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 2 

Abstract 14 

The basic reproduction number, R0, determines the rate of spread of a communicable disease and 15 

therefore gives fundamental information needed to plan public health interventions. Estimated R0 16 

values are only useful, however, if they accurately predict the future potential rate of spread. 17 

Using mortality records, we estimated the rate of spread of COVID-19 among 160 counties and 18 

county-aggregates in the USA. Most of the high among-county variance in the rate of spread was 19 

explained by four factors: the timing of the county-level outbreak (partial R2 = 0.093), population 20 

size (partial R2 = 0.34), population density (partial R2 = 0.13), and spatial location (partial R2 = 21 

0.42). Of these, the effect of timing is explained by early steps that people and governments took 22 

to reduce transmission, and population size is explained by the sample size of deaths that affects 23 

the statistical ability to estimate R0. For predictions of future spread, population density is 24 

important, likely because it scales the average contact rate among people. To generate support 25 

for a possible explanation for the importance of spatial location, we show that SARS-CoV-2 26 

strains containing the G614 mutation to the spike gene are associated with higher rates of spread 27 

(P = 0.016). The high predictability of R0 based on population density and spatial location 28 

allowed us to extend estimates to all 3109 counties in the lower 48 States. The high variation of 29 

R0 among counties argues for public health policies that are enacted at the county level for 30 

controlling COVID-19.  31 
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 3 

Introduction 35 

The basic reproduction number, R0, is the number of secondary infections produced per primary 36 

infection of a disease in a susceptible population, and it is a fundamental metric in epidemiology 37 

that gauges, among other factors, the initial rate of disease spread during an epidemic 1. While R0 38 

depends in part on the biological properties of the pathogen, it also depends on properties of the 39 

host population such as the contact rate between individuals 1,2. Estimates of R0 are required for 40 

designing public health interventions for infectious diseases such as COVID-19: for example, R0 41 

determines in large part the proportion of a population that must be vaccinated to control a 42 

disease 3,4. Because R0 at the start of an epidemic measures the spread rate under "normal" 43 

conditions without interventions, these initial R0 values can inform policies to allow life to get 44 

"back to normal."  45 

 Using R0 estimates to design public health policies is predicated on the assumption that 46 

the R0 values at the start of the epidemic reflect properties of the infective agent and population, 47 

and therefore predict the potential rate of spread of the disease when interventions are 48 

implemented or in case of a resurgent outbreak. Estimates of R0, however, might not predict 49 

future risks if (i) they are measured after public and private actions have been taken to reduce 50 

spread 5,6, (ii) they are driven by stochastic events, such as super-spreading 7,8, or (iii) they are 51 

driven by social or environmental conditions that are likely to change between the time of initial 52 

epidemic and the future time for which public health interventions are designed 9,10. The only 53 

way to determine whether the initial R0 estimates reflect persistent properties of the respective 54 

populations is to identify those properties: if they are unlikely to change, then so too is R0 55 

unlikely to change.  56 
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Policies to manage for COVID-19 in the USA are set by a mix of jurisdictions from state 57 

to local levels. We estimated R0 at the county level both to match policymaking and to account 58 

for possibly large variation in R0 among counties. To estimate R0, we performed the analyses on 59 

the number of daily COVID-19 deaths 11. We used death count rather than infection case reports, 60 

because we suspected the proportion of deaths due to COVID-19 that were reported is less likely 61 

to change compared to reported cases. Due to the mathematical structure of our estimation 62 

procedure, unreported deaths due to COVID-19 will not affect our estimates of R0, provided the 63 

proportion of unreported deaths does not change through time. We analyzed data for counties 64 

that had at least 100 reported cumulative deaths, and for other counties we aggregated data 65 

within the same state including deaths whose county was unknown. This led to 160 final time 66 

series representing counties in 39 states and the District of Columbia, of which 36 were 67 

aggregated at the state level. Some states, even after aggregating data from all counties, did not 68 

reach the 100 threshold of cumulative deaths, and therefore the spread rate for these states was 69 

not estimated. 70 

 71 

Results 72 

Estimates of the spread rate 73 

Before estimating R0, we first estimated the rate of spread of the COVID-19 as the rate of 74 

increase of the daily death counts, r0. Although this approach is not typically used in 75 

epidemiological studies, it has the advantage of being statistically robust even when the data 76 

(death counts) are low and makes the minimum number of assumptions that could affect the 77 

estimates in unexpected ways (see SI: Overview of Statistical Methods). We applied a time-78 

varying autoregressive state-space model to each time series of death counts 12. In contrast to 79 
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other models of COVID-19 epidemics 13,14, we do not incorporate the transmission process and 80 

the daily time course of transmission, but instead we estimate the time-varying exponential 81 

change in the number of deaths per day, r(t). Detailed simulation analyses (SI: Simulation 82 

model) showed that estimates of r(t) generally lagged behind the true values. Therefore, we 83 

analyzed the time series in forward and reverse directions, and averaged to get the estimates of r0 84 

at the start of the time series (Fig. S1); this approach counterbalances the lag in the forward 85 

direction with the lag in the backwards direction, therefore reducing the lag effect. The model 86 

was fit accounting for greater uncertainty when mortality counts were low, and confidence 87 

intervals of the estimates were obtained from parametric bootstrapping, which is the most robust 88 

approach when counts are low. Thus, our strategy was to use a parsimonious model to give 89 

robust estimates of r0 even for counties that had experienced relatively few deaths, and then 90 

calculate R0 from r0 after the fitting process using well-established methods 15. 91 

 Our r0 estimates ranged from close to zero for several counties to 0.33 for New York City 92 

(five boroughs); the latter implies that the number of deaths increases by a factor of e0.33 = 1.39 93 

per day. There were highly statistically significant differences between upper and lower 94 

estimates (Fig. 1). Although our time series approach allowed us to estimate r0 at the start of 95 

even small epidemics, we anticipated two factors that could potentially affect our estimates of r0 96 

that are not likely to be useful in explaining future spread rates. The first factor is the timing of 97 

the onset of county-level epidemic: 35% of the local outbreaks started after the declaration of 98 

COVID-19 as a pandemic by the WHO on 11 March, 2020 16, and thus we anticipated estimates 99 

of r0 to decrease with the Julian date of outbreak onset. Change in human behaviors caused by 100 

public awareness about COVID-19 at the outbreak onset will not necessarily predict future rates 101 

of spread. We used the second factor, the size of the population encompassed by the time series, 102 
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 6 

to factor out statistical bias from the time series analyses. Simulation studies showed that 103 

estimates for time series with low death counts were downward biased (Fig. S2). Because for a 104 

given spread rate r(t) the total number of deaths in a time series should be proportional to the 105 

population size, we used population size as a covariate to remove bias. In addition to these two 106 

factors that we do not think have strong predictive value for the future rate of spread, we also 107 

anticipated effects of population density and spatial autocorrelation. Therefore, we regressed r0 108 

against outbreak onset, population size and population density, and included spatially 109 

autocorrelated error terms.  110 

 111 

Explaining variation in r0 112 

 The regression analysis showed highly significant effects of all four factors (Table 1), and 113 

each factor had a substantial partial R2pred 17. The overall R2pred was 0.69, so most of the county-114 

to-county variance was explained. We calculated corrected r0 values, factoring out outbreak 115 

onset and population size, by standardizing the r0 values by 11 March, 2020 and the most 116 

populous county (for which the estimates of r0 are likely best). Counties with low to medium 117 

population density never had high corrected r0 values, suggesting that population density sets an 118 

upper limit on the rate of spread of COVID-19 (Fig. 2A), in agreement with expectations and 119 

published results 1,18. Nonetheless, despite the unequivocal statistical effect of population density 120 

