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Question How does higher genetic liability for Alzheimer’s disease affect the phenome 

across the life course and do any phenotypes causally affect incidence of disease? 

Findings In this population-based cohort study of 334,968 participants, higher genetic risk 

for Alzheimer’s disease was associated with medical history (e.g. higher odds of diagnosis of 

atherosclerotic heart disease), cognitive (e.g. lower fluid intelligence score), physical (e.g. 

lower forced vital capacity) and blood-based measures (e.g. lower haematocrit) as early as 

39 years of age.  

Meaning Most of the identified phenotypes are likely to be symptoms of prodromal 

Alzheimer’s disease, rather than causal risk factors. 
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ABSTRACT 

Importance Alzheimer’s disease is the leading cause of disability and healthy life years lost. 

However, to date, there are no proven causal and modifiable risk factors, or effective 

interventions. 

Objective We aimed to identify: a) factors modified by prodromal Alzheimer’s disease 

pathophysiology and b) causal risk factors for Alzheimer’s disease. We identified factors 

modified by Alzheimer’s disease using a phenome-wide association study (PheWAS) on the 

Alzheimer’s disease polygenic risk score (PRS) (p≤5×10-8), stratified by age tertiles. We 

used two-sample bidirectional Mendelian randomization (MR) to estimate the causal effects 

of identified risk factors and correlates on liability for Alzheimer’s disease. 

Design, setting, and participants 334,968 participants of the UK Biobank aged 39 to 72 

years old (111,656 in each tertile) met our eligibility criteria. 

Exposures Standardized weighted PRS for Alzheimer’s disease at p≤5x10-8. 

Main outcomes and measures All available phenotypes in UK Biobank, including data on 

health and lifestyle, as well as samples from urine, blood and saliva, at the time of analysis.  

Results Genetic liability for Alzheimer’s disease was associated with red blood cell indices 

and cognitive measures at all ages. In the middle and older age tertiles, ages 53 and above, 

higher genetic liability for Alzheimer’s disease was adversely associated with medical history 

(e.g. atherosclerosis, use of cholesterol-lowering medications), physical measures (e.g. body 

fat measures), blood cell indices (e.g. red blood cell distribution width), cognition (e.g. fluid 

intelligence score) and lifestyle (e.g. self-reported moderate activity). In follow-up analyses 

using MR, there was only evidence that education, fluid intelligence score, hip 

circumference, forced vital capacity, and self-reported moderate physical activity were likely 

to be causal risk factors for Alzheimer’s disease. 
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Conclusion and relevance Genetic liability for Alzheimer’s disease is associated with over 

160 phenotypes, some as early as age 39 years. However, findings from MR analyses imply 

that most of these associations are likely to be a consequence of prodromal disease or 

selection, rather than a cause of the disease. 
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INTRODUCTION 

Alzheimer’s disease is a late-onset irreversible neurodegenerative disorder, constituting the 

majority of dementia cases.1 Despite major private and public investments in research, there 

are no effective treatments for preventing the disease.2 Many risk factors and biomarkers 

have been identified to associated with risk of Alzheimer’s disease.3 99.6% of treatments 

developed to halt Alzheimer’s disease failed in phase I, II, or III trials.4 One explanation for 

these failures are that the identified risk factors and drug targets are a consequence of 

Alzheimer’s disease, rather than its underlying cause.  

Genetic epidemiologic methods, such as Mendelian randomization (MR) can potentially 

provide more reliable insights into the causal mechanisms underlying the associations 

between risk factors and disease.5 To date, hypothesis-driven MR studies have found mixed 

evidence for a causal role of cardiovascular risk factors in the development of Alzheimer’s 

disease.6–8 

Phenome-wide association studies (PheWAS) are a hypothesis-free method, similar to 

genome-wide association studies (GWAS), which estimate the associations between a 

genotype or polygenic risk score (PRS) and the phenome.9 PheWAS elucidate the 

phenotypic consequences of Alzheimer’s disease, and critically when in the life course these 

effects emerge. We estimated the associations of genetic liability for Alzheimer’s disease 

and the phenome by age (Fig 1a). We then tested whether the identified phenotypes were a 

cause or a consequence of Alzheimer’s disease using bidirectional MR (Fig 1b). 

