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Abstract 
 

 

Objective(s): Australia requires high quality evidence to optimise likely health and economy outcomes to 

effectively manage the current resurgence of COVID-19. We hypothesise that the most stringent social 

distancing (SD) measures (100% of level in Australia in April 2020) deliver better public health and 

economy outcomes.  

 
Design: ‘Fit-for-purpose’ (individual-based and compartment) models were used to simulate the effects of 

different SD and detection strategies on Australian COVID-19 infections and the economy from March to 

July 2020. Public reported COVID-19 data were used to estimate model parameters.  

 
Main outcome measures: Public health and economy outcomes for multiple social distancing levels were 

evaluated, assessing “hard” versus “soft” lockdowns, and for early versus later relaxation of social 

distancing. Outcomes included costs and the timing and magnitude of observed COVID-19 cases and 

cumulative deaths in Australia from March to June 2020.  

 
Results: Higher levels of social distancing achieve zero community transmission with 100% probability and 

lower economy cost while low levels of social distancing result in uncontrolled outbreaks and higher 

economy costs. High social distancing total economy costs were $17.4B versus $41.2B for 0.7 social 
distancing. Early relaxation of suppression results in worse public health outcomes and higher economy 

costs.  

 
Conclusion(s): Better public health outcomes (reduced COVID-19 fatalities) are positively associated with 

lower economy costs and higher levels of social distancing; achieving zero community transmission lowers 

both public health and economy costs compared to allowing community transmission to continue; and early 

relaxation of social distancing increases both public health and economy costs.   

 

 

Significance 

 
The known is that COVID-19 infections can be suppressed with social distancing (SD) measures of sufficient 

stringency and duration.  

 
The new is we find highest levels of SD (100% SD that prevailed in April 2020) generate much lower 

COVID-9 deaths; reduced SD days; increased economic activity; and much higher probability of elimination 

over a subsequent 12-month period than lower levels of SD. 

 
The implications are that greater levels of SD are preferred to lower SD because they deliver both better 

public health and lower economy costs.  

 
 

Manuscript 

 
1. Introduction 

Australia recorded its first case of COVID-19 on 25 January 2020 from a person who had flown 

from China on 19 January1. On 6 August 2020, there were: approximately 20,000 reported 

cumulative cases, of which some 11,000 had recovered; in total, about 250 COVID-19 fatalities 

(162 in Victoria); approximately 7,500 active cases; and 739 additional recorded cases nationally 

over the previous 24 hours; almost all in Victoria (725 cases).2  

 

Fig. 1 shows the cumulative number of reported Australian cases and current cases (infected less 

recovered less fatalities) from 26 March to 6 August 2020. Initial daily infections peaked at 458 
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recorded cases on 28 March and declined due to border measures for overseas arrivals, self-

quarantine, wide-spread testing and contact tracing, and social distancing outside of households that 

changed the frequency, number and nature of physical contacts. Combined, these measures were 

highly successful such that by 9 June there were only 2 new recorded cases in Australia. From mid-

June onwards, outbreaks of COVID-19 were recorded in Victoria or associated with persons who 

were infected in Victoria.  

 

Public health responses to COVID-19 have evolved over time. From February to March 2020, a 

series of control measures were implemented at a national level beginning with travel restrictions 

from China to Australia on 1 February, followed by a requirement that all international arrivals self-

quarantine for 14 days from 15 March. On 18 March, non-essential gatherings were banned and 

individual physical distancing encouraged (1.5 m distance between people and 4 m2 per person), on 

21 March non-essential businesses were closed, and on 30 March public gatherings were restricted 

to a maximum of two people3 . These measures successfully reduced infections4 such that on the 10 

May, social distancing restrictions began to be relaxed and, by the end of June, the level of social 

distancing in most Australian jurisdictions5 , including Victoria, was at near to pre-COVID-19 

levels6. 

 

Additional public health measures were reinstituted in the second half of June in Victoria following 

leakage from hotel quarantine in Melbourne in late May. Multiple outbreaks in Melbourne resulted 

in the introduction of a ‘stage 3’ lockdown in Melbourne and Mitchell Shire on 9 July for a 6-week 

period. Despite a massive campaign of testing and contact tracing, the reintroduction of mandated 

social distancing, and the mandated use of masks outside on 22 July, these measures failed to 

adequately reduce new COVID-19 infections. Nevertheless, combined these measures may have 

averted at least 9,000 additional COVID-19 cases in July7.  

 

As a result of the resurgence of COVID-19 infections, the Victorian state government implemented 

a 8:00 pm to 5:00 am curfew in Melbourne that began 2 August and a 6-weeks ‘stage 4’ lockdown 

for Melbourne similar to what New Zealand implemented8 that began 6 August and which includes 

school closures and a requirement for all but essential workers to stay at home. These social 

distancing measures in Melbourne are complemented by a 6-weeks ‘stage 3’ lockdown for the rest 

of Victoria that also began 6 August 2020. 

 

The key public health and economy questions facing Australia, and to which this study responds, 

are:  What levels of lockdown (as measured by a social distancing level) are required to adequately 

reduce infections associated with the COVID-19 Victorian resurgence? What is the probability of 

achieving elimination (defined as no community transmission9) with various levels of lockdown 

and duration? What are the public health and economy costs of alternative levels of social 

distancing (corresponding to different severity levels of lockdowns)?  

 

2. Methods 

A suite of epidemiological models was developed to simulate the response of COVID-19 outbreaks 

to a range of control measures in Australia and Victoria. These models are designed to offer a 

flexible and efficient representation of the progression of the disease in individual cases, 

transmission of the disease within the susceptible population, and the effects of community testing, 

downstream contact tracing, self-isolation and quarantine on detection and transmission. The model 

suite comprises an individual-based model (IBM), a stochastic compartment model (SCM), and a 

deterministic compartment model (DCM). All three are numerical models that operate in discrete 

time with daily time steps. 

 

Individual-based Model (IBM) 

The IBM follows infected individuals through time, starting on the day when they are infected, and 
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ending when they are officially recovered. Individuals are characterised by a set of attributes whose 

values evolve over time according to a set of rules. All attributes, with one exception, take logical 

values of zero or 1, and determine the individual’s status with respect to source of infection (i.e. 

local or overseas), infectivity, display of symptoms, detection, traceability, self-isolation, self-

quarantine or quarantine, recovery, hospitalisation, and/or death. The attributes are listed in Table 1 

of the supplementary material. The default values of all attributes are set to zero, until they are 

modified by model processes. 

 

On each day, the model steps through a sequence of processes, modifying the attributes of eligible 

cases. The attributes and processes have been designed to represent key features of COVID-19, and 

the effects of measures such as community testing, contact tracing and border controls. These 

processes are listed in Table 2 of the supplementary material, in the order they are applied within 

the daily time step. The IBM is fully stochastic at the individual level and the total number of 

infections produced by each infected individual is assumed to be a random variable drawn from a 

negative binomial distribution.  

 

Stochastic Compartment Model (SCM) 

A parallel stochastic compartment model (SCM) replicates the behaviour of the IBM with high 

numbers of active cases. Instead of representing individuals, this model represents numbers of 

individuals in daily cohorts. Whereas the IBM assigns attributes to individuals, the SCM subdivides 

the total number of newly infected in each daily cohort into a set of compartments, detailed in Table 

4 of the supplementary material. In the IBM, individuals can have different combinations of 

attributes, but the SCM must assign a unique compartment to each relevant combination of 

attributes. The SCM processes and corresponding exchanges between compartments are listed in 

Table 5 of the supplementary material. 