(P < 10–8, Table 1), the explanatory power was not great (partial R2pred = 0.13), probably because 121 

population density at the scale of counties will be only roughly related to contact rates among 122 

people.  123 

 Spatial autocorrelation, in turn, had strong power in explaining variation in r0 among 124 

counties (partial R2pred = 0.42, Table 1) and occurred at the scale of hundreds of kilometers (Fig. 125 
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2B). This spatial autocorrelation might reflect differences in public responses to COVID-19 126 

across the USA not captured by the variable in the regression model for outbreak onset. For 127 

example, Seattle, WA, reported the first positive case in the USA, on 15 January, 2020, and there 128 

was a public response before deaths were recorded 19. In contrast, the response in New York City 129 

was delayed, even though the outbreak occurred later than in Seattle 20. Spatial autocorrelation 130 

could also be caused by movement of infected individuals. However, movement would only lead 131 

to autocorrelation in our regression analysis if many of the reported deaths were of people 132 

infected outside the county. A further possibility is that spatial variation in the rate of spread of 133 

COVID-19 reflects spatial variation in the occurrence of different genetic strains of SARS-CoV-134 

2. 135 

 To investigate whether spatial autocorrelation could potentially be caused by different 136 

strains of SARS-CoV-2 differing in infectivity, we analyzed publicly available information about 137 

genomic sequences from the GISAID metadata 21. Scientific debate has focused on the role of 138 

the G614 mutation in the spike protein gene (D614G) to increase the rate of transmission of 139 

SARS-CoV-2 22. We therefore asked whether the proportion of strains containing the G614 140 

mutation was associated with higher rates of COVID-19 spread. Because the genomic samples 141 

are only located to the state level, we performed the analysis accordingly, for each state selecting 142 

the r0 from the county or county-aggregate with the highest number of deaths (and hence being 143 

most likely represented in the genomic samples). We further restricted genomic samples to those 144 

collected within 30 days following the outbreak onset we used to select the data for time-series 145 

analyses, and we required at least 5 genomic samples per state. This data handling resulted in 28 146 

states available for analysis. We again used our regression model, except that now we included 147 

the proportion of strains having the G614 mutation instead of spatial location (Eq. 7). The 148 
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proportion of samples containing the G614 mutation had a positive effect on r0 (P = 0.016, Table 149 

S2). The low proportion of strains containing the G614 mutation in the Pacific Northwest and the 150 

Southeast were associated with lower values of r0 (Fig. 3). Before analyzing the full GISAID 151 

data, we analyzed a subset from Nextstrain 23 naïvely, without engaging the specific hypothesis 152 

that the G614 mutation increased transmission. This naïve analysis picked up the same pattern (P 153 

= 0.019, SI: Analysis of SARS-CoV-2 strains).  154 

 Higher transmissibility of strains containing the G614 mutation is also suggested by its 155 

increasing prevalence in strains in the USA 24. Nonetheless, our analyses give no information 156 

about the mechanisms explaining differences in spread rates among strains. A consensus on the 157 

potential impact of SARS-CoV-2 mutations is still lacking 22: some studies present evidence for 158 

a differential pathogenicity and transmissibility 25,26, while others conclude that mutations might 159 

be mostly neutral or even reduce transmissibility 27. Our analyses call for further investigation to 160 

better understand the potential link between viral genomic variation and its impact on 161 

transmission and mortality 28.  162 

To check whether there are other factors that might explain variation in our estimates of 163 

r0 among counties, we investigated additional population characteristics 29,30 that might be 164 

expected to affect the initial spread rate of COVID-19: (i) median age, (ii) adult obesity, (iii) 165 

diabetes, (iv) education, (v) income, (vi) poverty, (vii) economic equality, (viii) race, and (ix) 166 

political leaning (Table S4). The first three characteristics likely affect morbidity 31, although it is 167 

not clear whether higher morbidity will increase or decrease the spread rate. The remaining 168 

characteristics might affect health outcomes and responses to public health interventions; for 169 

example, education, income and poverty might all affect the need for individuals to work in jobs 170 

that expose them to greater risks of infection. Nonetheless, because we focused on the early 171 
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spread of COVID-19, we anticipated that these characteristics would have minimal effects. 172 

Despite the potential for all nine characteristics to affect estimates of r0, we found that none was 173 

a statistically significant predictor of r0 when taking the four main factors into account (all P > 174 

0.1). We also repeated all of the analyses on estimates of r(t) after COVID-19 was broadly 175 

established in the USA (5 May, 2020, assuming an average time between infection and death of 176 

18 days) (Table S5). The corresponding R2pred = 0.38, largely driven by a large positive effect of 177 

the date of outbreak onset. The absence of significant effects of the additional population 178 

characteristics on r0, and the lower explanatory power of the model on r(t) at the end of the time 179 

series, underscore the importance of population density and spatial autocorrelation in predicting 180 

county-level values of r0. 181 

 182 

Extrapolating R0 to all counties 183 

 In the regression model (Table 1), the standard deviation of the residuals was 1.11 times 184 

higher than the average standard error of the estimates of r0. This implies that the uncertainty of 185 

an estimate of r0 from the regression is only slightly higher than the uncertainty in the estimate of 186 

r0 from the time series itself; the regression model explains 81% (= 1/1.112) of the explainable 187 

variance. Therefore, using estimates from death count time series from other counties will give 188 

estimates of r0 for a focal county (lacking reliable estimates) that are almost as precise as the 189 

estimate from the county's time series. In turn, this implies that the regression can also be used to 190 

extrapolate estimates of r0 to counties for which deaths were too sparse for time-series analysis. 191 

We used the regression to extrapolate values of R0, derived from r0, for all 3109 counties in the 192 

conterminous USA (Fig. 4, Table S1). The high predictability of r0, and hence R0, from the 193 

regression is seen in the comparison between R0 calculated from the raw estimates of r0 (Fig. 194 
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4A) and R0 calculated from the corrected r0 values (Fig. 4B). Extrapolation from the regression 195 

model makes it possible not only to get refined estimates for the counties that were aggregated in 196 

the time-series analyses; it also gives estimates for counties within states with so few deaths that 197 

county-aggregates could not be analyzed (Fig. 4C,D). The end product is a map of R0 for the 198 

conterminous USA (Fig. 4E). 199 

 200 

Discussion 201 

 It is widely understood that different states and counties in the USA, and different 202 

countries in the world, have experienced COVID-19 epidemics differently. Our analyses have 203 

put numbers on these differences in the USA. The large differences argue for public health 204 

interventions to be designed at the county level. For example, the vaccination coverage in the 205 

most densely populated area, New York City, needed to prevent future outbreaks of COVID-19 206 

will be much greater than for sparsely populated counties. Therefore, once vaccines are 207 

developed, they should be distributed first to counties with high R0. Similarly, if vaccines are not 208 

developed quickly and non-pharmaceutical public health interventions have to be re-instated 209 

during resurgent outbreaks, then counties with higher R0 values will require stronger 210 

interventions. As a final example, county-level R0 values can be used to assess the practicality of 211 

contact-tracing of infections, which become impractical when R0 is high 32. 212 

We present our county-level estimates of R0 as preliminary guides for policy planning, 213 

while recognizing the myriad other epidemiological factors (such as mobility 33-35) and political 214 

factors (such as legal jurisdictions 36) that must shape public health decisions 3,37-39. Although we 215 

have emphasized the predictability of R0 among counties in the USA, values of R0 could change 216 

if there are changes in the transmissibility of strains that are present; our analyses suggest strain 217 
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 11 

differences (Fig. 3), and changes towards strains with higher transmissibility could lead to higher 218 

