 

Methods: Several methods for assessing differences in variance in trial arms were 

described and applied to a single trial with individual patient data (IPD) and to meta-analyses 

using summary data. Where IPD were available, regression-based methods were used to 

examine the effects of covariates on variation. An additional method to meta-analyse 

differences in variances with summary data was presented. 

 

Results: In the single trial there was agreement between methods, and the difference in 

variance was largely due to differences in depression at baseline. In two meta-analyses, 

most individual trials did not show strong evidence of a difference in variance between arms, 

with wide confidence intervals. However, both meta-analyses showed evidence of greater 

variance in the control arm, and in one example this was perhaps because mean outcome in 

the control arm was higher.  

 

Conclusions: Low power of individual trials to examine differences in variance can be 

overcome using meta-analysis. Evidence of differences in variance should be followed-up to 

identify potential effect modifiers and explore other possible causes such as varying 

compliance. 

 

Keywords 

• Randomised controlled trials 
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• Variance 

• Meta-analyses 

• Heterogeneity 

• Subgroups (or subgroup analysis) 

• Effect modification 
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1. Introduction 

In medical research we often examine the average effect of an intervention on a quantitative 

outcome by comparing mean differences between arms of a randomised controlled trial 

(RCT). However, individual responses to interventions may vary. For instance, the 

effectiveness of an intervention might decrease with age, or there might be subgroups for 

whom the intervention has no effect. In the era of personalised (or stratified) medicine, there 

is increasing interest in identifying these effect modifiers or subgroups 1. 

 

We are focusing on trials with a continuous outcome, where the main effect is the mean 

difference between two arms of a trial. Identification of effect modifiers or subgroups is often 

approached by testing for statistical interactions. A potential effect modifier is specified 

(usually a priori, for RCTs) and the null hypothesis tested is that the effect of the intervention 

on the outcome does not vary over the levels of the modifier (i.e. that there is no additive 

interaction). However, a trial powered to detect such an interaction needs to be 

approximately four times the size of a trial powered to detect a similar magnitude of overall 

treatment effect 2,3. An even larger trial will be required if the subgroups are very different in 

size. Multiple testing can be a problem if interactions with many covariates are examined, 

with a risk of overfitting 4, although this can be avoided by using model selection methods 5-8. 

All these methods require knowledge of, and data on, the potential effect modifiers: if an 

effect modifier is not measured, then its interaction with the intervention cannot be tested. 

However, if there is effect modification, this should lead to a difference in variances between 

the intervention and control arms 9-11. Thus, an alternative way to investigate effect 

modification, without pre-specifying the effect modifiers, is to examine whether variance in 

the outcome differs between the arms of the trial 9,12-14. If variation is detected, this would 

then require further study to identify the effect modifiers, potentially needing individual 

participant data (IPD).  
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As with the test for a specific effect modifier, power to detect a difference in variances will be 

low in a single trial powered to detect a difference in means. However, just as meta-analysis 

of mean effects gives greater power to detect an average intervention effect, meta-analysis 

of differences in variance should give increased power to detect effect modification. A small 

number of meta-analyses in epidemiology and ecology have reported on differences in 

variance 9,12,15-23, with applications to RCTs and other types of comparative study. Most of 

them found evidence of a difference in variance between arms, with varying strength of 

evidence (eTable 1). 

 

Here we describe and implement methods for examining the effect of an intervention on the 

variance of an outcome, both in a single trial (with individual participant data, IPD) and using 

meta-analysis to combine across trials (using summary data). We describe the assumptions 

behind each method, and we show how to conduct further analyses with IPD to investigate 

which variables might be causing the effect modification. We use simulations to show that 

decisions about when to examine the association between overall mean and variance should 

not be based on reported means and variances from individual trials and are only suitable for 

some types of outcome data. We then illustrate the methods applied to a single trial using 

data from an RCT of cognitive behavioural therapy (CBT) to treat depression, and to two 

meta-analyses based on summary data: one of RCTs using computer-based psychological 

treatments for depression, and one exploring the effect of statins on low-density lipoprotein 

(LDL) cholesterol.  

