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Abstract 27 

Emerging evidence suggests that a complex interplay between human papillomavirus (HPV), 28 

microbiota, and the cervicovaginal microenvironment contribute to HPV persistence and 29 

carcinogenesis. Integration of multiple omics datasets is predicted to provide unique insight into 30 

HPV infection and cervical cancer progression. Cervicovaginal specimens were collected from a 31 

cohort (n=100) of Arizonan women with cervical cancer, cervical dysplasia, as well as HPV-32 

positive and HPV-negative controls. Microbiome, immunoproteome and metabolome analyses 33 

were performed using 16S rRNA gene sequencing, multiplex cytometric bead arrays, and liquid 34 

chromatography-mass spectrometry, respectively. Multi-omics integration methods, including 35 

neural networks (mmvec) and Random Forest supervised learning, were utilized to explore 36 

potential interactions and develop predictive models. Our integrated bioinformatic analyses 37 

revealed that cancer biomarker concentrations were reliably predicted by Random Forest 38 

regressors trained on microbiome and metabolome features, suggesting close correspondence 39 

between the vaginal microbiome, metabolome, and genital inflammation involved in cervical 40 

carcinogenesis. Furthermore, we show that features of the microbiome and host 41 

microenvironment, including metabolites, microbial taxa, and immune biomarkers are predictive 42 

of genital inflammation status, but only weakly to moderately predictive of cervical cancer state. 43 

Different feature classes were important for prediction of different phenotypes. Lipids (e.g. 44 

sphingolipids and long-chain unsaturated fatty acids) were strong predictors of genital 45 

inflammation, whereas predictions of vaginal microbiota and vaginal pH relied mostly on 46 

alterations in amino acid metabolism. Finally, we identified key immune biomarkers associated 47 

with the vaginal microbiota composition and vaginal pH (MIF and TNFα), as well as genital 48 

inflammation (IL-6, IL-10, leptin and VEGF). Integration of multiple different microbiome “omics” 49 

data types resulted in modest increases in classifier performance over classifiers trained on the 50 
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best performing individual omics data type. However, since the most predictive features cannot 51 

be known a priori, a multi-omics approach can still yield insights that might not be possible with 52 

a single data type. Additionally, integrating multiple omics datasets provided insight into different 53 

features of the cervicovaginal microenvironment and host response. Multi-omics is therefore 54 

likely to remain essential for realizing the advances promised by microbiome research. 55 

Running title: Multi-omics and cervicovaginal cancer microenvironment 56 

Keywords: immunoproteome; metabolome; microbiome; HPV; cervical carcinogenesis; genital 57 
inflammation; supervised learning 58 
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Background 61 

Despite the availability of preventive measures, such as routine human papillomavirus 62 

(HPV) vaccination and Pap smear screening, cervical cancer remains a major public health 63 

problem, particularly in low- and middle-income countries, with approximately 570,000 new 64 

cases and 311,000 deaths worldwide in 2018 (1). From an epidemiological standpoint, infection 65 

with high-risk HPV types is a well-established risk factor for cervical cancer (2). Genital HPV 66 

infection, although necessary, is not sufficient for development of precancerous cervical 67 

dysplasia and progression to cancer (3), suggesting that other factors in the local cervicovaginal 68 

microenvironment play a role during cervical carcinogenesis (4). 69 

In the last two decades, the human microbiome (collectively the microbiota, or 70 

communities of microorganisms residing in and on the human body, and their theatre of activity 71 

(5) has emerged as a key regulator of mucosal homeostasis at various body sites, including the 72 

female reproductive tract (6). The cervix and vagina in the majority of healthy, reproductive-age 73 

women are colonized by one or few Lactobacillus species, primarily L. crispatus, L. iners, L. 74 

gasseri, or L. jensenii (7). These beneficial microorganisms produce lactic acid (lowering vaginal 75 

pH, typically below 4.5) and other antimicrobial metabolites, as well as block attachment of other 76 

bacteria to the genital epithelium through competitive exclusion mechanisms. In addition, 77 

Lactobacillus spp. stimulate the host to secrete physiological levels of cytokines, antimicrobial 78 

peptides and metabolites (8). 79 

Collectively, multifaceted interactions between Lactobacillus and the host create a 80 

protective microenvironment against invading bacteria, fungi and viruses, including HPV (9). 81 