R0 values. This argues for continued efforts to identify the transmissibility of different strains 219 

and where those strains are prevalent.  220 

We recognize the importance of following the day-to-day changes in death and case rates, 221 

and short-term projections used to anticipate hospital needs and modify public policies 40-42. 222 

Looking back to the initial spread rates, however, gives a window into the future and what public 223 

health policies will be needed when COVID-19 is endemic. 224 

 225 

Materials and Methods 226 

1. Data selection and handling 227 

1.1 Death data 228 

 For mortality due to COVID-19, we used time series provided by the New York Times 11. 229 

We selected the New York Times dataset because it is rigorously curated. We analyzed 230 

separately only counties that had records of 100 or more deaths. The District of Columbia was 231 

treated as a county. Also, because the New York Times dataset aggregated the five boroughs of 232 

New York City, we treated them as a single county. For counties with fewer than 100 deaths, we 233 

aggregated mortality to the state level to create a single time series. For thirteen States (AK, DE, 234 

HI, ID, ME, MT, ND, NH, SD, UT, VM, WV, and WY), the aggregated time series did not 235 

contain 100 or more deaths and were therefore not analyzed.  236 

 237 

1.2 County-level variables 238 
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 12 

 We obtained county-level population size and area (km2) from the US Census Bureau 239 

(21). Other socio-economic variables (Table S4) we obtained from Kirkegaard 29. We selected 240 

socio-economic variables a priori in part to represent a broad set of population characteristics. 241 

 242 

2. Time series analysis 243 

2.1 Time series model 244 

 We used a time-varying autoregressive model 12,43,44 designed explicitly to estimate the 245 

rate of increase of a variable using non-Gaussian error terms. We assume in our analyses that the 246 

proportion of the population represented by a time series that is susceptible is close to one, and 247 

therefore there is no decrease in the infection rate caused by a pool of individuals who were 248 

infected, recovered, and were then immune to further infection.  249 

 The model is 250 

 251 

 x(t) = r(t–1) + x(t–1) (1a) 252 

 r(t) = r(t–1) + wr(t) (1b) 253 

 x*(t) = x(t) + ϕ(t) (1c) 254 

 255 

Here, x(t) is the unobserved, log-transformed value of daily deaths at time t, and x*(t) is the 256 

observed count that depends on the observation uncertainty described by the random variable 257 

ϕ(t). Because a few of the datasets that we analyzed had zeros, we replaced zeros with 0.5 before 258 

log-transformation. The model assumes that the death count increases exponentially at rate r(t), 259 

where the latent state variable r(t) changes through time as a random walk with wr(t) ~ N(0, s2r). 260 

We assume that the count data follow a quasi-Poisson distribution. Thus, the expectation of 261 
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counts at time t is exp(x(t)), and the variance is proportional to this expectation.  262 

 We fit the model using the Kalman filter to compute the maximum likelihood 45,46. In 263 

addition to the parameters s2r, and s2ϕ, we estimated the initial value of r(t) at the start of the 264 

time series, r0, and the initial value of x(t), x0. The estimation also requires an assumption for the 265 

variance in x0 and r0, which we assumed were zero and s2r, respectively. In the validation using 266 

simulated data, we found that the estimation process tended to absorb s2r to zero too often. To 267 

eliminate this absorption to zero, we imposed a minimum of 0.02 on s2r, which eliminated the 268 

problem in the simulations. 269 

 270 

2.2 Parametric bootstrapping 271 

 To generate approximate confidence intervals for the time-varying estimates of r(t), we 272 

used a parametric bootstrap designed to simulate datasets with the same characteristics as the real 273 

data that are then refit using the autoregressive model. We used bootstrapping to obtain 274 

confidence intervals, because an initial simulation study showed that standard methods, such as 275 

obtaining the variance of r(t) from the Kalman filter, were too conservative (the confidence 276 

intervals too narrow) when the number of counts was small. Furthermore, parametric 277 

bootstrapping can reveal bias and other features of a model, such as the lags we found during 278 

model fitting (Fig. S1A,B). 279 

 Changes in r(t) consist of unbiased day-to-day variation and the biased deviations that 280 

lead to longer-term changes in r(t). The bootstrap treats the day-to-day variation as a random 281 

variable while preserving the biased deviations that generate longer-term changes in r(t). 282 

Specifically, the bootstrap was performed by calculating the differences between successive 283 
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estimates of r(t), Dr(t) = r(t) – r(t-1), and then standardizing to remove the bias, Drs(t) = Dr(t) – 284 

E[Dr(t)]. The sequence Drs(t) was fit using an autoregressive time-series model with time lag 1, 285 

AR(1), to preserve any shorter-term autocorrelation in the data. For the bootstrap a new time 286 

series was simulated from this AR(1) model, Dr(t), and then standardized, Drs(t) = Dr(t) – 287 

E[Dr(t)]. The simulated time series for the spread rate was constructed as r(t) = r(t) + Drs(t)/ 288 

21/2, where dividing by 21/2 accounts for the fact that Drs(t) was calculated from the difference 289 

between successive values of r(t). A new time series of count data, x(t), was then generated using 290 

equation (S1a) with the parameters from fitting the data. Finally, the statistical model was fit to 291 

the reconstructed x(t). In this refitting, we fixed the variance in r(t), s2r, to the same value as 292 

estimated from the data. Therefore, the bootstrap confidence intervals are conditional of the 293 

estimate of s2r.  294 

 295 

2.3. Calculating R0 296 

 We derived estimates of R(t) directly from r(t) using the Dublin-Lotka equation 15 from 297 

demography. This equation is derived from a convolution of the distribution of births under the 298 

assumption of exponential population growth. In our case, the “birth” of COVID-19 is the 299 

secondary infection of susceptible hosts leading to death, and the assumption of exponential 300 

population growth is equivalent to assuming that the initial rate of spread of the disease is 301 

exponential, as is the case in equation 1. Thus, 302 

 303 

 R(t) = 1/Ste-r(t)tp(t) (2) 304 

 305 
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where p(t) is the distribution of the proportion of secondary infections caused by a primary 306 

infection that occurred t days previously. We used the distribution of p(t) from Li et al. 47 that 307 

had an average serial interval of T0 = 7.5 days; smaller or larger values of T0, and greater or 308 

lesser variance in p(t), will decrease or increase R(t) but will not change the pattern in R(t) 309 

through time. Note that the uncertainty in the distribution of serial times for COVID-19 is a 310 

major reason why we focus on estimating r0, rather than R0: the estimates of r0 are not contingent 311 

on time distributions that are poorly known. Computing R(t) from r(t) does not depend on the 312 

mean or variance in time between secondary infection and death. We report values of R(t) at 313 

dates that are offset by 18 days, the average length of time between initial infection and death 314 

given by Zhou et al. 48.  315 

 316 

2.4. Initial date of the time series 317 

 Many time series consisted of initial periods containing zeros that were uninformative. 318 

As the initial date for the time series, we chose the day on which the estimated daily death count 319 

exceeded 1. To estimate the daily death count, we fit a Generalized Additive Mixed Model 320 

(GAMM) to the death data while accounting for autocorrelation and greater measurement error 321 

at low counts using the R package mgcv 49. We used this procedure, rather than using a threshold 322 

of the raw death count, because the raw death count will include variability due to sampling 323 

small numbers of deaths. Applying the GAMM to “smooth” over the variation in count data 324 

gives a well-justified method for standardizing the initial dates for each time series. 325 

 326 

2.5. Validation 327 

 We performed extensive simulations to validate the time-series analysis approach (SI 328 
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Appendix). 329 