 

2. Methods for examining difference in variance between trial arms 

2.1 Examining differences in variance between two arms using data from one trial 

We review methods briefly here, presenting more detail in Table 1 and formulae in 

eAppendix §2.  
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One approach is to test the null hypothesis of equality of variances between the arms, using 

Glejser’s 24, Levene’s 25 or Bartlett’s test 26; of these, only Bartlett’s can be calculated using 

summary data. A different approach is to estimate the difference in variances and its 

standard error, either using a linear model with non-constant variance (LMNCV), or directly 

using summary data, as we propose here.  Finally,  rather than a difference, the ratio of the 

standard deviations or the log of the variability ratio (logSDR, 9,27) can be estimated, together 

with their standard errors. 

 

All methods and analyses were implemented in R (R Foundation for Statistical Computing, 

Vienna, Austria) and code is available online 

(https://github.com/harrietlmills/DetectingDifferencesInVariance). 

 

[Table 1 here] 

 

2.2 Examining the relationship between mean and variation across the two arms  

If the mean is related to the variance for an outcome, then a homogenous treatment effect 

could lead to a difference in variance between the two arms of the trial. The CoV is the ratio 

of the SD to the mean: comparing CoVs between two arms will identify whether the standard 

deviation differs more, or less, between the two than would be predicted by the difference in 

means.  

 

We describe two methods using CoV: a difference in CoVs (CVD, 28) and the log of the ratio 

of CoVs (logCVR, 27), Table 1 and eAppendix §2. 

 

CoV should only be used when the outcome data are on the ratio scale, i.e. the scale has a 

clear definition of 0 and the ratio of two values has a meaningful interpretation. The CoV 

assumes that the SD is directly proportional to the mean. Therefore, it is only relevant for 
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variables for which a sample mean of zero would imply a sample SD of zero. For example, a 

variable for which CoV would be appropriate would be serum cholesterol. This is measured 

on the ratio scale (a value of 6 is twice a value of 3), and there is a meaningful zero (the 

value 0 mg/dL indicates that there is no measurable cholesterol in 1 decilitre of blood). If a 

sample has a mean serum cholesterol of zero, this would indicate that all the values must be 

zero (as serum cholesterol cannot be negative), and therefore that the sample SD must be 

zero. We note that CoV has been used with outcomes which do not satisfy these criteria 

17,20.  

 

 

2.3 Comparison of methods 

The LMNCV method and Glejser’s test can incorporate covariates (which may be continuous 

or categorical), to examine whether the heterogeneity in outcome between the arms of the 

trial is explained by the covariates. The LMNCV method, Glejser’s, Levene’s and Bartlett’s 

tests can be defined for multiple (� � 2) arms. Bartlett’s test, VD, RoV, logSDR, CVD and 

logCVR can be calculated using only standard summary data (sample sizes, means and 

SDs).  

 

All tests except Levene’s assume data are normally distributed: if data are normally 

distributed Levene’s test would be expected to have lower power. All the other tests are 

sensitive to non-normality of the outcome, for example if the subgroups have caused a bi-

modal distribution or differing responses have caused skew. We note that normality usually 

cannot be verified when only summary data are available (although evidence against 

normailty, e.g. asymmetry of distributions, may be available by comparing mean and 

median). 
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2.4 Methods for use with summary data from meta-analyses 

The approach to meta-analysis will depend on whether the result obtained from each trial is 

a statistical test or an estimate. In general, we favour estimation, preferring estimates of VD, 

RoV, logSDR and comparisons of CoVs (CVD and logCVR). Estimates that are 

accompanied by SEs can readily be meta-analysed using standard methods (here, the VD 

and CVD methods). RoV, logSDR and logCVR can be meta-analysed using bespoke 

methods using a random effects model with restricted maximum likelihood estimates (REML) 

of the ratios (RoV 21; logSDR and logCVR 9,27). We note that if variances within arms are 

very different across trials in a meta-analysis, ratio methods may be preferable. 

 

Although not covered here, synthesis of findings from statistical tests from individual trials 

(e.g. Bartlett’s test and the F-test based on RoVs) could be undertaken using meta-analysis 

of p-values as described, for example, by Becker 29. These produce a global p-value to test 

the null hypothesis, although it can be difficult to determine whether failure to reject the null 

is due to small differences in variance or to an insufficient amount of evidence.  