However, during dysbiosis (disruption of the local microbial ecosystem, such as during disease) 82 

protective Lactobacillus spp. are depleted and replaced by a diverse consortium of obligate and 83 

strict anaerobes, resulting in elevated vaginal pH (10). These changes are associated with 84 

increased risk for adverse gynecologic and reproductive outcomes, including sexually 85 

transmitted infection (STI) acquisition (11). Indeed, several clinical studies have demonstrated 86 
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that HPV infection associates with substantial changes in the cervicovaginal microenvironment, 87 

including shifts in microbial (12-28), metabolic (29, 30) and immunoproteomic profiles (17, 18, 88 

31, 32), as well as vaginal pH levels (17), which might drive HPV persistence and/or disease 89 

progression. 90 

Multiple cross-sectional studies in various racial/ethnic cohorts consistently 91 

demonstrated that women infected with HPV exhibit more diverse vaginal microbiota and 92 

depleted levels of beneficial Lactobacillus spp. compared to HPV-negative women (12-15). 93 

Women with cervical dysplasia or cancer also commonly lacked Lactobacillus dominance in 94 

their vaginal microbiota (16-21). Furthermore, bacterial vaginosis (BV), which is a common 95 

vaginal disorder characterized by a dramatic shift in microbiota composition from Lactobacillus 96 

to anaerobes, has been linked to an increased risk of HPV acquisition and persistence (33-35). 97 

Limited longitudinal studies also demonstrated that Lactobacillus-dominant microbiota correlates 98 

with HPV clearance and regression of dysplasia, whereas depletion of Lactobacillus and 99 

presence of specific anaerobic bacteria is associated with HPV and disease persistence (22-100 

25). Recent systematic reviews and meta-analyses of available studies supported a causal link 101 

between dysbiotic vaginal microbiota and cervical cancer through the impact of bacteria on HPV 102 

acquisition and persistence, as well as dysplasia development (26-28). 103 

Metabolically, limited studies have reported that HPV infection and cervical dysplasia 104 

relate to depletion of amino acid, peptide, and nucleotide signatures in the cervicovaginal 105 

microenvironment (29, 30). Intriguingly, these metabolic alterations are also associated with 106 

depletion of Lactobacillus spp., connecting HPV infection to vaginal dysbiosis (29, 36). In 107 

contrast, cervical carcinoma profoundly perturbs lipid signatures, such as sphingomyelins (29), 108 

which are also biomarkers of chronic inflammation (37) and associated with genital inflammation 109 

(29). 110 

In regard to host immune defenses, it is well documented that persistent HPV infection 111 

suppresses immune responses, which may contribute to progression of HPV-mediated 112 
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neoplasm (38). Yet, the impact of the microbiome on host defenses across cervical 113 

carcinogenesis has not been comprehensively studied. Recent studies have revealed that 114 

dysbiotic non-Lactobacillus dominant microbiota are associated with elevated levels of pro-115 

inflammatory cytokines, growth and angiogenesis factors, apoptosis-related proteins, and 116 

immune checkpoint proteins in the cervicovaginal fluids (17, 31, 32). Another cross-sectional 117 

study suggested a link between dysbiotic fusobacteria and immunosuppressive host responses 118 

(18). Taken together, these reports strongly implicate the complex interplay between HPV, 119 

microbiota, and host response mechanisms in the local microenvironment in the progression of 120 

(or protection from) neoplastic disease. 121 

Here we present an integrated multi-omics analysis of clinical datasets including vaginal 122 

microbiome (17), vaginal pH (17), metabolome (29) and immunoproteome (17, 31, 32), which 123 

were previously generated using cervicovaginal specimens collected from a cohort (n=100) of 124 

women with cervical cancer, cervical dysplasia, as well as HPV-positive and HPV-negative 125 

controls, but which were previously analyzed independently. Cervical cancer disease 126 

phenotypes emerge from the interactions between multiple features, including microbial taxa, 127 

metabolic activity of microbes, host immune system activity, and the vaginal microenvironment. 128 