 330 

3. Regression analysis for r0 331 

 We applied a Generalized Least Squares (GLS) regression model to explain the variation 332 

in estimates of r0 from the 160 county and county-aggregate time series: 333 

 334 

 r0 = b0 + b1 start.date + b2 log(pop.size) + b3 pop.den0.25 + e (3) 335 

 e = N(0, s2S) 336 

 337 

where start.date is the Julian date of the start of the time series, log(pop.size) and pop.den0.25 are 338 

the log-transformed population size and 0.25 power-transformed population density of the 339 

county or county-aggregate, respectively, and e is a Gaussian random variable with covariance 340 

matrix s2S. The transforms (log(pop.size) and pop.den0.25) were used to account for nonlinear 341 

relationships with r0 and were selected to give the highest maximum likelihood of the overall 342 

regression. The covariance matrix contains a spatial correlation matrix of the form C = uI + (1-343 

u)S(g) where u is the nugget and S(g) contains elements exp(-dij/g), where dij is the distance 344 

between spatial locations and g is the range 50. To incorporate differences in the precision of the 345 

estimates of r0 among time series, we weighted by the vector of their standard errors, s, so that S 346 

= diag(s) * C * diag(s), where * denotes matrix multiplication. With this weighting, the overall 347 

scaling term for the variance, s2, will equal 1 if the residual variance of the regression model 348 

matches the square of the standard errors of the estimates of r0 from the time series. We fit the 349 

regression model with the function gls() in the R package nlme 51. 350 

 To make predictions for new values of r0, we used the well-known relationship 351 
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 352 

 𝑒̂i = 𝑒̅ + vi * V-1(ei - 𝑒̅) (4) 353 

 354 

where ei is the GLS residual for data i, 𝑒̂i is the predicted residual, 𝑒̅ is the mean of the GLS 355 

residuals, V is the covariance matrix for data other than i, and vi  is a row vector row containing 356 

the covariances between data i and the other data in the dataset 52. This equation was used for 357 

three purposes. First, we used it to compute R2pred for the regression model by removing each 358 

data point, recomputing 𝑒̂i, and using these values to compute the predicted residual variance 359 

following 17. Second, we used it to obtain predicted values of r0, and subsequently R0, for the 160 360 

counties and county-aggregates for which r0 was also from time series. Third, we used equation 361 

(4) similarly to obtain predicted values of r0, and hence predicted R0, for all other counties. We 362 

also calculated the variance of the estimates from 52 363 

 364 

 𝑣%i = s2 – vi * V-1 * vit (5) 365 

 366 

 Predicted values of R0 were mapped using the R package usmap 53. 367 

 368 

4. Regression analysis for SARS-CoV-2 effects on r0 369 

 The GISAID metadata 21 for SARS-CoV-2 contains the clade and state-level location for 370 

strains in the USA; strains G, GH, and GR contain the G614 mutation. For each state, we limited 371 

the SARS-CoV-2 genomes to those collected no more than 30 days following the onset of 372 

outbreak that we used as the starting point for the time series from which we estimated r0; from 373 

these genomes (totaling 5290 from all states), we calculated the proportion that had the G614 374 
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mutation. Only twenty-eight states had five or more genomes, so we limited the analyses to these 375 

states. For each state, we selected the estimates of r0 from the county or county-aggregate 376 

representing the greatest number of deaths. We fit these estimates of r0 with the weighted Least 377 

Squares (LS) model as in equation (3) with additional variables for strain.  378 

 Figure 3 was constructed using the R packages usmap 53 and scatterpie 54. 379 

 380 

Acknowledgements: We thank Steve R. Carpenter, Volker C. Radeloff, and Monica M. Turner 381 

for comments on the manuscript. Funding: This work was supported by NASA-AIST- 382 

80NSSC20K0282 (A.R.I). Author contributions: A.R.I and C.B. designed the study, and A.R.I. 383 

led the analyses and writing of the manuscript. Competing interests: The authors declare no 384 

competing interests. Data and materials availability: Data and R code for the analyses are 385 

presented in the Supplementary Materials. 386 

 387 

References 388 

1 Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T. & Jacobsen, K. H. Complexity of 389 

the basic reproduction number (R0). Emerging Infectious Diseases 25, 1-4 (2019). 390 

2 Hilton, J. & Keeling, M. Estimation of country-level basic reproductive ratios for novel 391 

Coronavirus (COVID-19) using synthetic contact matrices. Preprint (2020). 392 

3 Fine, P., Eames, K. & Heymann, D. L. “Herd immunity”: a rough guide. Clinical 393 

Infectious Diseases 52, 911-916, doi:10.1093/cid/cir007 (2011). 394 

4 Anderson, R. M. The concept of herd immunity and the design of community-based 395 

immunization programmes. Vaccine 10, 928-935, doi:10.1016/0264-410X(92)90327-G 396 

(1992). 397 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 19 

5 Flaxman, S. & et al. Estimating the number of infections and the impact of non-398 

pharmaceutical interventions on COVID-19 in 11 European countries. Report 13, 399 

Imperial College London (2020). 400 

6 Scire, J. et al. Reproductive number of the COVID-19 epidemic in Switzerland with a 401 

focus on the Cantons of Basel-Stadt and Basel-Landschaft. Swiss Medical Weekly 150 402 

(2020). 403 

7 Adam, D. & et al. Clustering and superspreading potential of severe acute respiratory 404 

syndrome coronavirus 2 (SARS-CoV-2) infections in Hong Kong.  (2020). 405 

8 Paull, S. H. et al. From superspreaders to disease hotspots: linking transmission across 406 

hosts and space. Frontiers in Ecology and the Environment 10, 75-82, 407 

doi:10.1890/110111 (2012). 408 

9 Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J. & Naumova, E. N. Influenza 409 

seasonality: underlying causes and modeling theories. Journal of Virology 81, 5429-410 

5436, doi:10.1128/JVI.01680-06 (2007). 411 

10 Peña-García, V. H. & Christofferson, R. C. Correlation of the basic reproduction number 412 

(R0) and eco-environmental variables in Colombian municipalities with chikungunya 413 

outbreaks during 2014-2016. PLoS Neglected Tropical Diseases 13, e0007878 (2019). 414 

11 New York Times. Coronavirus (Covid-19) data in the United States.  (2020). 415 

<https://github.com/nytimes/covid-19-data>. 416 

12 Ives, A. R. & Dakos, V. Detecting dynamical changes in nonlinear time series using 417 

locally linear state-space models. Ecosphere 3, art58, doi:http://dx.doi.org/10.1890/ES11-418 

00347.1 (2012). 419 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 20 

13 Cori, A., Ferguson, N. M., Fraser, C. & Cauchemez, S. A New Framework and Software 420 

to Estimate Time-Varying Reproduction Numbers During Epidemics. American Journal 421 

of Epidemiology 178, 1505-1512, doi:10.1093/aje/kwt133 (2013). 422 

14 Flaxman, S. & al., e. Estimating the number of infections and the impact of non-423 

pharmaceutical interventions on COVID-19 in 11 European countries. Report 13, 424 

Imperial College London (2020). 425 

15 Dublin, L. I. & Lotka, A. J. On the true rate of natural increase. Journal of the American 426 

Statistical Association 20, 305–339 (1925). 427 

16 Cucinotta, D. & Vanelli, M. WHO declares COVID-19 a pandemic. Acta Bio Medica 428 

Atenei Parmensis 91, 157-160, doi:10.23750/abm.v91i1.9397 (2020). 429 

17 Ives, A. R. R2s for correlated data: phylogenetic models, LMMs, and GLMMs. 430 

Systematic Biology 68, 234-251, doi:10.1093/sysbio/syy060 (2019). 431 

18 Rader, B. et al. Crowding and the epidemic intensity of COVID-19 transmission. 432 

medRxiv, 2020.2004.2015.20064980, doi:10.1101/2020.04.15.20064980 (2020). 433 

19 Fink, S. in The New York Times    1 (New York, NY, 2020). 434 

20 Anon. in The Economist Vol. 435   4 (The Economist Newspaper Limited, London, UK, 435 

2020). 436 

21 Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative 437 

contribution to global health. Global Challenges 1:33-46, doi:10.1002/gch2.1018 (2017). 438 