 

Previous analyses have implied that CoV should only be explored in a meta-analysis if the 

SDs and means within each trial arm are correlated 9,17. However, by simulating trial data 

(eAppendix §3), with (A) same CoV and (B) different CoV in the arms, we have shown that 

the correlation of the mean and SD from individual trials is not necessarily indicative of the 

CoV or whether the CoV differs between arms of the trial (eFigures 1&2). Thus, CoV should 

be used if (and only if) the outcome is a ratio variable with a true zero, irrespective of the 

observed correlation between SDs and means within trial arms. 
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3. Applied examples 

3.1 Analysis of a single trial 

We first apply the methods to individual participant data from a trial of therapist-delivered 

internet psychotherapy for depression in primary care 30. This RCT randomised 297 

individuals to either usual care while on a waiting list for CBT (control) or usual care in 

addition to online CBT delivered by a therapist (intervention) 30. Baseline depression was 

measured using the Beck Depression Inventory (BDI) 31,32; individuals recruited to the trial 

had to have a BDI score of 14 or more. BDI is a self-report questionnaire with 21 statements 

that patients rank from 0-3 (i.e. total scores are integer and in the range 0-63), with a higher 

score indicating more severe depression 31,32. We investigated BDI at 4 months as a 

quantitative outcome. The equality of variances between the control and intervention arms 

was tested using: (1) LMNCV method (with and without adjusting for covariates); (2) 

Glejser’s test (with and without adjusting for covariates); (3) Levene’s test (using deviation 

from the mean, median and trimmed mean); (4) Bartlett’s test; (5) ratio of variances (F-test) 

method; and (6) logSDR method. The CVD and logCVR methods were not included as BDI 

is not ratio-scaled and therefore CoV is not a meaningful measure. 

 

In order to examine the impact of differential dropout, the equality of variances between the 

control and intervention arms at baseline was also tested for (a) everyone; and (b) the 

subset of those remaining after excluding individuals lost to follow-up at 4 months, using 

Bartlett’s test, Levene’s test and the F-test. 

 

3.2 Meta-analyses 

We apply the summary data methods to two meta-analyses. The first summarises RCTs of 

computer-based psychological treatments for depression 33, including the single trial we 

assess above. Summary data were presented from 19 RCTs with intervention and control 

arms for 33 post-treatment effects. The outcomes were self-reported measures of 
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depression, including BDI. As the measures of depression varied across trials, and to avoid 

double counting participants, we selected only those trials which measured BDI (or 

derivatives of BDI) and kept only one post-treatment effect per trial. As the subset selected 

were all measuring BDI, we could meta-analyse the VD, RoV and logSDR across trials. 

However, we did not include the CVD or logCVR methods as BDI is not ratio-scaled.  

 

Our second example is a Cochrane Review examining HMG CoA reductase inhibitors 

(statins) for people with chronic kidney disease 34. We chose this example because there is 

evidence that some people may respond to statins better than others 35. The data presented 

are from analysis 1.14 in the review, for 22 trials reporting the effect of statins versus 

placebo or no treatment on LDL cholesterol, reported in mg/dL. LDL cholesterol is measured 

on a ratio scale, with a meaningful zero, and thus we meta-analysed the VD, RoV, logSDR, 

CVD and logCVR across trials. 

 

4. Results 

4.1 Analysis of a single trial 

Of the 297 individuals recruited to the trial at baseline, 210 completed 4-month follow up 

(113 in the intervention arm and 97 in the control arm, Table 2) 30. The BDI score had 

decreased in both arms, with a larger magnitude decrease in the intervention arm. The BDI 

scores were normally distributed at baseline, but not at the 4-month follow up (eFigure 3).  

 

[Table 2 here] 

 

Table 3 shows the results of all tests on the variance of BDI at 4 months. Even though the 

data at 4 months were not normally distributed, the conclusions from all tests were similar to 

Levene’s test, with the p-values for all but adjusted model 1 being between 0.03 and 0.07, 

giving weak evidence of lower variance in the intervention arm of the trial. Including baseline 
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BDI score (adjusted model 2 in the LMNCV method and the Glejser test) largely removed 

any evidence of difference in variance between the arms (p>0.2). This implies the effect of 

the intervention would be the same for all individuals with the same baseline BDI score.  