Hence, we hypothesized that applying newly developed multi-omics integration techniques, 129 

including microbe–metabolite vectors (mmvec (39)) neural networks and Random Forest 130 

supervised learning models to delineate relationships between microbial, metabolic, and 131 

proteomic signatures across a cervical carcinogenesis spectrum would allow us to learn more 132 

from these data than we could from any single data type in isolation. We present new predictive 133 

models of Lactobacillus dominance, vaginal pH, genital inflammation and cervical neoplastic 134 

disease, and discuss the relative contribution of different features and feature types to our top-135 

performing models (Figure 1). 136 
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Methods 137 

Study population and clinical sample collection 138 

One hundred premenopausal, non-pregnant women were recruited at three clinical sites located 139 

in Phoenix, AZ: St. Joseph’s Hospital and Medical Center, University of Arizona Cancer Center 140 

and Maricopa Integrated Health Systems. All participants provided informed written consent and 141 

all research and related activities involving human subjects were approved by the Institutional 142 

Review Boards at each participating site. The participants were grouped as follows: HPV-143 

negative controls [Ctrl HPV- (n=20)], HPV-positive controls [Ctrl HPV+ (n=31)], low grade 144 

squamous intraepithelial lesions [LSIL (n=12)], high grade squamous intraepithelial lesions 145 

[HSIL (n=27)] and invasive cervical carcinoma [ICC (n=10)]. Classification of patients into the 146 

five groups and detailed exclusion criteria were described previously (Łaniewski et al., 2018). 147 

Cervicovaginal lavage (CVL) and vaginal swabs were collected by a physician and processed 148 

as described previously (17). Vaginal pH was measured using vaginal swabs, nitrazine paper 149 

and a pH scale ranging from 4.5 to 7.5 (17). Demographic data was collected from surveys 150 

and/or medical records. 151 

 152 

Immunoproteome analysis 153 

Levels of 73 protein targets were determined in CVL samples using multiplex cytometric bead 154 

arrays or enzyme-linked immunosorbent assays and described previously (17, 31, 32). Briefly, 155 

protein levels were measured using customized MILLIPLEX MAP® Human 156 

Cytokine/Chemokine, Th17, High Sensitivity T Cell, Circulating Cancer Biomarker and Immuno-157 

Oncology Checkpoint Protein Magnetic Bead Panels (Millipore, Billerica, MA) or Human IL-36γ 158 

ELISA kit (RayBiotech, Norcross, GA) in accordance with the manufacturer’s protocol. Data 159 

were collected with a Bio-Plex® 200 instrument and analyzed using Manager 5.0 software (Bio-160 

Rad, Hercules, CA). The genital inflammatory score system used in this study was described 161 

previously (17). Briefly, levels of seven cytokines (IL-1α, IL-1β, IL-8, MIP-1β, MIP-3α, RANTES, 162 
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and TNFα) were used to determine inflammatory scores; patients were assigned one point for 163 

each mediator when the level was in the upper quartile. Patients with inflammatory scores 5-7 164 

were considered to have high genital inflammation, whereas patients with inflammatory scores 165 

1-4 to have low genital inflammation. Patients with inflammatory score 0 were assigned to have 166 

no genital inflammation. 167 

 168 

 169 

Metabolome analysis 170 

Global metabolome analysis was performed by Metabolon, Inc (Durham, NC) and described 171 

previously (29). Briefly, a Waters ACQUITY ultra-performance liquid chromatography (UPLC) 172 

and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with 173 

a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 174 

35,000 mass resolution were utilized. Metabolites were identified and quantified using 175 

Metabolon’s Laboratory Information Management Systems (LIMS). 176 

 177 

Amplicon library preparation and sequencing for microbiome analysis 178 

DNA extraction and 16S rRNA gene sequencing were described previously (17). Briefly, DNA 179 

was extracted from vaginal swabs using PowerSoil DNA Isolation Kit (MO BIO Laboratories, 180 

Carlsbad, CA) following the manufacturer’s instructions. Amplicon library preparation and 181 

sequencing were performed by the Second Genome Inc. (San Francisco, CA). Briefly, the V4 182 

region of bacterial 16S rRNA gene was amplified from the genomic DNA obtained from vaginal 183 

swabs and sequenced on the MiSeq platform (Illumina, San Diego, CA). 184 

 185 

Bioinformatics analysis 186 

Microbial DNA sequence data were processed and analyzed using the plugin-based 187 

microbiome bioinformatics framework QIIME 2 version 2019.7 (40). DADA2 (41) was used (via 188 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.27.20183426doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.27.20183426