METHODS 

Study design 

Our analysis proceeded in two steps. First, we ran a PheWAS of the Alzheimer’s disease 

PRS and all available phenotypes in UK Biobank, stratifying the sample by age. Second, we 

followed-up all phenotypes associated with the PRS using two-sample MR. We outline the 

research questions answered by the PheWAS and the MR approach in Fig 1. 
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Sample description 

UK Biobank is a population-based study of 503,325 people recruited between 2006 and 

2010 from across Great Britain.10,11 A full description of the study design, participants and 

quality control (QC) methods have been published previously.11 In total, a sample of 334,968 

remained after QC (Supplementary Fig 1).   

Polygenic Risk Score 

We constructed a standardized weighted PRS including single nucleotide polymorphisms 

(SNPs) associated with Alzheimer’s disease at p≤5×10-8 for UK Biobank participants, based 

on the summary statistics from a meta-analysis of the IGAP consortium,12 ADSP 13 and PGC 

14 (24,087 cases and 55,058 controls) (details in Supplementary material). Our main analysis 

used the PRS including variants near the APOE gene (Chr 19: 44,400 kb-46,500 kb).15 The 

APOE region explains a large proportion of the variance in the polygenic risk score 

(R2=84%). The PRS was standardized by subtracting the mean and dividing by the standard 

deviation (SD) of the PRS. 

Main analysis 

The full UK Biobank sample was divided into three subsamples (n=111,656 in each tertile). 

We performed PheWAS within each tertile. Age, sex and first 10 genetic principal 

components were included as covariates.  

Outcomes 

The Biobank data showcase enables researchers to identify variables based on the field 

type (http://biobank.ctsu.ox.ac.uk/showcase/list.cgi). There were 2,655 fields of the following 

types: integer, continuous, categorical (single and multiple). We excluded 55 fields a priori 

including age and sex, and technical variables (e.g. assessment center) (Supplementary 

Table 2). 
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STATISTICAL ANALYSES 

Phenome-wide association study 

We estimated the association of an Alzheimer’s disease PRS with each phenotype in the 

three age strata using PHESANT (version 14). A description of PHESANT’s automated rule-

based method is published elsewhere.16 We accounted for the multiple tests performed by 

generating adjusted p-values, controlling for a 5% false discovery rate. The threshold (≤0.05) 

was used as a heuristic to identify phenotypes to follow-up in the MR analysis and not as an 

indicator of significance.17,18 Categories for the ordered categorical variables are in 

Supplementary Table 3. 

Sensitivity analysis 

We repeated the PheWAS for the entire sample without stratifying by age to maximize power 

to detect associations. Furthermore, to examine if any detected associations could be 

attributed to the variants in or near the APOE gene, we repeated the PheWAS on the entire 

sample excluding this region from the PRS.  

Follow-up using MR 

We investigated whether the phenotypes identified in our PheWAS or previous reported risk 

factors 3 were a cause or consequence of Alzheimer’s disease using bidirectional two-

sample MR (details in Supplementary material).  For each risk factor identified by the 

PheWAS (in ages 62-72 years) and literature reviews, we identified SNPs that are strongly 

associated (p≤5×10-8) with each trait. SNPs in the APOE region 19 were removed from 

instruments proxying the exposures. 

Alzheimer’s disease GWAS 

We used the same meta-analysis of the IGAP consortium,12 ADSP 13 and PGC as described 

above for the two-sample MR analyses.14 
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Estimating the effect of risk factors on Alzheimer’s disease 

We harmonized the exposure and outcome GWAS (details in Supplementary material). We 

estimated the effect of each exposure on Alzheimer’s disease using MR and the inverse-

variance weighted (IVW) estimator; this estimator assumes no directional horizontal 

pleiotropy.5 We used the F-statistic as a measure of instrument strength.20 We present 

adjusted p-values for inverse variance weighted regression accounting for the number of 

results in the follow-up using the false discovery rate method. 