 

[Table 3 here] 

 

The analysis of baseline variances showed no differences between the two arms at baseline, 

even when restricting to only those with follow up data at 4 months (eAppendix §4.2, eTable 

4).  

 

4.2 Meta-analyses 

Our simulations confirmed that power to detect heterogeneity in single trials was low unless 

the trial was very large (see eAppendix §6). Therefore, we next examined the methods 

within a meta-analysis setting. 

 

Restricting the meta-analysis on computer-based psychological treatments for depression 33 

to trials reporting BDI score gave a subset of 11 trials, varying in size from 44 to 216 

participants. Two of the 11 trials showed evidence of greater variance in the control arm 

using RoV (eTable 5, Figure 1). One of these also had evidence of greater variance in the 

control arm using the VD. The meta-analysis gave evidence of greater variance in the 

control arm (RoV 0.82 [95% CI: 0.67, 1.00]; VD fixed-effect estimate −19.13 [95% CI: 

−32.79, −5.48], random-effects mean −18.19 [95% CI: −33.80, −2.58]). Using logSDR gave 

the same trends as the RoV test, eTable 5. 

 

 [Figure 1 here] 
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The 22 trials in the meta-analysis reporting the effect of statins versus placebo or no 

treatment on LDL cholesterol 34, varied in size from 199 to 374 total participants. Two of the 

trials showed evidence of greater variance in the control arms using the VD (eTable 6, 

Figure 2). Using RoV, five trials had evidence for greater variance in the control arm 

(RoV<1) and for one trial there was evidence of greater variance in the intervention arm 

(RoV>1). logSDR gave the same trends as the RoV, eTable 6. There is evidence that the 

CoV was greater in the intervention arm in four trials and greater in the control arm in one 

trial (Figure 2): the same trends were identified with a test of logCVR (eTable 6).  

 

[Figure 2 here] 

 

The meta-analysis of the VD gave evidence of greater variance in LDL cholesterol in the 

control arm (fixed-effect estimate −220.36 [95% CI: −318.84, −121.87] mg2/dL2, random-

effects mean −226.33 [95% CI: −376.77, −75.90] mg2/dL2), which remained when only trials 

with more than 10 cases in both arms were included (excluding 6 trials, fixed-effect −223.51 

[95% CI: −323.90, −123.12] mg2/dL2, random-effects −233.17 [95% CI: −388.82, −77.53] 

mg2/dL2). The pooled RoV also showed evidence of greater variance in the control arm 0.66 

[95% CI: 0.48, 0.91] (eTable 6, Figure 2). The ratio was further from the null (0.62 [95% CI: 

0.44, 0.87]) if the six smallest trials were excluded. However, there was weak evidence of a 

difference in CoV between arms (difference in CoV for intervention compared to control arm 

of 0.02 [95% CI: 0.01, 0.03] for fixed effects, and 0.03 [95% CI: -0.00, 0.06] from a random-

effects model; and with the 6 smallest trials excluded: fixed = 0.02 [95% CI: 0.00, 0.03], 

random = 0.03 [95% CI: -0.01, 0.06]). This indicates that the CoV is larger in the intervention 

arm than in the control arm, i.e. the SD is a larger multiple of the mean in the intervention 

than the control arm. This suggests weak evidence of more variation in the intervention arm 

than would be expected given the difference in means, which could be due to statins having 

a greater effect for some people than others.  
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5. Discussion 

We have presented methods for examining differences in outcome variance between the two 

arms in an RCT, in order to identify between-individual heterogeneity of effects of the 

intervention. We have added to existing methods by: showing how to use regression-based 

methods to examine the effects of covariates on variation, where individual participant data 

are available; applying a difference of variances test to summary data in meta-analyses, 

alongside the RoV, logSDR and logCVR methods already existing; and noted when the CoV 

test is not appropriate. We suggest that CoV methods, which explore whether the difference 

in variance is due to a difference in means, are only used where the outcome has a 

meaningful zero and is on a ratio scale. 