 

Deterministic Compartment Model (DCM) 

The DCM is identical in structure, parameters, and processes to the SCM. On every occasion where 

the SCM draws a random variable, the DCM replaces this with the expected value. It does not 

necessarily follow that case numbers predicted by the DCM equal the mean of case numbers in 

stochastic ensembles from the SCM, but in practice the differences between DCM trajectories and 

the median of SCM ensembles of trajectories are small.  

 

Contact tracing 

Contact tracing and enforced self-quarantine of downstream contacts assist in suppression at low 

case numbers. Their effectiveness is undermined by non-compliance of self-quarantine and lack of 

co-operation in terms of contact tracing that results in hidden transmission. Model fitting of 

parameters allow for results that account for both non-compliance and hidden transmission.  

 

Model parameters 

The IBM, SCM and DCM models share 22 model parameters that are provided in Table 6 of the 

supplementary material. A Bayesian inference procedure was used to fit the DCM to Australian 

observations obtained from https://www.covid19data.com.au/ 

and  https://www.worldometers.info/coronavirus/#countries for the period February 20 to July 5, 

2020. This procedure allowed us to obtain a posterior distribution for values of those parameters 

regarded as uncertain. 

 

Model fitting allowed the data to inform the parameter values relating to hidden transmission. We 

find that hidden transmission (amplification of cases in populations with a low probability of 

presenting for testing) may have accounted for between 30 and 60% of new infections in the June-

July resurgence in Victoria.  
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Economy costs 

Economy-wide costs of the national lockdown that began in March 2020 are based on Australian 

Bureau of Statistics (ABS) data at a Victorian level equivalent to approximately $210 million per 

lockdown day.4 Economy costs of a lockdown were assumed to be linear in the different levels of 

mandated social distancing, noting that greater social distancing and an increased frequency of 

lockdown (lockdown-relaxation-lockdown) increase economy costs. COVID-19 related fatalities 

are valued at $4.9 million per value of statistical life (VSL), sourced from Prime Minister and 

Cabinet10.  

 

Model simulations 

Model simulations compared different mandated levels of social distancing assumed to be 

implemented when the average daily number of new recorded COVID-19 cases over the previous 7 

days reached 100. Mandated social distancing measures were reintroduced on 9 July 2020 in 

Victoria, which coincides with the weekly average of new daily recorded cases of 100.  

For each social distancing level, mandated measures remain in place for a minimum 40-day period 

and then social distancing is relaxed in a linear fashion over 60 days. Each level of social distancing 

(0.5, 0.6, 0.7, 0.8, 0.9 and 1.0) is benchmarked as a proportion of the estimated level of social 

distancing prevalent in Australia in April 2020 (see Table 1). All social distancing levels assume 

strong and enforced border controls for all new arrivals into Australia. In each scenario, social 

distancing is not relaxed until there is no recorded community transmission. Thus, each of the six 

cases in Table 1 assumes the goal is to achieve no community transmission.   

Two relaxation scenarios, each with a social distancing level of 1.0, were also simulated (see Table 

2). In each scenario, it is assumed social distancing measures are imposed when the weekly average 

of new daily recorded cases is 100 but relaxation may begin whenever the weekly average of new 

daily recorded cases declines to a trigger level of 20. In relaxation scenario A, the social distancing 

is implemented for a minimum of 40 days before the trigger level is assessed while in Scenario B 

there is no minimum period for social distancing. For both scenarios, once the relaxation criteria are 

met, gradual relaxation to zero social distancing occurs over a 60-day period. In each scenario, 

border quarantine leakage (failure) occurs at the probability of 0.2% per arrival from overseas (PQ = 

0.002).  

 

3. Results 

Social distancing outcomes 

A comparison of results for different levels of social distancing for 365 days after social distancing 

is first implemented are given in Table 1, assuming 0% leakage from hotel quarantine. The results 

are generated from the SCM with ensembles of 1,000 members drawn randomly from the Bayesian 

posterior distributions of the parameter set.  

 

Elimination days is the number of days until zero community transmission (elimination) is achieved 

(value of 366 means elimination is not achieved) and social distance days is the sum of the level of 

social distancing on each day over 365 days. The scenarios with social distancing of 0.5 and 0.6 

resulted in uncontrolled COVID-19 outbreaks. For social distancing of 0.5, some ensemble 

members achieve elimination within 365 days through herd immunity but at the loss of between 

54,000 and 104,000 lives (Table 1).   

 

Fig. 2a,b represents the simulations (median, quartiles, 5-95 percentiles) from a 1,000 ensemble and 

observed daily new local Australian cases for social distancing levels, respectively, 1.0 and 0.7.  

A social distancing level of 1.0 achieves no community transmission after about 50 days (median 

value) and within 80 days for every simulation. This level of social distancing results in economy 

costs of $17.4B. A social distancing level of 0.7 takes more than 250 days (median value) to achieve 

no community transmission and 21% of simulations fail to eliminate community transmission 

within one year, with costs estimated at $41.2B. 
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Relaxation outcomes 

Fig. 3a,b represents the simulations (median, quartiles, 5-95 percentiles) from a 1,000 ensemble and 

observed daily new cases for Suppression Scenario A and Scenario B. Both scenarios show a ‘yoyo’ 

pattern of outbreak-suppression-outbreak after the initial suppression with the 95 percentile 

simulations, but Scenario B generates substantially higher peaks in new daily cases.  The median 

outcome achieves elimination within 100 days for Scenario A (Table 2),  while it takes twice as long 

for Scenario B. Random border quarantine leakage contributes to multiple outbreaks, and especially 

for Scenario B (Fig. 3b) due to early relaxation and a failure to eliminate community transmission.  

 

4. Discussion 

Our results provide robust support for a ‘Go Long and Go Hard’ strategy to optimise control 

COVID-19 infections in Australia. We find: one, that better public health outcomes (reduced 

COVID-19 fatalities) are positively associated with lower economy costs and higher levels of social 

distancing; two, achieving zero community transmission lowers both public health and economy 

costs compared to allowing community transmission to continue; three, early relaxation of social 

distancing, and in particular in the absence of a minimum social distancing period (minimum 40 

days) and with quarantine leakage, increases both public health and economy costs.   

 

We provide two sets of results. The first set in Table 1 assumes the goal of social distancing is 

achieving zero community transmission (elimination). We find that social distancing levels of 0.8, 

0.9 and 1.0, as given in Table 1, achieve elimination with a 100% probability over the 365 days. 

Social distancing levels of 0.5 (in the absence of heard immunity) and 0.6 fail to achieve 

elimination within the simulation period. A social distancing level of 0.7 achieves elimination 

within 365 days with approximately 80% of simulations. We find that if reducing community 

transmission to zero is the goal, then lower levels of social distancing increase both COVID-19 

fatalities and economy costs. This finding for Victoria is consistent with an agent-based model that 

compares a standard lockdown (with and without masks) with a more severe lockdown11. 

 

The second set of results in Table 2 assumes that suppression is the goal such that relaxation of 

social distancing measures at 1.0 (assumed for both scenarios) does not begin until the weekly 

average of new daily recorded cases is 20, subject also to a minimum duration of 40 days for 

Scenario A. Table 2 results highlight the lower costs incurred when social distancing is imposed for 

a sufficiently long enough minimum period. Paradoxically, imposing a binding minimum number of 

social distancing days reduces the social distancing days over a 12-months period and, thus, the 

associated economy costs.  