Assessing pleiotropy 

We investigated whether the SNPs had pleiotropic effects on the outcome other than 

through the exposure using Egger regression.21,22 Egger regression allows for pleiotropic 

effects that are independent of the effect on the exposure of interest.21,23,24 We also report 

the I2Gx statistic, 25 an analogous measure to the F-statistic in inverse variance weighted 

regression.  

Assessing causal direction 

We used Steiger filtering to investigate the direction of causation between Alzheimer’s 

disease and the phenotypes.26 Steiger filtering examines whether the SNPs for each of the 

phenotypes used in the two-sample MR explain more variance in the phenotypes than in 

Alzheimer’s disease (which should be true if the hypothesized direction from phenotype to 

Alzheimer’s disease is valid). We repeated MR analyses removing SNPs which explained 

more variance in the outcome than in the exposure. 

Data and code availability: 

The data in the current study were partly provided by the UK Biobank Study 

(www.ukbiobank.ac.uk), received under UK Biobank application no. 16729. Scripts are 

available on Github at: https://github.com/rskl92/AD_PHEWAS_UKBIOBANK.
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RESULTS 

Sample characteristics 

The UK Biobank sample is 55% female (39 to 53 years, mean=47.2 years, SD=3.8 years) in 

tertile 1, 55% female (53 to 62 years, mean=58.03 years, SD=2.4 years) in tertile 2 and 49% 

female (62 to 72 years, mean=65.3 years, SD=2.7 years) in tertile 3. In the whole sample, 

the Alzheimer’s disease PRS was associated with a lower age at recruitment (β: -0.006 

years; 95% CI: -0.01, -0.0002; p=0.007). The mean standardized PRS (95% CI) in each 

tertile was as follows: 0.006 (-0.0003, 0.01); and 0.001 (-0.01, 0.009) and -0.007 (-0.02, 

0.002) (P for trend=0.01). 

Association of Alzheimer’s disease PRS and the phenome 

Selected PheWAS hits are presented in graphs and full results are in Supplementary 

material. Results for continuous outcomes are in terms of a 1 SD change of inverse rank 

normal transformed outcome and log odds or odds for binary or categorical outcomes. A 

higher PRS for Alzheimer’s disease was associated with own diagnosis and family history of 

dementia, diagnoses of cardiovascular diseases, as well as a self-reported history of high 

cholesterol and pure hypercholesterolaemia. Furthermore, participants with a higher PRS 

had an increased risk of using cholesterol-lowering drugs, in addition to beta-blockers and 

aspirin in all age tertiles (Supplementary Fig 3). A higher PRS was associated with lower 

body mass index as well as various body fat measures, lower diastolic blood pressure and 

higher spherical power in the oldest participants (i.e. strength of lens needed to correct 

focus) (Fig. 2). Additionally, participants with higher PRS, on average, performed worse and 

took longer to complete cognitive tests in all ages examined (39 to 72 years) (Fig 3). 

Participants with a higher PRS also had a higher weighted-mean mode of anisotropy in the 

left inferior fronto-occipital fasciculus for participants aged 53 to 72 years (Fig 3). There was 

evidence of association between higher PRS and blood cell composition markers, where 

effects for most of these increased with age (Fig 4). On average, the parents of participants 
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with a higher PRS for Alzheimer’s disease died at a younger age (Supplementary Fig 4). 

There was strong evidence that a higher PRS was associated with healthier dietary choices 

(Supplementary Fig 4) and lifestyles (e.g. frequent exercise) in two oldest tertiles (ages 53-

72 years) (Supplementary Fig 5). For previously implicated factors in Alzheimer’s disease, a 

higher PRS was associated with higher systolic blood pressure only in participants aged 39-

53 years and higher pulse pressure for all age ranges. There was some evidence of an 

association between the PRS and lower number of pack years of smoking for the oldest 

participants (Supplementary Fig 5).  