 

Differences in variance could be caused by many factors. One is the existence of patient 

characteristics that influence the effectiveness of the intervention (effect modifiers), which 

could manifest as subgroups between which the intervention (or control) treatments have 

different effects 9. For example, the intervention may have a different effect in those with 

worse (or better) values at baseline, or outcomes in the control arm may vary due to 

differences in “usual practice”. If there are differences in variance, further studies may be 

needed to find the effect modifiers that define the subgroups.  

 

Other potential explanations for differences in variance between arms of a trial are: 

differential dropout between arms of the trial, where dropout is related to outcome; non-

compliance with the intervention; subgroups that are differently engaged with the 

intervention (for example, therapist effects) or an intervention that impacts on within-person 

variability 9. Investigation of other factors relating to variation would require individual or 

stratified summary data on these factors – such as pre-treatment severity, or marital status 

moderating the response to CBT 36. Another explanation for differences in variance is model 

misspecification (for example if the errors follow a non-normal distribution, or if the errors are 
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not independently distributed). Investigation of misspecification of the model would require 

IPD, and examination of the model within each trial. 

 

Simulations confirmed that power to detect heterogeneity in single trials was low unless the 

trial was very large 2. RCTs would need to increase their sample size by orders of magnitude 

to be powered to detect difference in variance and allow further analysis. This might be 

prohibitively expensive in time and money, and it may not even be feasible to recruit enough 

individuals with the required condition to the trial 37. In this case, as large a sample size as 

possible is appropriate, and improved reporting, for example, giving detailed summary data 

across both trial arms, would allow a trial to be included in a meta-analysis using methods 

we have described here.  

 

Smaller variance in the intervention than the control arm was observed in both meta-

analyses presented here, but without IPD it was not possible to explore this further. With 

IPD, the factors associated with the variance can be examined directly, as in the single trial 

example presented here 30. These factors might be used to predict the effect of the 

intervention in external populations or applied in personalised medicine. The slightly lower 

variance in the intervention arm in the single trial 30 and meta-analysis of effects of CBT in 

depression 33 may also be partly because BDI is bounded at 0 and floor (or ceiling) effects 

can reduce variance. 

 

Another possible cause of differences in variance between two arms of a trial is that the 

variance is related to the mean, and the intervention causes a mean difference in the 

outcome. This is clearly shown in our second meta-analysis example, examining the effect of 

statins on LDL cholesterol 34. There was evidence that the variance of the outcome was 

lower in the intervention than the control arm. As the intervention lowered mean cholesterol 

levels, this implied that statins had a greater effect on those with initially higher cholesterol 

levels. However, the CoV results indicated that this difference in means was associated with 
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the difference in variation. This led to the important conclusion that the variance in the 

intervention arm was actually a little larger than would have been expected, given the 

difference in means – thus providing some (weak) evidence that there was heterogeneity in 

the effect of statins on LDL cholesterol. 

 

It is important to use the right method for the data. If IPD were available, Levene’s and 

Glejser’s tests could also be used, and comparing results across tests would explore the 

impact of any non-normality of the data. For meta-analysis of individual trials, the 

assumption of normality should be checked as far as possible (e.g. by using data presented 

within each paper such as mean, median, SD). Ratios are appropriate where different scales 

are used across different trials or where the same scale is used but the mean is very 

different, as in these situations a difference in variances test may not be appropriate. These 

methods may be biased when the arms are not independent (for example in cross-over 

trials) 14. 