22 Grubaugh, N. D., Hanage, W. P. & Rasmussen, A. L. Making Sense of Mutation: What 439 

D614G Means for the COVID-19 Pandemic Remains Unclear. Cell, 440 

doi:https://doi.org/10.1016/j.cell.2020.06.040 (2020). 441 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 21 

23 Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 442 

4121-4123, doi:10.1093/bioinformatics/bty407 (2018). 443 

24 NextstrainTeam. Nextstrain.  (2020). <https://nextstrain.org/ncov>. 444 

25 Korber, B. et al. Spike mutation pipeline reveals the emergence of a more transmissible 445 

form of SARS-CoV-2. bioRxiv, 2020.2004.2029.069054, doi:10.1101/2020.04.29.069054 446 

(2020). 447 

26 Yao, H. et al. Patient-derived mutations impact pathogenicity of SARS-CoV-2. medRxiv, 448 

2020.2004.2014.20060160, doi:10.1101/2020.04.14.20060160 (2020). 449 

27 Dorp, L. v. et al. No evidence for increased transmissibility from recurrent mutations in 450 

SARS-CoV-2. bioRxiv, 2020.2005.2021.108506, doi:10.1101/2020.05.21.108506 (2020). 451 

28 Eaaswarkhanth, M., Al Madhoun, A. & Al-Mulla, F. Could the D614G substitution in the 452 

SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality? 453 

International Journal of Infectious Diseases 96, 459-460, doi:10.1016/j.ijid.2020.05.071 454 

(2020). 455 

29 Kirkegaard, E. O. W. Inequality across US counties: an S factor analysis. Open 456 

Quantitative Sociology and Political Science (2016). 457 

30 United States Census Bureau. USA Counties.  (2011). 458 

<https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html>. 459 

31 Centers for Disease Control and Prevention. Preliminary estimates of the prevalence of 460 

selected underlying health conditions among patients with coronavirus disease 2019 — 461 

United States, February 12–March 28, 2020. MMWR. Morbidity and Mortality Weekly 462 

Report 69 (2020). <www.cdc.gov>. 463 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 22 

32 Fraser, C., Riley, S., Anderson, R. M. & Ferguson, N. M. Factors that make an infectious 464 

disease outbreak controllable. Proceedings for the National Academy of Sciences 101, 465 

6146–6151 (2004). 466 

33 Bichara, D., Kang, Y., Castillo-Chavez, C., Horan, R. & Perrings, C. SIS and SIR 467 

Epidemic Models Under Virtual Dispersal. Bulletin of Mathematical Biology 77, 2004-468 

2034, doi:10.1007/s11538-015-0113-5 (2015). 469 

34 Roberts, M. G. & Heesterbeek, J. a. P. A new method for estimating the effort required to 470 

control an infectious disease. Proceedings of the Royal Society of London. Series B: 471 

Biological Sciences 270, 1359-1364, doi:10.1098/rspb.2003.2339 (2003). 472 

35 Gatto, M. et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of 473 

emergency containment measures. Proceedings of the National Academy of Sciences 117, 474 

10484-10491, doi:10.1073/pnas.2004978117 (2020). 475 

36 Gorman, S. & Bernstein, S. Wisconsin Supreme Court invalidates state's COVID-19 stay-476 

at-home order. Reuters (2020). <https://www.reuters.com/article/us-health-coronavirus-477 

usa-wisconsin/wisconsin-supreme-court-invalidates-states-covid-19-stay-at-home-order-478 

idUSKBN22Q04H>. 479 

37 Lahariya, C. Vaccine epidemiology: A review. Journal of Family Medicine and Primary 480 

Care 5, 7-15, doi:10.4103/2249-4863.184616 (2016). 481 

38 Mallory, M. L., Lindesmith, L. C. & Baric, R. S. Vaccination-induced herd immunity: 482 

Successes and challenges. Journal of Allergy and Clinical Immunology 142, 64-66, 483 

doi:10.1016/j.jaci.2018.05.007 (2018). 484 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 23 

39 Ridenhour, B., Kowalik, J. M. & Shay, D. K. Unraveling R0: Considerations for public 485 

health applications. American Journal of Public Health 104, e32-e41, 486 

doi:10.2105/AJPH.2013.301704 (2013). 487 

40 Imperial College London. Covid-19 Scenario Analysis Tool.  (2020). 488 

<https://covidsim.org>. 489 

41 Systrom, K. & Vladeck, T. Rt Covid-19.  (2020). <https://rt.live>. 490 

42 Swiss National Covid-19 Science Task Force. Situation report.  (2020). <https://ncs-491 

tf.ch/en/situation-report>. 492 

43 Zeng, Z., Nowierski, R. M., Taper, M. L., Dennis, B. & Kemp, W. P. Complex 493 

population dynamics in the real world: Modeling the influence of time-varying 494 

parameters and time lags. Ecology 79, 2193-2209 (1998). 495 

44 Bozzuto, C. & Ives, A. R.     (2020). 496 

45 Durbin, J. & Koopman, S. J. Time Series Analysis by State Space Methods. 2nd edn,  497 

(Oxford University Press, 2012). 498 

46 Harvey, A. C. Forecasting, structural time series models and the Kalman filter.  499 

(Cambridge University Press, 1989). 500 

47 Li, Q. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–501 

Infected Pneumonia. New England Journal of Medicine 382, 1199-1207, 502 

doi:10.1056/NEJMoa2001316 (2020). 503 

48 Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with 504 

COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 395, 1054-1062, 505 

doi:10.1016/S0140-6736(20)30566-3 (2020). 506 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 24 

49 Wood, S. N. Generalized additive models: an introduction with R.  (CRC Press, 507 

Chapman and Hall, 2017). 508 

50 Cressie, N. A. C. Statistics for spatial data.  (John Wiley & Sons, 1991). 509 

51 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and lonlinear 510 

mixed effects models. R package version 3.1-147.  (2020). <https://CRAN.R-511 

project.org/package=nlme>.>. 512 

52 Petersen, K. B. & Pedersen, M. S.     (Technical University of Denmark, 2012). 513 

53 Di Lorenzo, P. usmap: US Maps Including Alaska and Hawaii. R package version 514 

0.5.0.9999.  (2020). <  https://usmap.dev>. 515 

54 Yu, G. scatterpie, R package version 0.1.4.  (2019). <https://CRAN.R-516 

project.org/package=scatterpie>. 517 

55 Flaxman, S. & et al. State-level tracking of COVID-19 in the United States. Report 23, 518 

Imperial College London (2020). 519 

56 Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models.  520 

(Cambridge University Press, 2007). 521 

57 Efron, B. & Tibshirani, R. J. An introduction to the bootstrap.  (Chapman and Hall, 522 

1993). 523 

58 Ferretti, L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with 524 

digital contact tracing. Science 368, eabb6936, doi:10.1126/science.abb6936 (2020). 525 

  526 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 25 

Table 1. For 160 county and county-aggregates, results of the regression of the estimates of the 527 

initial spread rate, r0, against (i) the date of outbreak onset, (ii) total population size and (iii) 528 

population density, in which (iv) spatial autocorrelation is incorporated into the residual error. 529 