Sensitivity analysis 

We repeated the analysis estimating the associations of the PRS and the phenotypes for the 

entire sample. We detected associations with more phenotypes (Supplementary Figs 6-9), a 

higher PRS was associated with metabolic dysfunction phenotypes such as diabetes and 

obesity (Supplementary Fig 6);  a higher volume of grey matter in right and left intracalcarine 

and supracalcarine cortices (Supplementary Fig 8); and additional blood-based biomarkers 

(Supplementary Fig 8).  

When we repeated the analysis removing SNPs tagging the APOE region from the PRS 

using the whole sample, we could not replicate most of the hits detected in the oldest tertile. 

The non-APOE PRS was associated with higher odds of own and family diagnosis of 

Alzheimer’s disease (Supplementary Fig 10), in addition to lower odds of family history of 

chronic bronchitis/emphysema (Supplementary Fig 11). There was evidence that the non-

APOE PRS was associated with worse performance in cognitive tests (Supplementary Fig 

12). 

Two-sample MR of UK Biobank phenotypes on Alzheimer’s disease 

We found evidence that a one SD higher genetically predicted hip circumference decreased 

the risk of Alzheimer’s disease (OR: 0.75; 95% CI:0.61,0.90) and that a one SD higher 

genetically predicted forced vital capacity resulted in 22% lower odds of risk for Alzheimer’s 

disease (OR: 0.78; 95% CI:0.67,0.90) (Supplementary table 12). A one SD higher 
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genetically predicted fluid intelligence score reduced the odds of Alzheimer’s disease by 

27% (OR: 0.73; 95% CI:0.59,0.90) (Supplementary table 13). We observed that a higher 

genetic liability of doing more moderate physical activity (at least 10 minutes), but not self-

reported vigorous activity, increased the odds of developing Alzheimer’s disease (OR: 2.29; 

95% CI:1.32, 3.98 and OR: 1.02; 95% CI: 0.33,3.18, respectively) (Supplementary table 16). 

For previously implicated risk factors for Alzheimer’s disease, we found a higher genetic 

liability for having a college degree and A level qualifications reduced risk of Alzheimer’s 

disease.  

Assessing pleiotropy 

Due to the large sample size of the exposures, the instrument strength of all SNPs was 

relatively high (F>30). However, the SNPs used for each body measurement implied highly 

heterogeneous effects on risk of Alzheimer’s disease (all heterogeneity Q statistic 

P<3.37×10-5). This heterogeneity may be due to horizontal pleiotropy (Supplementary Figs 

14-18). The causal effect estimates for forced vital capacity and fluid intelligence score were 

also heterogenous (Supplementary tables 12,13 and Figs 19, 20).  

Assessing causal direction  

We assessed the causal direction using Steiger filtering. We found little evidence that SNPs 

explained more variance in the outcome than the exposure for most results reported in the 

two-sample MR section. However, the effect estimates for MR analyses retaining only the 

SNPs with the true hypothesized causal direction attenuated for body fat percentage, whole 

body fat and fat-free mass (Supplementary Materials). 

Discussion 

To our knowledge, this is the first study to conduct a hypothesis-free phenome-wide scan to 

investigate both how, and at what age, the Alzheimer’s disease PRS affects the phenome.  

The effects of a higher genetic liability for Alzheimer’s disease are stronger in participants of 

ages 62 to 72 years although the direction of effect is largely similar across age groups. We 

investigated whether the effects observed are causes or consequences of the disease 
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process using two-sample bidirectional MR. We found evidence that a minority of traits are 

likely to casually affect liability to Alzheimer’s (Fig 5).  

The PheWAS using all Alzheimer’s disease SNPs (including those in the APOE gene) 

suggested that increased genetic liability for Alzheimer’s disease affected a diverse array of 

phenotypes such as medical history, brain-related phenotypes, physical measures, lifestyle, 

and blood-based measures. However, these effects appear to be largely driven by variation 

in the APOE gene, as our sensitivity analysis excluding the APOE region replicated only 

effects for family history of Alzheimer’s disease and some cognitive measures. These results 

are consistent with observational studies 27–33 and studies in APOE-deficient mice, 34–37 

which demonstrate the multifunctional role of APOE on longevity-related phenotypes such as 

changes in lipoprotein profiles, 34,38–40 neurological disorders,41 type II diabetes,35 altered 

immune response,36 and increased markers of oxidative stress.37 Therefore, this strongly 

suggests that the effects of the Alzheimer’s PRS on the phenome (e.g. atherosclerotic heart 

disease) are likely to be due to biological pathways related to APOE.  