 

Our model suite does not allow us to fully capture the differences in transmission across different 

communities or sub-populations. Such transmission differences may arise from multiple factors 

including cultural reasons, housing density, and the proportion of workers who are in the casual 

workforce and who may have financial incentives not to be tested or go to work sick. The 

relationship between hidden transmission and essential workers is relevant for the effectiveness of 

social distancing because, depending on the severity measures (stage 3 versus stage 4), workers may 

still be able to infect their workmates at their workplaces.  
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Table 1. Median (2.5%-97.5 CI) values of additional Elimination Days and Social Distancing Days 

(sum of social distancing level each day for 365 days) and number of  COVID-19 deaths and associated 

(based on median values)  Economy Costs of Social Distancing, Value of Statistical Lives Lost and 

Hospitalisation Costs for Social Distancing Levels from 0.5 to 1.0 for 365 days after implementation of 

Social Distancing when average daily cases over the preceding 7 days exceeds 100. 

Social 

Distancing 

Level 

0.5 0.6 0.7 0.8 0.9 1.0 

Elimination 

Days (#) 
360 (279-366) 366 (366-

366) 
249 (134-

366) 
118 (66-190) 73 (50-107) 51 (37-75) 

Social 

Distancing 

Days (#) 

183 (155-183) 220 (220-

220) 
196 (116-

256) 
117 (78-177) 94 (75-125) 83 (71-107) 

Economy 

Costs of Social 

Distancing 

(billion $) 

38.43 46.2 41.16 24.57 19.74 17.43 

COVID-19 

Deaths (#) 
77,020 

(53,822-

104,277) 

28,058  
(448-69,931) 

267  
(135-1,151) 

135  
(80-216) 

101  
(68-139) 

86  
(61-115) 

Value of 

Statistical 

Lives Lost 

($ billion) 

377.40 137.48 1.31 0.66 0.49 0.42 

Notes: 

1. Economy costs of social distancing = $210 million per social distance day. 

2. Value of statistical life = $4.9 million. 

3. Elimination days = 366 means the strategy fails to achieve no community transmission after 365 

days. 
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Table 2. Median (2.5%-97.5 CI) values of additional Social Distancing Days (sum of social distancing 

level each day for 365 days) and number of  COVID-19 deaths and associated (based on median 

values) Economy Costs of Social Distancing, Value of Statistical Lives Lost and Hospitalisation Costs 

for Social Distancing Level = 1.0 for 365 days after implementation of Social Distancing. 

 Relaxation Scenario A3 Relaxation Scenario B4 

Social Distancing Days (#) 101 (71-210) 115 (52-225) 

Economy Costs of Social 

Distancing (billion $) 

21.21 24.15 

COVID-19 Deaths (#) 124 (66-261) 190 (67-411) 

Value of Statistical Lives 

Lost ($ billion) 

0.61 0.93 

Notes: 

1. Economy costs of social distancing = $210 million per social distance day. 

2. Value of statistical life = $4.9 million. 

3. Social distancing is implemented for 40 days after which gradual relaxation over 60 days occurs 

once the weekly average of new daily recorded cases declines to 20. 
No minimum of 40 days of social distancing; gradual relaxation over 60 days occurs once the weekly 

average of new daily recorded cases declines to 20. 

 

Fig. 1: Cumulative (total infected) and current (net infected) reported COVID-19 cases in Australia from 
March 26 to 6 August 2020 
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Fig. 2a: Elimination strategy, social distancing trigger = 100 daily cases, social distancing = 1.0 applied at 
day 35, and no leakage from border quarantine (PQ = 0). Ensemble percentiles: median (thick line), 
quartiles (thin lines), 5-95 % percentiles (dashed lines), observed daily new Australian local cases, June 6 
to 15 July 2020 (*). 

 

Fig. 2b: Elimination strategy, social distancing trigger = 100 daily cases, social distancing = 0.7 applied at 

day 35, and no leakage from border quarantine (PQ = 0). Ensemble percentiles: median (thick line), 

quartiles (thin lines), 5-95 percentiles (dashed lines), observed daily new Australian local cases, June 6 to 

15 July 2020 (*). 
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Fig. 3A. Suppression strategy, social distancing trigger = 100 daily cases, social distancing = 1.0 applied at 

day 35, minimum social distancing period = 40 days, relaxation trigger = 20 daily cases, and a very low 

probability of leakage from border quarantine (PQ = 0.002). Ensemble percentiles: median (thick line), 

quartiles (thin lines), 5-95 percentiles (dashed lines), observed daily new Australian local cases, June 6 to 

15 July 2020 (*). 

 

Fig. 3B. Suppression strategy, social distancing trigger = 100 daily cases, social distancing = 1.0 applied at 

day 35, relaxation trigger = 20 daily cases, no minimum social distancing period, and a very low 

probability of leakage from border quarantine (PQ = 0.002). Ensemble percentiles: median (thick line), 

quartiles (thin lines), 5-95 percentiles (dashed lines), observed daily new Australian local cases, June 6 to 

15 July 2020 (*). 
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Technical Appendix 
 

 

A. Context 

 

This technical appendix represents a summary of estimation and modelling undertaken over the 

period May to July 2020 by a team of researchers in response to a series of questions related to 

COVID-19 infections in Australia. The modelling was led by John Parslow with assistance from 

Kathryn Glass, Quentin Grafton and Tom Kompas, and advice from Emily Banks and Kamalini 

Lokuge.  

 

This technical appendix provides a full description of the assumptions, parameters, data, and 

performance of the models by the research team. Results and simulations from the models will be 

included in two research papers currently under preparation. 

 

B. Conflict of Interest 

 

None of the research team received any direct funding for this modelling and research. None of the 

research team declare any conflict of interest in relation to this work. 

 

C. Data 

 

The data used for the estimation of model parameters come from https://www.covid19data.com.au/ . 

Additional data (for early February-March data) come from the Worldometer 

website:  https://www.worldometers.info/coronavirus/#countries. 

 

 

D. Model Description 

 

The stochastic compartment model described here is one of a suite of epidemiological models 

developed to simulate the response of Covid-19 outbreaks to a range of control measures. These 

models are designed to offer a flexible and efficient representation of the progression of the disease 

in individual cases, transmission of the disease within the susceptible population, and the effects of 

community testing, downstream contact tracing, self-isolation and quarantine on detection and 

transmission. The stochastic models in particular are designed to provide insight into the effect of 

control measures on suppression and elimination at low case numbers.  

 

The model suite comprises an individual-based model (IBM), a stochastic compartment model 

(SCM), and a deterministic compartment model (DCM). All three are numerical models that operate 

in discrete time with daily time steps.  

 

D1. The Individual-based Model. 

 

The IBM follows infected individuals through time, starting on the day when they are infected, and 

ending when they are officially recovered. Each individual is characterised by a set of attributes 

whose values evolve over time according to a set of rules. All attributes, with one exception, take 

logical values of zero or 1, and determine the individual's status with respect to source of infection 

(i.e. local or overseas), infectivity, display of symptoms, detection, traceability, self-isolation, self-

quarantine or quarantine, recovery, hospitalization, and/or death. The attributes are listed in Table 1. 

The default values of all attributes are set to zero, until they are modified by model processes.  

 

Only positive cases are represented in the model. All individual cases are represented in one long 
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(NxM) array, where N is the number of cases and M the number of attributes. Cases are indexed in 

the array in order of creation, and new cases are added to the array as they occur through local 

transmission or arrival from overseas. The model also stores the first case index on each day t, 

IND1(t), and the number of cases on each day, NC(t), so that it can easily access all cases according 

to days since infection.  

 

On each day, the model steps through a sequence of processes, modifying the attributes of eligible 

cases. The attributes and processes have been designed to represent key features of Covid-19, and 

the effects of measures such as community testing, contact tracing and border controls, as follows. 

 

Asymptomatic cases: There is evidence that a proportion PA, somewhere between 10 and 40%, of 

infected individuals never display symptoms. The evidence suggests these individuals have lower 

viral loads and are less infectious than other cases. Individuals in the model are randomly assigned 

this attribute with probability PA on the day they are infected. These individuals never display 

symptoms and are assigned a daily transmission coefficient GA which is a fraction FA of cases 

which develop symptoms. 