 

 

the q2-dada2 QIIME 2 plugin) to quality filter the sequence data, removing PhiX, chimeric, and 189 

erroneous reads, and merge paired-end reads. Forward and reverse reads were trimmed to 250 190 

nt prior to denoising with dada2, otherwise default parameter settings were used. Taxonomy 191 

was assigned to sequence variants using q2-feature-classifier (42) with the classify-sklearn 192 

naive Bayes classification method against (1) the GreenGenes 16S rRNA reference database 193 

13_8 release (43) assuming a uniform taxonomic distribution (44); (2) the Genome Taxonomy 194 

Database (GTDB) (45), assuming a uniform taxonomic distribution; and (3) GTDB, with 195 

taxonomic class weights (expected species distributions) assembled from a collection of 1,017 196 

human cervicovaginal microbiota samples derived from the Vaginal Human Microbiome Project 197 

(the same reference set used to construct the STIRRUPS database (46)) using q2-clawback 198 

(44). RESCRIPt (https://github.com/bokulich-lab/RESCRIPt) (47) was used to merge these 199 

taxonomies via determination of the last common ancestor (LCA) consensus taxonomy 200 

assignment for each feature (giving priority to majority classifications, and using superstring 201 

matching to facilitate compatibility between the Greengenes and GTDB taxonomies). Any 202 

sequence that failed to classify at phylum level was discarded prior to downstream analysis. 203 

Microbial feature tables were evenly sampled at 50,000 sequences per sample prior to 204 

supervised classification. 205 

Supervised learning was performed in q2-sample-classifier (48) via 10-fold nested cross-206 

validation (classify-samples-ncv method), using random forests classification or regression 207 

models [https://doi.org/10.1023/A:1010933404324] grown with 500 trees. Receiver operating 208 

characteristic (ROC) curves and area under the curve (AUC) analysis, confusion matrices, and 209 

feature importance scores were generated as part of the q2-sample-classifier pipeline. 210 

Supervised learning models were trained and tested using the following feature and target data:  211 

1. Disease status was predicted using bacterial 16S rRNA gene ASV abundance, 212 

metabolome, and immunoproteome data. 213 
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2. Lactobacillus dominance was predicted using metabolome and immunoproteome data. 214 

Lactobacillus dominance categorization was based on the relative frequency of reads 215 

classified to genus Lactobacillus via 16S rRNA gene sequencing; any sample with ≥ 216 

80% of reads classified as Lactobacillus were placed in the Lactobacillus dominant (LD) 217 

group, and all other samples in the non-Lactobacillus dominant (NLD) group. 218 

3. Vaginal pH was predicted using bacterial 16S rRNA gene ASV abundance, metabolome, 219 

and immunoproteome data. 220 

4. Genital inflammation scores were predicted using bacterial 16S rRNA gene ASV 221 

abundance, metabolome, and immunoproteome data (excluding the 7 immunoproteome 222 

markers that are used to calculate the inflammation score). 223 

5. Immunoproteome markers (the abundance of each individual marker) was predicted 224 

using metabolome and bacterial 16S rRNA gene ASV abundance data. 225 

6. Metabolite abundance (the abundance of each individual metabolite) was predicted 226 

using immunoproteome and bacterial 16S rRNA gene ASV abundance data. 227 

AUC was calculated using scikit-learn (49) for each class, as well as micro- and macro-228 

averages. Micro-average is calculated across each sample, and hence impacted by class 229 

imbalances. Macro-average gives equal weight to the classification of each sample, eliminating 230 

the impact of class imbalances on average AUC. 231 

Microbe-metabolite interactions were estimated using mmvec (39). This method uses 232 

neural networks for estimating microbe-metabolite interactions through their co-occurrence 233 

probabilities. Features with fewer than 10 observations were filtered prior to mmvec analysis. 234 

Conditional rank probabilities were used to construct principal coordinate analysis biplots 235 

(visualized using matplotlib [10.1109/MCSE.2007.55]) that illustrate the co-occurrence 236 

probabilities of each metabolite and microbe. 237 
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 238 

Results 239 

Interconnection of vaginal microbiome, metabolome, and immune biomarkers 240 

Microbe-metabolite interactions were predicted using mmvec (39). This method uses neural 241 

networks to estimate microbe-metabolite interactions through their co-occurrence probabilities. 242 