Previous observational studies have reported conflicting evidence on the association of 

cardiovascular risk factors including hypertension with Alzheimer’s disease. The results have 

depended on the age at which these risk factors were measured.42–44 Similarly, in our study, 

a higher PRS for Alzheimer’s disease was associated with lower body mass index and body 

fat in older participants as well as lower diastolic blood pressure. In agreement with some 

previous MR studies,6,7,45,46 we found little evidence that body mass index and blood 

pressure causally affect risk of developing Alzheimer’s disease. Hence, the association 

observed in the PheWAS between the PRS, lower body fat measures and diastolic blood 

pressure is likely to reflect the prodromal disease process. We found evidence that a higher 

self-reported number of days of moderate physical activity increased the odds of Alzheimer’s 

disease. A MR study 47 also found evidence that a higher moderate vigorous physical activity 

was associated with a higher risk of Alzheimer’s disease and increased cerebrospinal fluid 

Aβ42 levels (indicative of higher cerebral amyloid load 48–50).  
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We found genetic risk for Alzheimer’s disease to be associated with several phenotypes 

involving inflammatory pathways such as self-reported wheeze/whistling, monocyte count, 

and blood-based measures. This is in agreement with previous evidence of genetic 

correlations between the Alzheimer’s disease and asthma 51 and longitudinal studies 52,53. In 

our study, red blood cell indices show the earliest evidence of association with the genetic 

risk of Alzheimer’s disease, but we found little evidence that these measures caused 

Alzheimer’s disease using MR indicating that cell composition changes may be an early 

consequence of Alzheimer’s disease pathophysiology. Previous studies found that genetic 

variants associated with red blood cell distribution width are linked to autoimmune disease 

and Alzheimer’s disease.54,55   

We found evidence that a PRS for Alzheimer’s disease was associated with a lower fluid 

intelligence score, as previously reported 56  but not educational attainment. Although 

previous MR studies have suggested that higher educational attainment reduces liability for 

Alzheimer’s disease,6,57,58 a multivariable MR study found little evidence that educational 

attainment directly increased risk of Alzheimer’s disease over and above the underlying 

effects of intelligence.59  

We identified suggestive evidence of a bidirectional relationship between sleep and 

Alzheimer’s disease. Self-reported daytime napping causally reduced risk of Alzheimer’s 

disease and a higher genetic risk for Alzheimer’s resulted in changed sleeping patterns such 

as lower sleep duration, higher frequency of sleeplessness/insomnia and lower frequency of 

daytime napping. Observational studies have shown that increased sleep fragmentation is 

associated with cognitive impairment and dementia 60–62 but the directionality of this 

relationship is unclear.63 

Strengths and limitations  
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The large sample of UK Biobank provided unparalleled statistical power to investigate the 

phenotypic manifestation of a higher genetic liability for Alzheimer’s disease, by age group. 

Furthermore, the systematic approach of searching for effects using PheWAS reduces bias 

associated with hypothesis-driven investigations. 

The Alzheimer’s disease PRSs may have horizontal pleiotropic effects on different traits and 

disorders. However, here we are interested in all of the downstream consequences of 

increased genetic liability to Alzheimer’s disease including pleiotropic mechanism. Our 

results could be explained by collider bias, which may have been introduced into our study 

through selection of the study sample. The UK Biobank includes a highly selected, healthier 

sample of the UK population.64 Compared to the general population, participants are less 

likely to be obese, to smoke, to drink alcohol on a daily basis, and had fewer self-reported 

medical conditions.65 Selection bias may occur if those with a lower genetic liability to 

Alzheimer’s disease and a specific trait (e.g. higher education) are more likely to participate 

in the study. This could induce an association between genetic risk for Alzheimer’s disease 

and the traits in our study.66 Furthermore, if both the PRS for Alzheimer’s disease and the 

examined traits associate with survival, sampling only living people can induce spurious 

associations that do not exist in the general population.67,68 Such bias may have affected our 

findings for body mass, as individuals with higher body mass index and those with higher 

values of the Alzheimer’s PRS are less likely to survive and participate in UK Biobank. The 

PRS for Alzheimer’s disease in our analysis was associated with lower age at recruitment, 

suggesting that older people with higher values of the score are less likely to participate.  