 

Timing of infectivity: All newly infected individuals are non-infectious, and become infectious after 

TI days, and then non-infectious after TF days. The infectious attribute is switched on before 

transmission takes place on day TI, and off after transmission takes place on day TF, so individuals 

are infectious for TL = TF+1-TI days.  

 

Display of symptoms: Individuals who are not asymptomatic display symptoms starting on day TS 

and continue to display symptoms until they recover. Individuals displaying symptoms are 

potentially subject to testing and detection.  

 

Cases imported from overseas: Detected overseas cases are introduced as “newly infected” cases TS 

days prior to their detection and are ‘detected’ TS days post-infection. This allows for the possibility 

of pre-symptomatic infection by overseas arrivals prior to the establishment of border controls and 

ensures daily detected overseas cases in the model match observations. Only symptomatic overseas 

cases are tested and detected. Thus, the model assumes reported overseas cases are matched by 

asymptomatic cases in the ratio PA:1-PA.  

 

Border controls: From March 17, 2020, Australia required all overseas arrivals to self-quarantine at 

home, and from March 28, 2020, Australia required all overseas arrivals to undergo compulsory 

quarantine in hotels.  

 

Quarantine breakdown: Cases in hotel quarantine are assumed not to contribute to transmission. To 

allow for a possible breakdown of hotel quarantine, quarantined individuals are converted into 

hidden community cases with a (very low) probability PQ.   

 

Community detection: Individuals with Covid-19 symptoms can voluntarily report for testing and 

detection if positive. The model assumes cases with symptoms in the community are detected with 

daily probability PDC. Detected cases are required to self-isolate at home. 

 

Contact tracing: The model records the array index QID of the infective source for each local case. 

If that source is detected, the downstream case is subject to contact tracing with daily probability 

PT. All cases identified as downstream contacts, including asymptomatic and pre-symptomatic 

cases, are required to self-quarantine at home.  

 

Contact tracing capacity: The model sets a limit to contact tracing capacity, TCAP, measured in 

new (local) detected cases per day. Once daily local detected cases YDT exceed TCAP, the daily 
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contact tracing probability is reduced by the factor TCAP/YDT.  

 

Detection in self-quarantine: Once cases in self-quarantine display symptoms, they are assumed to 

be tested and detected with (high) daily probability PDSQ. Detected cases are required to self-isolate 

at home. 

 

Hospitalization: Symptomatic cases develop complications requiring hospitalisation on day TH, 

with probability PH. Hospitalized individuals remain in hospital until they recover or die.  

 

Fatally ill and deceased: On day TD, hospitalised patents are assigned the fatally ill attribute with 

probability PM. From day TD onwards, fatally ill patients die with daily probability PD.  This allows 

a long exponential ‘tail’ of deaths, which matches observations. 

 

Recovery: From day TR onwards, all cases that are not fatally ill or deceased recover with daily 

probability PR. Again, this allows a long exponential tail of recoveries. Because transmission ends 

TF days after infection, recovery in the model serves primarily as a reporting mechanism. 

 

Hidden or uncooperative cases: Contact tracing can be extremely effective in amplifying even low 

rates of community detection and shutting down transmission. Observations suggest it may be less 

effective in practice. The model allows for a fraction PU of hidden or uncooperative individuals who 

evade both community detection and downstream contact tracing, to allow more realistic levels of 

contact tracing effectiveness.   

 

These processes are listed in Table 2, in the order they are applied within the daily time step. Cases 

are considered active until the number of days post-infection (d) exceeds the maximum time to 

recovery TM. In practice, only cases having eligible values of d are considered in applying each 

process.  

 

The IBM is fully stochastic at the individual level, so whenever a process imposes a change with 

probability P, that change occurs for an individual if and only if U < P, where the random variable U 

~ Uniform(0,1).  

  

Transmission 

 

This IBM is similar to other individual-based epidemiological models in its representation of the 

evolution of the disease. Large and computationally expensive individual-based models structure 

the whole population according to a predefined social network of contacts and potential 

transmissions. Our model employs a simpler representation of transmission, in which new 

infections are assumed to come from a large, well-mixed susceptible population and are added to 

the indexed array of positive cases. This allows this model to represent only positive cases and incur 

low computational costs, at least for small outbreaks.  

 

The total number of infections produced by each infected individual is assumed to be a random 

variable drawn from a negative binomial distribution. The negative binomial is widely used to 

represent the distribution of lifetime infections and daily contacts. The distribution is characterised 

by the mean (reproductive number) R, the dispersion coefficient k, and the derived probability PB = 

1 - k/(R+k). For each case, the total number of people they infect is the sum of infections on each of 

TL successive days, where TL is the infectious period. The sum of n random variables drawn from a 

negative binomial with parameters p and k' is itself a negative binomial with parameters p and n.k'. 

Thus, the daily infections for each individual are drawn from a negative binomial with parameters 

PB and k'= k/TL. The daily mean transmission rate G = R/TL, so  
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PB = 1 - k/(G.TL+k).   

 

The distribution of lifetime infections is believed to be over-dispersed, and so the distribution of 

daily infections is then highly over-dispersed. Most infected individuals produce zero infections on 

any given day, while ‘super-spreader’ individuals can produce large clusters of 30 or 50 infections 

in one event with non-negligible probability. 

 

The daily mean transmission rate G is multiplied by the ratio of the remaining susceptible 

population S(t) to the total population, POP. In the simulations considered in this study, S/POP 

remains very close to 1. The mean transmission rate also depends on citizen behaviours and can be 

reduced by a variety of social distancing measures, discussed below. For asymptomatic cases, G is 

reduced by the multiplier FA. The parameter PB is adjusted to match G and k.  

 

Quarantined cases in hotels are assumed not to contribute to transmission (unless a rare quarantine 

breakdown converts a quarantined case to a hidden case.) Violations of self-quarantine and self-

isolation at home are assumed to be more common, and these cases are assumed to contribute to 

daily transmission with (low) probability PL.  

 

The transmission module considers all cases which satisfy TI<=d<=TF. It rejects cases with QQ = 

1or QI=0. For accepted cases with QA = 0, it draws the number of daily infections from the 

negative binomial with parameters G and k, as described above. For accepted cases with QA = 1, it 

draws the number of daily infections from the negative binomial with parameters G.FA and k.  

 

Outputs 

As it carries out the processes in Table 2, the IBM records a set of daily output variables listed in 

Table 3.  

 

D2. The Stochastic Compartment Model 

 

While the IBM has been designed to be computationally efficient, the computational cost of 

processing individual cases is still large when uncontrolled epidemics lead to millions of active 

cases. A parallel stochastic compartment model (SCM) has been developed to replicate the 

behaviour of the IBM efficiently with high numbers of active cases. Instead of representing 

individuals, this model represents numbers of individuals in daily cohorts. On day t, the SCM 

represents the number of individuals that were newly infected on day t0 as X(t0,t) , for values of d = 

t – t0  (days post-infection) from 0 to the maximum recovery time, TM.  

 

Whereas the IBM assigns attributes to individuals, the SCM subdivides the total number X(t0,t)  in 

each daily cohort into a set of compartments, Xi(t0,t). In the IBM, individuals can have different 

combinations of attributes, but the SCM must assign a unique compartment to each relevant 

combination of attributes. Consequently, the number of SCM compartments needs to be larger than 

the number of IBM attributes. The compartment labels and descriptions are given in Table 4. The 

changes in individual attributes with days post-infection in the IBM are represented in the SCM by 

the movement of appropriate numbers of individuals between compartments. When changes in 

individual attributes in the IBM occur randomly with probability P, the number of individuals 

transferred between corresponding compartments in the SCM is drawn from a binomial distribution 

with parameters N and P, denoted here by BIN(N,P), where N is the number potentially eligible for 

transfer. This means that the SCM exactly replicates the behaviour of the IBM in a statistical sense 

for all processes except for transmission and contact tracing.  