Transforms of population size and density were selected to best-fit the data and satisfy linearity 530 

assumptions. The coefficient column contains the estimate of the regression parameters with 531 

their associated t-tests; spatial autocorrelation is characterized by a range and nugget for regional 532 

and local sources of variation, and their joint significance is given by a likelihood ratio test. For 533 

the overall model, R2pred = 0.69, and the residual standard error is 1.11.  534 

 535 

  Coefficient  SE t P partial R2
pred 

onset -0.0018 0.0004 -4.28 10–4 0.093 

log(size) 0.0242 0.0028 8.59 < 10–8 0.34 

density1/4 0.010 0.0017 5.68 < 10–8 0.13 

space 
range = 3.88 

nugget = 0.39 
 c2

2 = 59 < 10–8 0.42 

 536 

  537 
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 538 

Fig. 1. Estimates of initial spread rate, r0, for 124 counties (gray) and 36 county-aggregates 539 

(blue) with 66% (bars) and 95% (whiskers) bootstrapped confidence intervals.  540 
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 542 

 543 

 544 

Fig. 2. Estimates of initial spread rates, r0, after correcting for the effects of outbreak onset and 545 

the population size. (A) Effect of population density: Northeast, black circles; Midwest, cyan 546 

diamonds; South, blue x’s; West, red triangles. (B) Effect of spatial proximity depicted by 547 

computing correlations in bins representing 0-100 km, 100-200 km, etc. The line gives the 548 

correlation of the residuals from the fitted regression. 549 
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 551 

Fig. 3. Spatial distribution of strains of SARS-CoV-2 having the G614 mutation in the spike 552 

gene at the outbreak onset among states. Pie charts give the proportion of samples in states 553 

collected within 30 days following the outbreak onset that are in the G clades (blue) 21. The size 554 

of the pie is proportional to the residual values of r0 after removing the effects of the timing of 555 

outbreak onset, population size represented by the time series, and population density. For each 556 

state, we used the estimate of r0 corresponding to the county or county-aggregate that had the 557 

greatest number of deaths. 558 

  559 

19A, 20A, 20B, 20C

Clade 19B

G614
D614

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 29 

 560 

Fig. 4. (A,B) Raw and corrected estimates of R0 for 160 counties and county-aggregates. The 561 

predicted R0 values are obtained from the regression model, with corrections to standardize 562 

values to an outbreak onset of 11 March, 2020, and a population size equal to the most populous 563 
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county. Comparing the raw estimates of R0 (A) and the corrected R0 values (B) shows the 564 

predictive power of the regression analysis. We thus used the regression model to predict R0 for 565 

all counties. (C,D) To illustrate the prediction process for the northeastern states, the raw 566 

estimates (C) are all the same for county-aggregates and could not be made for some states 567 

(gray). In contrast, the predictability R0 in the regression model allows for better estimates (D). 568 

This makes it possible to extend estimates of R0 to all 3109 counties in the conterminous USA 569 

(E). 570 

  571 
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Overview of Statistical Methods 595 

 The rate of spread of a disease in a population at the early phase of an epidemic, r0, when 596 

the entire population is susceptible depends on the basic reproduction number, R0, giving the 597 

number of secondary infections produced per infected individual, and the distribution of the time 598 

between primary and secondary infections. Thus, if the spread rate and distribution of infection 599 

times can be estimated, R0 can then be calculated. Our strategy is to estimate r0 as the most direct 600 

parameter associated with the dynamics of an epidemic, and then subsequently estimate R0. The 601 

advantages of calculating r0 include: (i) it captures all of the real-life complexities that affect R0 602 

by simply observing what happened in real life, and (ii) it uses data that are (tragically) 603 

becoming more prevalent. The challenges include (i) the changes in r(t) that are to be expected 604 

(and hoped for) as people and governments respond to lessen the spread, and (ii) the statistical 605 

challenges and uncertainties of determining rates of disease spread when the numbers of deaths 606 

are still low. 607 

  We developed and tested statistical methods to overcome the two challenges of 608 

estimating R0 from death data. Because the rate of spread of a disease may change rapidly in 609 

response to actions that are taken to reduce disease transmission, we used a time-varying 610 

autoregressive model that allows for the rate of spread to change through time, r(t). Other models 611 

take a related approach 6,55. The second challenge is that the counts of deaths at the beginning of 612 

an epidemic are low. To account for this, the time-series model includes increased uncertainty 613 

(measurement error) that depends on the time-varying estimate of the number of deaths. Standard 614 

(asymptotic) approaches often have poor statistical properties (type I errors, correctly calculated 615 

confidence intervals) when sample sizes are small 56. Therefore, we use bootstrapping 57 in which 616 

simulation time series are reconstructed to share the same pattern as the observed time series; a 617 
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large number of simulated time series are then fit using the same statistical model as used to fit 618 

the original data. This bootstrapping procedure thus gives estimates and confidence intervals for 619 

model fit to the real data. Note that our approach is frequentist, in comparison to the majority of 620 

models that use a Bayesian framework. 621 

 Our approach focuses on estimating the time-varying rate of spread, r(t), of the number of 622 

deaths. Our rationale is that, for statistical fitting, it is better to keep the model as simple as 623 

possible, rather than "building in" assumptions about the processes of infection, reporting, and 624 

death. Our simple phenomenological model uses the same data as more complicated, process-625 

based models, and therefore both approaches ultimately rely on the same information. The 626 

simpler approach, however, does not depend on assumptions about the infection processes. 627 

Instead, after estimating r0, we computed R0 as 1/Ste-r(t)tp(t), where t is the number days after 628 

initial infection, and p(t) is the proportion of secondary infections produced per infected 629 

individual at t 15. This expression assumes that deaths (removal of individuals from the 630 

population) occur after all secondary infections have occurred. We used the distribution of p(t) 631 

that was estimated using contact tracing in Wuhan, China 47. 632 

 To validate the statistical method, we constructed a simulation model of the transmission 633 

process and spread of infections iterated on a daily time scale. Our simulations considered 634 

scenarios in which the transmission rate changed through time either in steps or gradually to 635 

capture the extremes of possible changes in real R(t). We varied the initial R0 and duration of 636 

simulations to produce epidemics that qualitatively match the county data we analyzed. Changes 637 

in our estimates of r(t) tended to lag behind changes in the true (simulated) value of r(t) (gray 638 

line and regions in Fig. S1A,B), and therefore we also estimated r(t) in the reverse direction 639 

(blue line and regions in Fig. S1A,B). For the estimate of the initial r0, we averaged the estimates 640 
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from the forward and reverse time series. For the scenario of step changes in R(t) (Fig. S1 C), the 641 

estimates were unbiased and had accurate confidence intervals, although for the scenario of 642 

gradual changes (Fig. S1 D), there was some downwards bias. Nonetheless, the estimates of 643 

initial R0 captured the order of simulations according to the true R0. In contrast, fitting the same 644 

time series with a commonly used Bayesian model that incorporates the transmission process 645 

given in the R package EpiEstim 13 gave estimates that poorly reflect the true (simulated) initial 646 

R0 (Fig. S1 E,F). 647 

 We also used the simulation model to investigate the properties of the statistical method 648 

when the number of deaths was low, as occurred in some time series. Reducing the simulated 649 

values of R0 reveals that the estimates of r0 become biased downwards when the maximum 650 

number of reported deaths per day drops below 15 (Fig. S2). This is due to the time series 651 

containing too little information about the rate of increase in the number of mortalities for 652 

accurate estimates. Because we did not think that our method (or any other) could overcome this 653 

challenge, we incorporated population size encompassed by a time series in the subsequent 654 

regression analysis. We used population size rather than the maximum number of deaths, 655 

because this would introduce a confounding effect: time series with higher r0 will likely have 656 

higher numbers of deaths. 657 

 In order to extrapolate the estimates of R0 from 160 time series to the remaining counties 658 

in the conterminous USA, we a priori selected four predictors. We selected population size 659 

encompassed by the time series to account for possible downwards bias in sparse datasets. We 660 

selected the Julian date of the outbreak onset to factor out public and private responses to 661 