Conclusion 

In this phenome-wide association study, we identified that a higher genetic liability for 

Alzheimer’s disease is associated with 165 phenotypes of 15,403 UK Biobank phenotypes. 

Mendelian randomization analysis follow-up showed evidence that only six of these factors 

were implicated in the etiology of Alzheimer’s disease. We found little evidence that the 
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remaining phenotypes examined are likely to modify the disease process, but rather the 

association with the Alzheimer’s disease PRS is likely to be due to reverse causation or 

selection bias. Further research should exploit the full array of potential relationships 

between the genetic variants implicated in Alzheimer’s disease, intermediate phenotypes, 

and clinical phenotypes by using other omics and phenotypic data to identify potential 

biological pathways changing the risk of Alzheimer’s disease. 
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Fig 1. Diagram (A) describes our study design when conducting a phenome-wide 
association study (PheWAS) and diagram (B) describes our study design when using MR. In 
(A), the PRS for Alzheimer’s disease may either have a downstream causal effect on the 
trait (e.g. body mass index), or it may affect the trait through pathways other than through 
Alzheimer’s disease (i.e. pleiotropic effects). Diagram (B) describes our follow-up analysis 
using MR to establish causality and directionality of the observed associations. In (B), we 
test the hypothesis that the trait (e.g. body mass index) causally affects liability to 
Alzheimer’s disease, provided that the conditions (i), (ii), and (iii) are satisfied. The PRS for 
the trait of interest is a valid instrument, in that (i) the SNPs for a trait are strongly associated 
with the trait they proxy (relevance), (ii) there are no confounders of the SNPs-outcome 
relationship (independence), and (iii) the SNPs only affect the outcome via their effects on 
the trait of interest (exclusion restriction). 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2019.12.18.19013847doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.18.19013847
http://creativecommons.org/licenses/by/4.0/


 

  

Fig 2. Forest plot showing the effect estimates for the association between the polygenic 
score for Alzheimer’s disease (including the apolipoprotein E region) and physical measures. 
Legends in the right of each graph indicate age tertiles. Effect estimates are shown by box 
markers and confidence bands represent 95% confidence intervals. There is evidence that 
the PRS for Alzheimer’s disease is related to physical measures in older, but not younger 
participants. This suggests that Alzheimer’s disease causes these changes rather than vice 
versa. 
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Fig 3. Forest plot showing the effect estimates for the association between the polygenic 
score for Alzheimer’s disease (including the apolipoprotein E region), cognitive, and brain-
related measures. Legends in the right of each graph indicate age tertiles. Effect estimates 
are shown by box markers and confidence bands represent 95% confidence intervals. 
*Effect estimates were derived from ordered logistic models and effect estimates are on log 
odds scale. We found evidence that the PRS for Alzheimer’s disease is related to some 
cognitive measures in all age ranges examined. This may suggest a bidirectional 
relationship between cognitive measures and Alzheimer’s disease. 
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Fig 4. Forest plot showing the effect estimates for the association between the polygenic 
score for Alzheimer’s disease (including the apolipoprotein E region) and biological 
measures. Legends in the right of each graph indicate age tertiles. Effect estimates are 
shown by box markers and confidence bands represent 95% confidence intervals. There is 
an age-dependent increase in the effect of the polygenic risk score on blood-based 
measures. This may indicate that blood-based markers may be causal in the development of 
Alzheimer’s disease. 
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Fig 5. Association of Alzheimer’s disease PRS with phenome, and estimated effect of 
each phenotype using MR. + and – indicate the direction of the coefficient for 
phenotypes associated with Alzheimer’s disease using two-sample MR. X represents 
associations which were consistent with the null. 
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