 

The SCM processes and corresponding exchanges between compartments are listed in Table 5, 

again in the order of execution in daily time steps. Although the notation is different, the SCM 
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processes for the most part have identical effect to those described for the IBM, and the description 

and justification provided earlier applies equally here.  

 

Transmission 

The number of potentially infectious sources on day t is obtained by summing cases from all 

potentially infectious cohorts X(t0,t) with TI <= t – t0  <= TF. These sources need to be divided into 

five classes, according to their contributions to transmission: 

 

SSF(t) = t0 {XSF(t0,t) + XSU(t0,t)  + XST(t0,t)  + XSO(t0,t)} , for TI <= t – t0  <= TF; 

SSSQ(t) = t0 {XSSQ(t0,t) + XSSQO(t0,t)} , for TI <= t – t0  <= TF; 

SAF(t) = t0 {XAF(t0,t) + XAU(t0,t) + XAT(t0,t)} , for TI <= t – t0  <= TF; 

SASQ(t) = t0 XASQ(t0,t)  , for TI <= t – t0  <= TF. 

SD(t) = t0 XD(t0,t)  , for TI <= t – t0  <= TF. 

 

These sources are then weighted appropriately to calculate their expected contribution to 

transmission. Contributions from cases in self-isolation and self-quarantine at home are multiplied 

by the proportion PL that breach self-isolation / self-quarantine. Contributions from asymptomatic 

community cases are multiplied by FA. These scaled contributions are then summed to produce an 

infectious potential on day t, IP(t): 

 

IP(t) = SSF(t) + PL.SSSQ(t) + PL.SD(t) + FA.SAF(t) + FA.PL.SASQ(t). 

  

Daily infections per individual are still assumed to have a negative binomial distribution with 

parameters PB and k'= k/TL. The sum of daily infections from IP(t) sources will then be negative 

binomial with parameters PB and k'.IP(t). This produces a probability distribution for the number of 

new local infections which is similar to that for the IBM. (The IBM computes the contributions 

from isolated individuals as a random variable with expected value PL.XSI.) 

 

Contact Tracing. 

The SCM also differs from the IBM in its representation of downstream contact tracing. In the IBM, 

the index of the infection source for each active case is known, and it is a simple matter to assess 

whether the source has been detected. In the SCM, only the proportion of detected cases among 

potential sources for any given cohort is known. Thus, the fraction of detected potential sources 

cannot be used directly as the fraction of the cohort subject to downstream contact tracing. The 

quantity IP(t) used above to calculate transmission is the appropriate weighted sum of infectious 

potential over source cohorts for the cohort formed on day t.  

 

A cohort X(t0,t) on day t has potential source cohorts X(t1,t) with TI <= t0 – t1  <= TF. We calculate 

the proportion of the source potential IP(t0) which is represented by the detected components 

XD(t1,t) among these relevant source cohorts on day t. Under the model assumptions, no 

asymptomatic cases are detected, and hotel quarantined cases produce zero infections. Thus, we 

need only separate the detected sources XD(t1,t) into those that were free or ‘traceable’ on day t0, 

DF(t0,t), and those that were self-quarantining on day t, DSQ(t0,t). This can be done as follows. 

 

In processing transmission on each day t0, the model computes and stores the total number of self-

quarantining symptomatic sources SSSQ(t0), and the total number of detected sources SD(t0), summed 

over potential source cohorts. On day t = t0 + d, the same calculation can be done over the updated 

source cohorts X(t1,t) of cohort X(t0,t), to produce SSSQ(t0,d), SD(t0,d). Because self-isolated 

symptomatic cases are detected with high probability, it is reasonable to assume that the increase in 

detected sources comes first from the self-isolated symptomatic source pool on day t0, SSSQ(t0), and 

after that from the free or traceable source pool SSF(t0). So: 
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DSQ(t0,t) = min{SSSQ(t0), SD(t0,d) – SD(t0)}. 

DF(t0,t) = SD(t0,d) – SD(t0) – DSQ(t,D). 

 

The reduction in infectious potential since t0 is then:  

 

DIP(t0,d) = DF(t0,d) + PL.DSQ(t0,d). 

 

The fraction of cohort X(t0,t) subject to downstream contact tracing on day t should then be: 

  

FT(t0,t) = DIP(t0,d)/IP(t0).  

 

Individuals are moved incrementally from free to traceable compartments in each daily update. The 

fraction moved each day should be proportional to the daily increase in the traceable fraction, 

FT(t0,d) – FT(t0,d-1), with FT(t0,0) = 0. The number to be moved is calculated as a proportion of the 

number remaining. Thus, the fraction moved each day from AF to AT and SF to ST is: 

 

FDT = (FT(t0,d) – FT(t0,d-1) )/(1 – FT(t0,d-1)), provided FT(t0,d-1) < 1,  

FDT = 0 if FT(t0,d-1) = 1.  

 

The numbers moved each day are DXST = FDT.XSF(t0,t), DXAT = FDT.XAF(t0,t) (The SCM deals 

in integer numbers of cases, so DXST, DXAT are rounded to the nearest integer. If either is less than 

1, it is set to 1 with probability DXST or DXAT, zero otherwise).   

 

D.3 The Deterministic Compartment Model (DCM) 

 

The DCM is identical in structure, parameters and processes to the SCM. On every occasion where 

the SCM draws a random variable from the binomial or negative binomial, the DCM replaces this 

with the expected value. For the binomial, this means replacing Z ~ BIN(N,P) by N.P. It does not 

necessarily follow that case numbers predicted by the DCM will equal the mean of case numbers in 

stochastic ensembles from the SCM, but in practice the differences between DCM trajectories and 

the median of SCM ensembles of trajectories are observed to be small.  

 

The ‘number’ of cases in compartments in the DCM are real numbers rather than integers, so it 

cannot reproduce random small number effects or predict probabilities of elimination. The DCM is 

more than an order of magnitude faster computationally than the SCM and emulates the SCM 

quickly and usefully in many situations. It has proved particularly useful as a fast emulator for 

Bayesian inference, as discussed in the section ‘Model Parameters’.    
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Table 1. Individual Attributes in IBM 

Attribute Name Significance 

QA Asymptomatic 1 if asymptomatic, 0 otherwise. 

QI Infectious 1 if infectious, 0 otherwise. 

QS Symptomatic 1 if symptomatic, 0 otherwise 

QH Hospitalized 1 for severe hospitalized cases, 0 otherwise 

QF Fatally ill 1 if fatally ill, 0 otherwise 

QM Dead 1 if dead, 0 otherwise 

QR Recovered 1 if recovered, 0 otherwise 

QO Overseas Origin 1 if arrived from overseas, 0 if local 

QQ Quarantine 1 if placed in hotel quarantine, 0 otherwise 

QSQ Self-isolating or self-

quarantined 

1 if instructed to self-isolate or self-quarantine at home, 0 

otherwise 

QD Detected 1 if tested positive, 0 otherwise 

QID Source index Array index of the infective source 

QU Hidden / unco-operative 1 if hidden from community testing and contact tracing, 0 

otherwise. 
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Table 2. Processes modifying attributes in IBM, in order of execution in each daily time step. 

Process Daily cohorts Eligible cases: Effect, Probability 

Start infectious d = TI All: QI = 1 

Stop infectious d = TF + 1 All: QI = 0 

Transmission TI <= d <= TF QI = 1: See Text. 