 

These methods for quantifying variance between treatment arms are applicable not just to 

RCTs, but also to differences in variance of continuous outcomes according to genotype in 

genetic epidemiological studies 38-40. Differences by genotype can be considered as 

analogous to differences by treatment arm in an RCT 41,42, indeed the progenitor of RCTs, 

RA Fisher, considered the factorial nature of Mendelian inheritance as the model for 

randomization in experiments 43-45. In this regard, difference in variance by allele count at, 

e.g., a single-nucleotide polymorphism (SNP) locus, is taken as evidence of the presence of 

either epistasis or gene-environment interaction 38-40. A second potential application is within 

Mendelian randomization (MR) implemented within an instrumental variables (IV) analysis 

framework 46,47. An interpretative issue relates to the assumption of homogeneity of the 

effect of the instrument on the exposure, since violations of this would suggest that IV effect 

estimates may not apply to the entire study sample. Indeed the exposure under investigation 

may have effects in opposite directions among different members of the study sample. The 
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assumption of such homogeneity is sometimes refered to as the 4th IV assumption 48, for 

which there are various weaker versions (including monotonicity of the instrument-exposure 

association 48). As non-homogeneity in the genetic variant - exposure association would lead 

to non-homogeneity in the genetic variant – outcome assocation, then as long as either the 

exposure or outcome allow variance estimation then an umbrella test of presence and 

degree of violation of IV4 is possible. This approach would, of course, apply to IV analysis in 

general and not just when this is within an MR context.  

 

Whilst conclusions from randomised trials are usually expressed in terms of average effects 

of an intervention, individuals will want to know how well they personally will respond to an 

intervention. Grouping subjects according to an observed response is open to bias 49. An 

alternative way to examine variation in response, without having to specify and measure 

effect modifiers, is to examine differences in variability between the trial arms. We have 

described different ways of doing this with IPD or using summary data. Given the low power 

to explore heterogeneity of variance in individual trials, we suggest that meta-analyses 

should be used where possible. It is important to test the coefficient of variation between trial 

arms, and also to consider the other explanations (e.g. compliance) for heterogeneity of 

variance: using multiple different approaches can help explore these possibilities. 
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Tables 

Table 1: Methods for examining differences in variance between two arms, and for 

examining the relationship between mean and variation across the two arms. Further 

method details (and equations) are in the eAppendix §2. Code for each method in R is 

provided online (https://github.com/harrietlmills/DetectingDifferencesInVariance). 

Test name Description Minimum requirements and 

assumptions 

Testing differences in variance between two arms using data from one trial 

Glejser’s test (22) 

The absolute values of the residuals 

from a standard linear model of 

outcome against treatment are 

regressed on the treatment indicator. 

Requires IPD 

Assumes normality 

Can include covariates  

Can be defined for k>2 arms 

Levene’s test (23) 

Levene’s test statistic has 

approximate F-distribution with 1 and 

��2 degrees of freedom 

Requires IPD 

Suitable for non-normal data 

Can be defined for k>2 arms 

Bartlett’s test (24) 

Bartlett’s test statistic has 

approximate chi-squared distribution 

(1 degree of freedom) when 

variances are equal 

Can be calculated using IPD or 

summary data (sample sizes, SD) 

Assumes normality 

Can be defined for k>2 arms 

Estimating differences in variance between two arms using data from one trial 

Linear model with 

non-constant 

variance (LMNCV) 

A linear model that assumes a 

different residual variation in each 

arm. 

Requires IPD 

Assumes normality 

Can include covariates 

Can be defined for k>2 arms 

Difference in 

variances (VD) 

The difference in sample variances 

and its standard error are used to 

calculate a test statistic with an 

approximate normal distribution, so a 

t-test is used to compare variances. 

Can be calculated using IPD or 

summary data (sample sizes, SDs) 

Assumes normality 
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Ratio of variances 

(RoV), F-test  

The ratio of sample variances 

between the two arms has 

approximate F-distribution with 

�� �1 and �� �1 degrees of 

freedom, if the true variances are 

equal. 

Can be calculated using IPD or 

summary data (SDs) 

Assumes normality 

Log of the ratio of 

standard deviations 

(logSDR) (8, 25) a 

The log of the ratio of standard 

deviations and the sampling variance 

are used to calculate a test statistic 

with approximate normal distribution, 

so a t-test is used to compare 

variances. 

Can be calculated using IPD or 

summary data (sample sizes, SDs) 

Assumes normality 

Examining the relationship between mean and variance across the two arms 

Difference in 

coefficient of 

variation (CVD) 

(26) 

The difference in CoVs and its 

standard error are used to calculate a 

test statistic, whose square has 

approximate chi-squared distribution 

(1 degree of freedom) 

Can be calculated using IPD or 

summary data (sample sizes, SDs, 

means) 

Assumes normality 

Data must be on a ratio scale with a 

meaningful zero 

This test performs best if each 

�� � 10 and each CoV� � 0.33 (26). 