This method predicted several strong microbe-metabolite associations. Numerous lipids 243 

(including sphingolipids and long-chain unsaturated fatty acids) were associated with multiple 244 

amplicon sequence variants (ASVs) belonging to Prevotella (including Prevotella bivia), 245 

Peptoniphilus, Streptococcus anginosus, Atopobium vaginae, Sneathia sanguinegenes, 246 

Veillonellales, Finegoldia, and other taxonomic groups (Figure 2). Lactobacillus ASVs 247 

(Lactobacillus crispatus, Lactobacillus iners, Lactobacillus_H), as well as some Prevotella 248 

(including Prevotella bivia), and other ASVs, were correlated with a range of metabolites 249 

including phenylalanylglycine, the anti-inflammatory nucleotide cytosine, 250 

glycerophosphoglycerol, glycerol, N-acetyl methionine sulfoxide, and maltopentaose (Figure 2). 251 

These separations roughly mirror genital inflammation and disease status categories, 252 

corresponding with our present findings (described below) as well as previous work showing 253 

association between many of these lipids with ICC and high inflammation, and these non-lipid 254 

metabolites with high Lactobacillus dominance and low inflammation (17, 29). Three-255 

hydroxybutyrate, previously associated with ICC (29), as well as pipecolate, N-acetylcadaverine, 256 

and deoxycarnitine were highly correlated with a range of Streptococcus, Prevotella (including 257 

Prevotella bivia), Megasphaera, Finegoldia, Atopobium vaginae, Sneathia amnii, and Sneathia 258 

sanguinegens ASVs. Interestingly, 3-hydroxybutyrate was also correlated to Lactobacillus iners.  259 

To further dissect relationships among the metabolite, microbiome, and 260 

immunoproteome, Random Forest regression with 10-fold cross-validation was used to 261 

determine the ability to predict the abundance of individual metabolites based on microbiome 262 

and immunoproteome profiles, revealing very strong predictive strength for a wide variety of 263 
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targets (Supplementary Figure 1, Supplementary Table 1). This includes the inflammation- 264 

and ICC-associated lipids 1-palmitoyl-2-arachidonoyl-gpe (16:0/20:4), 1-palmitoyl-2-linoleoyl-265 

gpc (16:0/18:2), 1,2-dilinoleoyl-gpc (18:2/18:2), 1-palmitoyl-2-docosahexaenoyl-gpc (16:0/22:6), 266 

several sphingomyelins, 1-stearoyl-2-docosahexaenoyl-gpc (18:0/22:6), 1-linoleoyl-2-267 

arachidonoyl-gpc (18:2/20:4n6), 1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6), arachidonate, 268 

and the bile acid glycochenodeoxycholate (Supplementary Figure 1, Supplementary Table 269 

1). Many of these associations are driven by high abundances of these lipids, sphingomyelins, 270 

and other metabolites in cancer cases: cancer biomarkers are the top predictive features for all 271 

of these metabolites (Supplementary Figure 2), and when ICC cases are removed from the 272 

dataset microbial features (including several Sneathia, Atopobium, Prevotella, Finegoldia, and 273 

Mobiluncus ASVs) are included among the top predictive features, though high predictive 274 

strength remains for many (but not all) of these targets (Supplementary Figure 3-4). The ability 275 

to accurately predict the abundance of these metabolites through cross-validation highlights the 276 

close correspondence between the metabolome, microbiome, and immunoproteome across 277 

patients, both respective and irrespective of cancer diagnosis. 278 

Random Forest regression was also performed to predict concentration of cancer 279 

biomarkers based on microbiome and metabolome profiles, demonstrating strong predictive 280 

strength for several targets, including proinflammatory cytokines and chemokines (IL-6, IL-8, IL-281 

36γ, MIF, MIP-1β), the anti-inflammatory cytokine IL-10, growth and angiogenic factors (HGF, 282 

SCF, TGF-α,) apoptosis-related proteins (sFAS, TRAIL), the hormone prolactin, the cytokeratin 283 

CYFRA21-1, and other cancer biomarkers (AFP, sCD40L, CEA) ) (Supplementary Figure 5). 284 