Source index d = 0 New local cases: QID = array index of infection source. 

Asymptomatic d = 0 New local cases: QA = 1 with probability PA 

Hidden d = 0 New local cases: QU = 1 with probability PU 

Overseas arrival d = 0 Detected overseas arrivals: QO = 1. (Overseas cases are 

introduced as new infections, TS days before detection.) 

Overseas arrivals, 

asymptotic 
d = 0 For each detected overseas arrival, an asymptotic arrival is 

created with probability PA/(1-PA): QA = 1, QO = 1.  

Hotel quarantine d = 0 All overseas arrivals after March 28: QQ = 1. 

Hotel-quarantine 

breakdown 
d = 0 Cases in quarantine, QQ=1: QQ = 0, QH = 1 with 

probability PQ. 

Overseas 

self-quarantine 
d = 0 Overseas arrivals from March 17 to 28: QSQ = 1. 

Contact tracing and 

self-quarantine 
d >= 1 Local non-hidden cases (QU = 0) with detected sources, 

QD(QID)=1: QSQ = 1, with daily probability PT.  

Detection of 

overseas cases 
d = TS Overseas arrivals, QO = 1, QA = 0: QD = 1, QSQ = 1. 

Detection of cases in 

self-quarantine.  
d >= TS For QSQ = 1, QA = 0: QD = 1 with daily probability PDSQ 

Detection of cases in 

community  
d >= Ts For QA = 0, QU = 0, QSQ = 0: QD = 1, QSQ = 1 with 

daily probability PDC 

Hospitalized d = TH For QA = 0: QH = 1, QD = 1 with probability PH 

Fatally ill d = TD For QH = 1: QF = 1 with probability PM 

Death TD <= d <= TM For QF = 1: QM = 1 with daily probability PD 

Recovery TC <= d <= TM For QF = 0, QM = 0: QR = 1 with daily probability PR 
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Table 3. Output variables from IBM, SCM 

Variable name Description 

Y0 Daily new cases created(total) 

Y0L Daily new cases created (local) 

YDT Daily new detected cases 

YDTL Daily new detected cases (local) 

YH Hospital admissions 

YHA Active hospital cases 

YM Daily deaths 

YRD Daily detected recoveries. 

Y0C Cumulative cases  

YDTC Cumulative detected cases 

YHC Cumulative hospital admissions 

YMC Cumulative deaths 

YRDC Cumulative detected recoveries. 

 

Table 4. Compartments comprising daily cohorts in SCM 

Label Description 

SF Symptomatic / pre-symptomatic in community 

AF Asymptomatic in community 

SU Hidden symptomatic / pre-symptomatic 

AU Hidden asymptomatic 

ST Traceable symptomatic / pre-symptomatic in community 

AT Traceable asymptomatic in community 

SSQ Symptomatic / pre-symptomatic in self-quarantine 

ASQ Asymptomatic in self-quarantine 

D Detected (symptomatic) cases 

SFO Overseas pre-symptomatic in community 

SSQO Overseas pre-symptomatic in self-quarantine 

SQ Overseas symptomatic / pre-symptomatic in hotel quarantine 

AQ Overseas asymptomatic in hotel quarantine 

SH Hospital patients 

FI Fatally ill hospital patients 

M Dead 

RD Recovering detected cases 
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Table 5. Processes controlling compartment exchanges in SCM,  

in order of execution in each daily time step. 

Process Daily Cohorts Compartment exchanges 

Transmission TI <= d <= TF See Text. 

Asymptomatic & 

hidden 
d = 0 Given X new local cases: [XSF, XAF, XSU, XAU] is ~ 

multinomial (X, [(1-PA).(1-PU), PA.(1-PU), PU(1-PA), 

PA.PU]) 

Overseas arrivals d = 0 Overseas reported (symptomatic) cases XSO treated as 

newly infected TS days earlier. Matched by asymptomatic 

cases XAO ~ BIN(XSO,PA/(1-PA)). For arrivals: 

Before March 17: XSFO = XSO, XAF = XAF + XAO. 

From March 17 to March 28: XSSQO = XSO, XASQ = XAO. 

After March 28: XSQ = XSO, XAQ=XAO. 

Hotel quarantine 

breakdown 
d = 0 Hotel quarantine evasions QE ~ BIN(XSQ,PQ).  

XSQ = XSQ – QE, XSU = XSU + QE. 

Source detected d >= 1 DXST = additional symptomatic cases with detected 

sources. DXAT = additional asymptomatic cases with 

detected sources. (See text for derivation). 

XST = XST + DXST, XSF = XSF – DXST. 

XAT = XAT + DXAT, XAF = XAF – DXAT. 

Contact tracing d >= 1 CST ~ BIN(XST,PT). XST = XST – CST, XSSQ = XSSQ + CST. 

CAT ~  BIN(XAT,PT). XAT = XAT – CAT, XASQ = XASQ + 

CAT. 

Detection of 

overseas cases 
d = TS XD = XD + XSFO + XSSQO, XSFO = 0, XSSQO = 0. 

YDET = YDET + XSFO + XSSQO + XSQO 

Detection of cases in 

self-quarantine 
d >= TS DSQ ~ BIN(XSSQ,PDSQ).  XSSQ = XSSQ – DSQ, XD = XD + 

DSQ. 

YDET = YDET + DSQ, YDETL = YDETL + DSQ. 

Detection of cases in 

community  
d >= Ts DSF ~ BIN(XSF,PDC).  XSF = XSF– DSF, XD = XD + DSF. 

DST ~ BIN(XST,PDC).  XST = XST– DST, XD = XD + DST. 

YDET = YDET + DSF + DST, YDETL = YDETL + DSF + 

DST. 

Hospitalization d = TH For each of X = XSF, XSSQ, XST, XSU, XD, XSQ 

DH ~BIN(X,PH). XSH = XSH + DH, YH = YH + DH. 

For CC = SF, SSQ, ST, SU, D: XCC = XCC – DH. 

For CC = SF, SSQ, ST, SU: YDET = YDET + DH, YDETL 

= YDETL + DH. 

Fatally ill d = TD DFI ~ BIN(XSH,PM).  XSH = XSH – DFI, XFI = XFI + DFI. 

Death TD <= d <= TM DD ~ BIN(XFI,PD).  XFI = XFI – DD, XM = XM + DD. 

YM = YM + DD. 

Recovery TC <= d <= TM DRD ~ BIN(XD,PR).  XD = XD – DRD, XRD = XRD + DRD. 

DRH ~ BIN(XSH,PR). XSH = XSH – DRH, XRD = XRD + 

DRH. 

YRD = YRD + DRD + DRH. 
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E. Model Parameters 

 

The models described in the preceding section share 22 model parameters (Table 6). These can be 

divided into 4 categories.  

 

The first group, TS, TI, TF, TH, TD, TM, specify the timing of the progression of the disease through 

infected cases, in days post-infection. This progression is now well studied for Covid-19, and there 

is broad agreement on typical or mean values of these parameters. Although it can take considerably 

longer, the typical time TS to onset of symptoms is about 5 days, and the common assumption is 

most cases are infectious for approximately two days before onset of symptoms. We set TI = 4 with 

TS = 5 which ensures two rounds of transmission prior to onset of symptoms and possible detection. 

The duration of infection is less tightly defined but estimates of the Reproductive Number (R) are 

around 2.5, and uncontrolled epidemic growth rates can be as high as a doubling every 3 to 4 days. 

Setting TF to 8 days allows the model to achieve these growth rates with R around 2.5.   