Log of the ratio of 

coefficients of 

variation (logCVR) 

(25) 

The log of the ratio of CoVs and the 

sampling variance are used to 

calculate a test statistic with 

approximate normal distribution, so a 

t-test is used to compare arms. 

Can be calculated using IPD or 

summary data (sample sizes, SDs, 

means) 

Can be made suitable for non-

normal data by additions to the 

equation for sample variance 

Data must be on a ratio scale with a 

meaningful zero 

aNote that this is called log of the variability ratio, logVR in these two references. 
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Table 2: The baseline Beck Depression Inventory (BDI) score and outcome BDI score at 4 

months from the trial described in Kessler 2009.  

 Group 1 (Intervention) Group 2 (Control) 

Timepoint  N Mean SD N Mean SD 

Baseline 149 32.8 8.3 148 33.5 9.3 

4 months 113 14.5 11.2 97 22.0 13.5 
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Table 3: Tests for difference in variance in BDI score at 4 months, between the intervention 

and control arms from the single trial exploring the effect of a CBT intervention on 

depression (28).  

Test Test Statistic p-value Estimate SE 
Unadjusted linear model with 

non-constant variance 

(LMNCV)a 

Chi-square 

statistic 

(df=1) 

3.66 0.056 -55.98 30.58 

Adjusted LMNCV  1ab Chi-square 

statistic 

(df=1) 

4.62 0.032 -62.04 30.42 

Adjusted LMNCV  2ac Chi-square 

statistic 

(df=1) 

0.83 0.360 -20.51 22.79 

Glejser test, unadjusteda t-statistic 1.97 0.050 NA NA 

Glejser test, adjusted 1ab t-statistic 2.10 0.037 NA NA 

Glejser test, adjusted 2ac t-statistic 0.80 0.420 NA NA 

Levene test (median) F-statistic 

(df=1 & 208) 

3.52 0.062 NA NA 

Levene test (mean) F-statistic 

(df=1 & 208) 

3.89 0.050 NA NA 

Levene test (trimmed mean) F-statistic 

(df=1 & 208) 

3.63 0.058 NA NA 

Bartlett’s test* Chi-square 

statistic 

3.63 0.057 NA NA 

VD: difference of variances t-statistic -1.83 0.067 -56.747 31.037 

RoV: F-test* F-statistic 

(df=112 & 

96) 

0.69 0.056 0.687 NAd 

logSDR t-statistic -1.92 0.056 -0.188 0.098 
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aThe 4-month data were not normally distributed, so the Bartlett’s test, LMNCV method, Glejser and 

F-test may have reduced power and/or bias. Also note the standard error for these estimates in the 

LMNCV method was obtained from Stata, replicating the analysis in R. 

b Covariates added in the adjusted LMNCV are as specified in the original trial paper: centre ID, 

present antidepressant treatment, sex, whether or not GP practice has a counsellor 

c As adjusted LMNCV 1, but also including baseline BDI score 

d CI were derived using an F-distribution 
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Figures 

Figure 1: 

 

 

 

Figure 2: 
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Figure Legends 

Figure 1: Forest plot of the RoV and VD analyses for the trials in the Richards et al meta-

analysis on computer-based psychological treatments for depression 33, results in eTable 5 

(note we do not plot the results of the logSDR analysis as trends are the same as the RoV 

analysis). 

 

 

Figure 2: Forest plot of the RoV, VD and CVD analyses of the trials in the Palmer et al 

meta-analysis reporting the effect of statins versus placebo or no treatment on LDL 

cholesterol 34, results in eTable 6. We have not plotted the RoV results for Aranda 1994 as 

the RoV for this trial is on a much larger scale than the others (RoV=9.51 [95% CI: 1.90, 

47.49]), however it is included in the overall analysis. Note we do not plot the results of the 

logSDR or logCVR analyses as trends were the same as the RoV and CVD analyses, 

respectively. 
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