Metabolites (primarily inflammation-associated lipids) are the most predictive features for each 285 

of these targets, but microbial features occur among the top 15 predictive features for many of 286 

these, most notably Adlercreutzia (Eggerthellaceae), Megasphaera, Sneathia, and Parvimonas 287 

dominating the top important features for predicting cervicovaginal CEA concentration, 288 

regardless of cancer diagnosis (Supplementary Figure 6). Several of these biomarkers are 289 
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clearly related to ICC, as indicated by reduced predictive strength after ICC cases are removed 290 

from the dataset; however, most of these markers exhibit similar performance and important 291 

feature associations after removing ICC cases (Supplementary Figures 7-8).  292 

These findings indicate that both the metabolome and microbiome are highly correlated 293 

with and predictive of cancer biomarker concentrations in the cervicovaginal mucosa. Hence, 294 

metabolome and microbiome composition can be considered proxy measurements for genital 295 

inflammation and immunological responses linked to cervicovaginal carcinogenesis, a 296 

relationship that is more explicitly tested below. 297 

 298 

Metabolome and immunoproteome markers predict Lactobacillus dominance and vaginal 299 

pH. 300 

We have previously demonstrated significant negative correlations between Lactobacillus 301 

dominance (LD), genital inflammation, HPV infection, and ICC (17). Lactobacilli typically 302 

dominate the cervicovaginal microbiota of healthy premenopausal women. However, in some 303 

women, cervicovaginal microbiota lacks a high proportion of lactobacilli and consists of a 304 

consortium of anaerobic bacteria. Intriguingly, Hispanic and black women more frequently 305 

exhibit non-Lactobacillus-dominant (NLD) microbiota than white or Asian women, which might 306 

relate to multiple socioeconomic, environmental and behavioral factors all of which may arise as 307 

a result of structural racism (4). LD is associated with low genital inflammation and lower risk of 308 

HPV acquisition, persistence and development of precancerous cervical dysplasia (26, 27). 309 

Hence, we evaluated the ability of metabolome and immunoproteome features to predict LD, as 310 

a proxy for their association with vaginal health in the Arizona-based cohort of women in this 311 

study (comprising both non-Hispanic white women (NHW) and women of Hispanic origin). We 312 

define LD as any sample in which Lactobacillus ASVs collectively comprise ≥ 80% of the vaginal 313 

microbiome, and grouped subjects into LD and NLD groups. We then predicted LD status based 314 

on metabolome and immunoproteome profile using random forest classification with 10-fold 315 
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cross-validation. Microbiome data were excluded from the predictive model, as these 316 

measurements are non-independent due to compositionality constraints, i.e., changing the 317 

relative abundance of one feature (such as a Lactobacillus ASV) will alter the relative 318 

abundance of other features. 319 

Results demonstrate a very high predictive accuracy (average AUC = 0.94), indicating a 320 

near-perfect ability to predict LD or NLD across subjects via cross-validation (Figure 3A-B). In 321 

other words, cervicovaginal metabolome and immunoproteome profiles are tightly linked to the 322 

abundance of Lactobacillus spp., suggesting that host immunological response is associated 323 

with cervicovaginal microbiome composition. The top predictive features consist primarily of 324 

non-lipid metabolites, consistent with the mmvec results (Figure 2), though the cancer 325 

biomarkers macrophage migration inhibitory factor (MIF) and TNFα also rank among the top 50 326 

most important predictive features (Figure 3C). Both MIF and TNFα are more abundant in NLD 327 

women (Supplementary Figure 9), consistent with higher inflammation and ICC.  328 

Vaginal pH is an important feature of the cervicovaginal microenvironment which relates 329 

to Lactobacillus dominance. Briefly, vaginal Lactobacillus spp. utilize glycogen by-products in 330 

the process of fermentation and produce lactic acid, which acidifies the local microenvironment 331 

typically to pH below 4.5. This acidic microenvironment contributes to homeostasis and protects 332 

the host against invading pathogens and pathobionts. We assessed the predictive relationship 333 

between pH and cervicovaginal metabolites, microbiota, and immunoproteome using cross-334 

validated random forest classification models. For the purposes of this analysis, samples were 335 

grouped into “low” (pH ≤ 5.0) and “high” pH groups (pH > 5.0). Lower vaginal pH is closely 336 

related to demographic characteristics, and Hispanic women tend to have slightly higher 337 

average vaginal pH compared to NHW (7, 17), hence we defined pH ≤ 5.0 as “low” for the 338 

purposes of this study. Results indicate a weak to moderate predictive relationship (AUC = 0.70) 339 