 

Severe complications typically develop around 5 to 7 days after onset of symptoms, and TH is set 

here to 10 days, TD is set to 12 days and TR to 19 days. These parameters were previously estimated 

in fitting a related compartment model to Australian data through to the end of April. It will be 

shown below that these values of TD and TR offer a reasonable fit to observations of cumulative 

deaths and recoveries in Australia. In practice, these three parameters have negligible effect on rates 

of transmission and the trajectory of daily cases, though they clearly have important implications 

for the hospital system. Similarly, the maximum duration TM of 40 days is imposed for convenience 

and computational efficiency and has negligible effect on model outputs. Given the values adopted 

for other parameters, almost all cases are resolved before reaching 40 days post-infection. 

 

The second group of parameters, PA, PH, PM, PD, PR, also control the nature and progression of the 

disease in individuals. There have been widely varying estimates of the proportion of cases which 

are asymptomatic, but it is now generally agreed that this fraction is less than 50%, and likely in the 

range 10 to 40%. In Australia’s ‘first wave’, the proportion of detected cases that were hospitalised 

was around 10%, and the overall proportion of deaths among hospital cases has been around 11%, 

so PH is set to 0.1, and PM to 0.11. The daily death and recovery rates PD and PR determine the time 

constants associated with the exponential tail of deaths and recoveries after TD and TR respectively. 

PD is set to 0.15, and PR to 0.2, corresponding to time constants of 6.7 and 5 days respectively. 

These provide reasonable agreement with observations (see Fig. 5, 6 below).  

 

The mean daily transmission rate G0 in the absence of social distancing is a critical parameter, 

controlling the evolution of the initial outbreak. Values for this parameter, along with the relative 

transmission for asymptotic cases FA, are determined by fitting the deterministic model to 

Australian observations using Bayesian inference methods. A prior range for G0, from 0.3 to 0.65 is 

used there. When multiplied by TL = 5 days, this corresponds to Reproductive Numbers (R0) from 

1.5 to 3.25, which includes most reported values. It has been argued that asymptomatic cases, 

including children, have transmission rates that are less than 50% of transmission rates in cases that 

go on to develop symptoms, and a prior range for FA of 0.1 to 0.4 is adopted here. 

 

The next group of parameters, PDC, PDSQ, PT, PL, PU, PQ and TCAP, determine the effectiveness of 

community testing, contact tracing, self-isolation, self-quarantine and hotel quarantine. These can 

be seen as control parameters, in the sense that they depend on the effort and efficiency of these 

measures, but they also depend on public behaviour and compliance. Here, we assume that the 

testing and detection of symptomatic cases already in self-quarantine is efficient and fast, so PDSQ is 

set to a daily value of 0.8. The probability of hotel quarantine breakdown PQ is treated as a 

parameter to be varied in scenarios, but is assumed to be very low, 0.01 or less. The probability of 

violation of self-quarantine and self-isolation leading to transmission, PL, is also low. There were 
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early reports it could be around 20% and it is given a prior range of 0.1 to 0.3.  

 

Community testing rates were low until late April in Australia, owing to a shortage of testing kits. 

Since May, community testing rates have been relatively high, and community members 

experiencing symptoms have been strongly encouraged to come forward for testing. Community 

detection rates PD in this period are given a prior range of 0.2 to 0.5 per day. Contact tracing has 

been professionally trained and supported in Australia and, provided contact tracing capacity is not 

exceeded, one would expect downstream contact tracing to be relatively efficient. The proportion of 

downstream contacts traced per day, PT, is assigned a wide prior range of 0.2 to 0.8. The extent of 

public cooperation in voluntarily submitting for testing, and assisting contact tracing, is unknown, 

but recent events in Victoria have suggested uncooperative behaviour could be more widespread 

than we might hope. The fraction of hidden / uncooperative cases is assigned a wide prior range of 

0.1 to 0.6.  

 

The model measures tracing capacity in local detected cases per day. For each detected case, a 

number of downstream contacts of order 10 must be identified, contacted, asked to self-quarantine, 

and monitored for development of symptoms, and to check compliance, for 14 days. Thus, for 100 

daily detected cases, contact tracers could have of order 14,000 contacts under management. It 

seems likely that the tracing capacity TCAP in Australia is between 100 and 500 daily detected 

cases (and would be less in each state or territory). For the data-fitting exercise described below, 

TCAP is set to 500, so tracing capacity is not limiting. It is set to lower values in some scenarios.  

 

Finally, the susceptible population POP is set to 20 million for Australia, assuming approximately 

80% of the population is initially susceptible.  

 

Bayesian Inference 

 

A simple Bayesian inference procedure was used to fit the DCM to Australian observations for the 

period February 20 to July 5, 2020 to obtain a posterior distribution for values of those parameters 

regarded as uncertain. Among the parameters discussed above, prior ranges were specified for G0, 

FA, PA, PL, PT, PU and PDC.  

 

In addition to the border control measures already incorporated in the model, Australia imposed 

strong social distancing measures, commencing March 16, 2020 and strengthened on March 23, 

2020 to preclude all but essential movement outside the household. This will have reduced social 

contacts and the transmission rate G. It is represented in the model by a linear decline in G over a 2-

week period starting March 16, 2020. The absolute reduction in G is uncertain, so the minimum 

value of G at the height of the lockdown is treated as another uncertain parameter GLD, with a prior 

range 0.05 to 0.25.  

 

The lockdown was officially relaxed starting May 8, 2020, but Google and Apple movement data 

show a ‘spontaneous’ increase in movement starting in early April and continuing through the 

official relaxation period in more or less linear fashion. The model, therefore, assumes a linear 

increase in G from its minimum value GLD to a final relaxed value GR on July 5, 2020.  However, if 

GR is added as another parameter, the inference procedure yields very high positive correlations 

between G0 and GR. Instead, the model estimates the relative relaxation of social distancing by July 

5, 2020 measured as RSD = (GR-GLD)/(G0-GLD). The parameter RSD is assumed to be less than 1 

and given a prior range of 0.7 to 1.0.  

 

Initial attempts at Bayesian inference yielded high positive posterior correlations between G0 and 

PA, when G0 was interpreted as the transmission rate for symptomatic cases. This is unsurprising, as 

the average transmission rate across symptomatic and asymptomatic cases is reduced when PA 
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increases. The estimated transmission rates G0 and GLD are, therefore, defined as average rates 

across both symptomatic and asymptomatic cases. The initial transmission rate for symptomatic 

cases is given by G0/(1-PA.(1-FA)), and the rate for asymptomatic cases by 

FA.G0/(1-PA.(1-FA)). This transformation virtually eliminates posterior correlations between G0 and 

PA or FA. 

 

As discussed earlier, community testing rates have also changed over time. Community testing rates 

were low up until late April 2020 because of a shortage of testing kits, and because priority was 

given to overseas travellers and their contacts. Starting April 22, 2020 community testing rates 

increased markedly over a 2-week period. In fitting the observations, the model assumes 

community detection rates were low, equal to 0.2, prior to 22 April, 2020 and then increased over a 

2-week period to a value PDC, to be estimated from a prior range of 0.2 to 0.5.  

 

In fitting the observations, the model is driven by reported overseas cases, in the manner described 

in the preceding section. The model was assessed against local detected cases (i.e. reported cases 

minus overseas cases). Overseas cases represented about 70% of the March-April 2020 peak, and 

the model reproduces the input stream of overseas cases as detected cases, so fitting total cases 

could have been a poor test of the model.  