COVID-19. We included population density, because it could potentially affect transmission 662 

rates. Population size and density were weakly and negatively correlated among the 160 time 663 
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series (Pearson correlation between log population size and log density = –0.25), and therefore 664 

there were no problems with multicollinearity. Finally, the regression model included spatial 665 

autocorrelation based on the latitude and longitude of the midpoint of the counties or county 666 

aggregates. Because the regression model had residual variance that was only slightly high than 667 

the variance of the estimates of r0 that the regression predicted, the precision of the estimates 668 

from the regression for the counties without time series will be on par with the precision of the 669 

counties with time series. 670 

 671 

Simulation model 672 

 To assess the robustness of the statistical model, we built a simulation SIR (susceptible-673 

infected-recovered) model of a hypothetical epidemic. The simulation model was not the same as 674 

the statistical model, so the goal was to determine whether the phenomenological statistical 675 

model was capable of capturing the rate of infection spread in the process-based simulations. 676 

 The simulation model tracks the number of infected individuals on day t who were 677 

infected t days previously, X(t;t). After 25 days, they are all assumed to be recovered or dead. 678 

The probability distribution of the day on which a susceptible is infected, p(t), is given by a 679 

Weibull distribution with mean 7.5 days and standard deviation 3.4 (23) (Fig. S3 A). For an 680 

individual who dies, the day of death, d(t), is given by a Weibull distribution with mean 18.5 681 

days and standard deviation 3.4 47 (Fig. S3 B). Finally, for case data we need to know the time 682 

between initial infection and diagnosis, h(t), which we assume is lognormally distributed with 683 

mean 5.5 days and standard deviation 2.2 58 (Fig. S3 C). 684 

 On day t, the number of new infections produced by individuals who were infected t days 685 

earlier is b(t) p(t). The term b(t) is closely related to R(t), the number of secondary infections 686 
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caused per infection. However, because we allow b(t) to fluctuate on a daily basis, here we use a 687 

notation that differs from R(t). Note, however, that on average R(t) = St b(t + t) p(t). The total 688 

number of new infections on day t is given by a lognormal Poisson distribution in which the 689 

mean of the Poisson process is b(t) a(t) St p(t)X(t;t), where the lognormal random variable a(t) 690 

is included to represent environmental variation.  691 

 Deaths occur according to a binomial distribution for each infection age category X(t;t), 692 

so that the probability of death of individuals that had been infected t days earlier is (1 – s) b(t) 693 

d(t), where s is the overall survival probability and b(t) is a lognormal distribution. We assume 694 

that the overall survival probability for COVID-19 is 98%; changes in this assumption had little 695 

effect on the simulation study. Once an individual dies, they are removed from the pool of 696 

individuals. 697 

 To illustrate the simulations, we assumed that the expectation of the infection rate, b(t), 698 

changes as a step function (Fig. S4 A, black line), while there is also daily variation around this 699 

expectation (Fig. S4 A, points). We also calculated R(t) from the asymptotic rate of disease 700 

spread (Fig. S4 A, red line). This shows that the expected daily infection rate, b(t), is closely 701 

related to the population-level R(t). Over the simulated time series of 60 days, we then recorded 702 

the number of deaths (Fig. S4 B) and diagnosed cases (Fig. S4 C). We initiated the simulation 703 

with a single cohort of individuals, all infected on day 1 (Fig. S4 C, filled black dot). This gives 704 

the "worst-case" situation in which the distribution of time-since-infection is far from the stable 705 

age distribution.  706 

 We fit this simulated dataset using the same procedure as we used for the real data, 707 

including the same rules to determine which day to initiate the fitted time series (Fig. S1 A).  708 
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We performed a similar exercise while assuming that the expectation of the infection rate, b(t) 709 

changes geometrically, producing a linear change in r(t) (Fig. S1 B). In this particular example, 710 

the estimated values of r(t) are below the true values in the simulation in the first part of the time 711 

series. Because there was a lag in response of the estimates of r(t) relative to b(t), we fit the time 712 

series in both the forward and reversed directions, and we averaged these values (and their 713 

confidence intervals) for the final estimates. Note that this is possible in our approach, because 714 

we estimate r(t) rather than R(t). 715 

 We performed 100 simulations with the expectation of b(t) changing as either a step 716 

function (Fig. S1 C) or geometrically (Fig. S1 D), to assess the overall robustness of the 717 

modeling approach. Simulations were performed by changing the initial value of b(t). Because 718 

higher values of b(t) led to much higher numbers of deaths, we shorted the intervals between step 719 

changes and increased the decline in geometric changes in b(t) to roughly match the observed 720 

time series. Specifically, the simulated time series ranged in length from 55 to 150 days: for the 721 

case of step changes, the time series were broken into three equal periods, and for the case of 722 

geometric changes, the ending value of b(t) was kept the same. We also estimated R(t) using the 723 

R package EpiEstim under default control parameters 13. EpiEstim has the same general structure 724 

of many of the Bayesian models that estimate R(t) directly using information about the 725 

transmission process (Fig. S1 E,F). Even though EpiEstim is structurally more complicated than 726 

our model, it tended to give values of R0 that were biased upwards when the true value was low, 727 

and biased downward when the true value was high. Finally, we investigated the bias in our 728 

estimates of r0 when the maximum number of deaths in a time series was low by simulating time 729 

series for 20 to 70 days, using an initial value of b(t) to correspond to R0 = 4, and changing the 730 

timing of step changes or the rate of geometric decline of b(t) to correspond to the length of the 731 
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time series. The simulations show that the estimates of r0 are downward biased when the total 732 

numbers of counts are low (Fig. S2). 733 

 734 

Analysis of Nextstrain metadata of SARS-CoV-2 strains 735 

In the analyses presented in the main text, we used the GISAID metadata to test the 736 

specific assumption that the G614 mutation increases the rate of spread of SARS-CoV-2. Prior to 737 

this analysis, however, we analyzed a subset of the genomic data available from Nextstrain 23. 738 

We present this analysis here, because it was a naïve analysis that did not have a specific 739 

hypothesis about what strains might lead to higher spread rates. Instead, we asked whether the 740 

proportion of different Nextstrain clades (19A, 19B, 20A, 20B, 20C in the USA) within a 741 

population were related to r0 estimates. We used the same statistical approach as we present for 742 

the GISAID metadata, except we included the proportion of strains from clades 19A, 19B, 20A, 743 

and 20B instead of the proportion in the G clades containing mutation G614; we excluded the 744 

largest clade, 20C, because the sums of the proportions must add to one, and therefore all of the 745 

information about the distribution of strain 20C among states is contained in the distribution of 746 

the other clades. We found that the proportion of samples within clade 19B had a negative effect 747 

on r0 (P = 0.019, Table S2). The high proportion of strains from 19B in the Pacific Northwest 748 

and the Southeast were associated with lower values of r0 (Fig. 3).  749 

 750 

  751 
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Supplementary figures and tables 752 

 753 

 754 

Fig. S1. Simulation study of fitting methods to epidemic death data. Simulations were fit with 755 

the time-varying autoregression model (TVA) in the forward (black line with dark and light gray 756 

regions giving 66% and 95% approximate confidence intervals) and reverse (blue line and 757 

regions) directions when the true value of R(t) (red line) shows either (A) a step or (B) gradual 758 

changes. For each simulation, the forward and reverse estimates were averaged to give an 759 
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estimate of R0 with 95% confidence intervals, which are plotted against the true values of R0 for 760 

step (C) and gradual (D) changes in R(t). The same simulations with fit using EpiEstim (E,F). 761 