 

A simple SIR (Sample Importance Resample) procedure was used to obtain the posterior 

distribution of parameters. The DCM was run using 200,000 independent random samples from the 

prior parameter distribution (the prior was treated as uniform on the parameter ranges specified in 

Table 6, and parameters were treated as independent in the prior). For each model run, a likelihood 

was calculated based on the SSQ errors between predictions and observations. To reduce any 

weekly reporting artefacts, and to allow for the DCM's inability to reproduce any stochastic 

variation in the observations, time series of observations and predictions were smoothed by a 

running 7-day average before calculating the SSQ error. A ln(X+10) transform was also applied to 

the smoothed predictions and observations before computing the SSQ residuals, to give equal 

weight to errors at low and high case numbers, and to render the residuals approximately Gaussian. 

The likelihood was calculated from the SSQ assuming a Gaussian distribution of errors, with the 

degrees of freedom equal to the number of observations minus the number of parameters all divided 

by 7 to account for the effects of the 7-day running average. The error variance was estimated from 

the minimum SSQ corresponding to the maximum likelihood parameter set.  

 

The resulting likelihoods were sorted into descending order, along with the associated parameter 

vectors, and effectively converted into a lookup table for a sample-based cumulative posterior pdf. 

This allows straightforward random sampling from the posterior. Approximately 10,000 parameter 

vectors have non-negligible weight in the posterior. 

 

Percentiles of predicted daily detected local cases, based on an ensemble of 200 DCM trajectories 

using parameter sets drawn randomly from the posterior, are compared with the observations in Fig. 

1. The fit is generally, good but observe that the model does not adequately capture the steep rise in 

reported cases in the state of Victoria in late June – early July 2020. An equivalent ensemble for the 

SCM shows additional scatter due to stochastic effects (Fig. 2). For the SCM, the observed steep 

increase in detected local cases in late June – early July 2020 does lie within the inter-quartile 

credibility interval.  

 

Comparisons of SCM posterior ensemble predictions of cumulative deaths and cumulative detected 

recoveries are shown in Fig. 3, 4. As indicated above, the choice of parameters TD, PM and PD 

provide good approximations to the timing and magnitude of observed cumulative deaths through 

the ‘first wave’. The model arguably predicts deaths too early in the current ‘second wave’ in the 

state of Victoria. We observe the outbreak in Victoria that began in June 2020 started in a relatively 
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younger demographic of workers and students, and only later spread into aged care homes in July 

2020 which has resulted in additional deaths.  

 

The choice of TR and PR results concur well with the period between predicted and observed 

recoveries in detected cases (Fig. 4), given some obvious reporting anomalies in the observations. 

The median model prediction slightly over predicts recoveries, but given the good fit to cases, it 

seems possible this reflects incomplete official reporting of recoveries.  

 

The marginal pdfs for the parameters, calculated from the posterior weighted sample, are plotted as 

histograms in Fig. 5. The parameters fall into three groups with respect to the information provided 

by the observations. The parameters G0 and GLD are highly informed, with posterior values 

restricted to a narrow range. The parameters RSD, PU and PL are moderately informed, with RSD 

biased to high values between 0.8 and 1, PU to high values from 0.4 to 0.6 and PL biased towards 

low values from 0.1 to 0.2. The remaining parameters seem to be effectively uninformed, with little 

difference between prior and posterior.  

 

The posterior distribution carries additional information in the form of correlations among 

parameters (Fig. 6). A strong negative correlation between GLD and PU suggests the model is relying 

partly on contact tracing to bring about the steep decline in local cases in March-April 2020. High 

levels of uncooperative behaviour weaken contact tracing, and more effective social distancing 

(lower GLD) is then required to match observations. There are also moderate negative correlations 

between RSD and PU, and between G0, GLD and PL, with similar explanations. A weaker positive 

correlation between G0 and PT suggests contact tracing reduces net transmissions prior to 

implementation of social distancing. The positive correlation between PU and PL seems more likely 

to be an indirect result of their mutual strong negative correlations with transmission coefficients.  

 

The DCM provides a relatively tight fit to observations despite the majority of the parameters being 

poorly informed. We posit this may be because of trade-offs among parameters, reflected in the 

correlation structure, noting that some poorly informed parameters such as PA and FA are weakly 

correlated with other parameters (Fig. 6). We contend that scenario ensembles based on random 

samples from this posterior provide a realistic picture of model uncertainty given current 

knowledge. 
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Table 6. Model parameters, prior values, and prior ranges and maximum likelihood values for 

those parameters subject to Bayesian inference. 

Symbol Description Prior 

Value(s) 

Maximum 

Likelihood 

Value 

TS Days to onset of symptoms 5 days  

TI Days to onset of infectivity 4 days  

TF Days to cessation of infectivity 8 days  

TH Days to develop severe symptoms 10 days  

TD Days to first deaths 12 days  

TR Days to first recovery 19 days  

TM Maximum period cases are active. 40 days  

PA Probability cases are asymptomatic [0.1 0.4] 0.32 

PH Probability of hospitalization for symptomatic cases 0.1  

PM Probability of death among hospitalized cases 0.11  

PD Daily probability fatally ill die after TD. 0.15  

PR Daily probability of recovery after TR 0.2  

G0 Daily transmission rate before social distancing [0.3 0.65] 0.5 

GLD Daily transmission rate at peak of March-April lockdown [0.05 0.25] 0.11 

RSD Relaxation of social distancing = (G-GLD)/(G0-GLD) [0.7 1.0] 0.98 

FA Ratio of asymptomatic to symptomatic transmission [0.1 0.4] 0.19 

PDC Daily probability of detection in community [0.2 0.5] 0.36 

PDSQ Daily probability of detection in self-isolation 0.8  

PT Daily probability of tracing downstream contacts [0.2 0.8] 0.24 

PL Daily probability of transmission from self-isolated cases [0.1 0.3] 0.11 

PU Fraction of community hidden / uncooperative [0.1 0.6] 0.39 

PQ Daily probability of quarantine breakdown  0.0 to 0.01 0 

POP Total population size 20000000  

TCAP Maximum tracing capacity in daily new cases 100 - 500 500 
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Fig. 1. Percentiles [2.5% 25% 50% 75% 97.5%] of detected local Australian cases for a posterior 

ensemble of trajectories from the DCM, with observations in black. X-axis shows days starting 20th 

February 2020.  

Fig. 2. Percentiles [2.5% 25% 50% 75% 97.5%] of detected local Australian cases for a posterior 

ensemble of trajectories from the SCM, with observations in black. X-axis shows days starting 20th 

February 2020.  
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Fig. 3. Percentiles [2.5% 25% 50% 75% 97.5%] of cumulative deaths for posterior ensemble from 

the SCM. Observed cumulative deaths in black. X-axis represents days since 20th February 2020. 

 

 

Fig. 4. Percentiles [2.5% 25% 50% 75% 97.5%] of cumulative detected recoveries for posterior 

ensemble from the SCM. Observed cumulative detected recoveries in black. X-axis represents days 

since 20th February 2020. 
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Fig. 5A. Marginal posterior pdfs for parameters subject to Bayesian inference. (G0, GLD – Initial 

and lockdown transmission rates, RSD – relaxation of social distancing by 5 July 2020 PA – 

proportion asymptomatic, FA – relative transmission of persons who are asymptomatic, PU – 

proportion unco-operative.) 

 

Fig. 5B. Marginal posterior pdfs for parameters subject to Bayesian inference. (PL – probability of 

violation of self-quarantine, PDC – probability of detection in community, PT – probability of 

downstream tracing.)  
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Fig. 6. Posterior correlation structure among parameters subject to Bayesian inference. (G0, GLD – 

Initial and lockdown transmission rates, RSD – relaxation of social distancing by 5 July, 2020 PA – 

proportion asymptomatic, FA – relative transmission of persons who are asymptomatic, PU – 

proportion unco-operative. PL – probability of violation of self-quarantine, PDC – probability of 

detection in community, PT – probability of downstream tracing.)   
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