  762 
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 763 

 764 

 765 

Fig. S2. Simulation study of the estimation of r0 from the forward and reverse time-varying 766 

autoregressive model for different population sizes. Simulations following those used for Fig. 1 767 

were performed assuming r(t) changed either (A) in steps or (B) gradually. The simulations were 768 

performed using the same initial value of r0, but the length of time of the simulation was varied 769 

to change the maximum number of deaths that occurred. Due to the stochastic nature of the 770 

simulations, the realized value of r0 when the analysis was started differed among time series 771 

when r(t) changed gradually (red points in B), while they were all 0.22 when r(t) was changed in 772 

steps (A). The median in the maximum number of deaths among the real county time series was 773 

21. 774 

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

5 10 20 50

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

Maximum number of deaths

Es
tim

at
ed

 r0

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●● ● ●● ●● ● ●●●● ●● ●● ●●● ●● ●●● ●●●● ●●● ● ●●

A

●
●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●

●●
●●

●

●

5 10 20 50 100

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

Maximum number of deaths
Es

tim
at

ed
 r0

●
●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●

●●
●●

●

●

●
●

●

●
●

●●
●

●

●
●●
●

●●

●

●

●

●
● ● ●

●
●● ●

●
●
●
●
●

●●

B

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.18.20134700doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134700
http://creativecommons.org/licenses/by-nc/4.0/


 42 

 775 

 776 

Fig. S3. Probability distributions used in the process-based SIR simulation model used to test 777 

methods for robustness. (A) The probability distribution of the day on which a susceptible is 778 

infected, p(t), which is given by a Weibull distribution with mean 7.5 days and standard 779 

deviation 3.4. (B) For an individual who dies, the day of death, d(t), which is given by a Weibull 780 

distribution with mean 18.5 days and standard deviation 3.4. (C) For case data, the time between 781 

initial infection and diagnosis, h(t), which is lognormally distributed with mean 5.5 days and 782 

standard deviation 2.2. 783 
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 784 

Fig. S4. Example simulation from the process-based SIR model. (A) Changes in the infection 785 

rate, b(t), are modeled as a step function (black line) with daily variation (points). R0(t) (red line) 786 

tracks changes in b(t). (B) and (C) The number of deaths (B) and diagnosed cases (C) when the 787 

simulation is initiated with a single cohort of individuals, all infected on day 1 (solid black dot).  788 
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 790 

Fig. S5. Spatial distribution of the 19B clade of SARS-CoV-2 at the outbreak onset among 791 

states. Pie charts give the proportion of samples in states collected within 30 days following the 792 

outbreak onset that are in the 19B clade (blue). The size of the pie is proportional to the residual 793 

values of r0 after removing the effects of the timing of outbreak onset, population size 794 

represented by the time series, and population density. For each state, we used the estimate of r0 795 

corresponding to the county or county-aggregate that had the greatest number of deaths. 796 

 797 

  798 
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Table S1. Separate spreadsheet giving the following variables for the 3109 counties in the 799 

conterminous USA. 800 

 801 

Variable Description 

ST two-letter state abbreviation 

state_county state abbreviation with county name 

fips FIPS identifier for counties 

lon longitude 

lat latitude 

death.max maximum number of daily deaths 

start.date state date of the analyzed time series 

end.date end date of the analyzed time series 

den population density 

r0.est estimate of r0 from time-series analyses 

r0.est.se standard error of the estimate of r0 from bootstrapping 

r0.est.cor corrected estimate of r0 removing start.date and the population size 

r0.l66.cor lower 66% confidence interval of the corrected estimate of r0 

r0.u66.cor upper 66% confidence interval of the corrected estimate of r0 

r0.pred predicted estimate of r0 from the regression model 

r0.pred.se standard error of the predicted estimate of r0  

R0.pred predicted estimate of R0 from the predicted estimate of r0 

R0.pred.l66 lower 66% confidence interval of the predicted estimate of R0 

R0.pred.u66  upper 66% confidence interval of the predicted estimate of R0 
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Table S2. Regression of the initial spread rate, r0, of COVID-19 against (i) the date of outbreak 802 

onset, (ii) total population size, (iii) population density, and (iv) the proportion of samples of 803 

SARS-CoV-2 containing the G614 mutation in the spike gene 21. The estimates of r0 were for the 804 

county or county-aggregate with the greatest number of deaths in the state. All genetic samples 805 

were collected within 30 days following the onset of outbreak in a county. Twenty-eight states 806 

had five or more genetic samples, and only these states are included in the regression. 807 

 808 

  Coefficient  SE t P 

onset –0.0027 0.0013 –2.23 0.036 

log(size) 0.022 0.009 2.46 0.022 

density1/4 0.013 0.005 2.85 0.009 

G614 0.124 0.048 2.60 0.016 

  809 
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Table S3. Regression of the initial spread rate, r0, of COVID-19 against (i) the date of outbreak 810 

onset, (ii) total population size, (iii) population density, and (iv) the proportion of samples of 811 

SARS-CoV-2 in four of the five clades identified in 24. The estimates of r0 were for the county or 812 

county-aggregate with the greatest number of deaths in the state. All genetic samples were 813 

collected within 30 days following the onset of outbreak in a county. Twenty-seven states had 814 

five or more genetic samples, and only these states are included in the regression. Transforms of 815 

population size and density were selected to best-fit the data and satisfy linearity assumptions.  816 

 817 

  Coefficient  SE t P 

onset 0.0027 0.0014 –1.88 0.076 

log(size) 0.023 0.010 2.18 0.042 

density1/4 0.015 0.005 3.00 0.007 

19A -0.083 0.091 -0.91 0.37 

19B -0.134 0.052 -02.54 0.019 

20A -0.034 0.055 -0.71 0.48 

20B 0.008 0.165 -0.05 0.96 

  818 
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Table S4. Variables giving population characteristics that were including in the regression model 819 

(equation S3). No variable was statistically significant. Data from 29,30. 820 

 821 

Variable Description 

median age median age 2010 

adult obesity incidence of adult obesity 

diabetes incidence of adult diabetes 

education percent bachelor's degree or higher, 2005-2009 

income median earnings 2010 

poverty percentage people below federal poverty threshold 

economic equality Gini index 

race percent White, non-Latino 

political leaning  proportion of votes cast for Donald Trump, 2016 

 822 

  823 
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Table S5. For 160 county and county-aggregates, regression of spread rate at the end of the time 824 

series, corresponding to 5 May, 2020, r(tend), against (i) the date of outbreak onset, (ii) total 825 

population size and (iii) population density, in which (iv) spatial autocorrelation is incorporated 826 

into the residual error. Transforms of population size and density were selected to best-fit the 827 

data and satisfy linearity assumptions. The coefficient column contains the estimate of the 828 

regression parameters with their associated t-tests; spatial autocorrelation is characterized by a 829 

range and nugget for regional and local sources of variation, and their joint significance is given 830 

by a likelihood ratio test. For the overall model, R2pred = 0.38. 831 

 832 

  Coefficient SE t P partial R2
pred 

onset 0.0021 0.0003 6.40 < 10–8 0.17 

log(size) 0.0097 0.0021 4.61 < 10–6 0.083 

density1/4 -0.0008 0.0013 -0.57 0.57 0.003 

space 
range = 0.29 

nugget = 0.18 
 c2

2 = 10.3 0.0056 0.099 

 833 
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