(Figure 4A). Predictive power was lost because a large proportion (35.3%) of women with low 340 

vaginal pH were predicted to belong to the high pH group (Figure 4B). This characteristic 341 
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merely indicates that 5.0 is not a reasonable cutoff for the purposes of this analysis; predicting 342 

true vaginal pH using a regression model would be more appropriate to characterize the 343 

numerical relationship between vaginal pH and the cervicovaginal environment but the small 344 

sample size in the current study, strongly skewed toward lower pH values (Supplementary 345 

Figure 10), prevented the use of cross-validated regression models to evaluate what is likely a 346 

more integrative relationship than binary classification can achieve. Results also indicate that 347 

this binary pH model, as expected, exhibits many of the same characteristics as the LD/NLD 348 

prediction model: many of the same top predictive features were identified (Figure 4C). Notably, 349 

the top predictive features consist primarily of non-lipid metabolites, and both MIF and TNFα are 350 

again in the top 50 most important predictors, both associated with high pH as well as NLD 351 

(Supplementary Figures 9 and 11). Hence, together these findings recapitulate the 352 

associations between LD, low vaginal pH, and low inflammation, and between NLD, high pH, 353 

higher inflammation, and carcinogenesis, as well as the microbial and metabolic context of 354 

these states, explored in more detail below. 355 

 356 

Metabolome, immunoproteome, and microbiome accurately predict genital inflammation 357 

but only moderately predict cancer status 358 

Next, we tested the relationship between the cervicovaginal environment and genital 359 

inflammation, as a crucial characteristic of ICC progression. We have previously utilized a 360 

scoring system to quantify genital inflammation in our cohort (17). To assign genital 361 

inflammatory scores (0-7), levels of seven cytokines and chemokines, including IL-1α, IL-1β, IL-362 

8, MIP-1β, MIP-3α, RANTES, and TNFα, were measured in cervicovaginal lavages (CVL) and 363 

patients were assigned a score based on whether the level of each immune mediator was in the 364 

upper quartile. For the purposes of classification, subjects were grouped into no (score = 0), low 365 

(0 < score < 5), or high inflammation (score ≥ 5) groups, and random forest classifiers were 366 

trained and tested via 10-fold cross-validation to assess the ability to predict genital 367 
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inflammation across subjects based on cervicovaginal microbiome, metabolome, and 368 

immunoproteome (excluding the 7 inflammatory markers that are used to measure inflammatory 369 

score). Results indicate moderately high predictive accuracy (macro-average AUC = 0.86) 370 

(Figure 5A). Predictive accuracy is very good for high (AUC = 0.93) and no inflammation (AUC 371 

= 0.90), but lowest for low inflammation (AUC = 0.75), due to misclassification of some samples 372 

as either high or no inflammation (Figure 5B). Similar to pH classification but to a lesser extent, 373 

this reflects the shortcoming of binning samples for classification into categorical groups, a 374 

necessary limitation due to the small sample size of the current study. Regression models 375 

predicting actual inflammation score demonstrate high accuracy at lower inflammation scores, 376 

but lower accuracy at the upper range due to sparsity of high-inflammation samples for cross-377 

validation (Supplemental Figure 12). Larger sample sizes in future studies will enable more 378 

accurate prediction of low-inflammation samples through prediction of actual inflammation 379 

scores, refining our current estimates of associations between genital inflammation and 380 

cervicovaginal microenvironment. As it stands, categorical classification performs moderately 381 

well, and can identify a range of features predictive of inflammation, primarily lipids, but also 382 

several immune mediators and cancer biomarkers including IL-10, MIP-1α, IL-6, VEGF, and 383 

leptin (Figure 5C, Supplemental Figure 13). 384 

Given the ability to predict genital inflammation, a crucial feature of ICC progression, 385 

based on features of the cervicovaginal microenvironment, we sought to determine if HPV 386 

infection and carcinogenesis could also be predicted based on these features using cross-387 

validated random forest classification. Samples (n=78) were grouped into control HPV- (n=18), 388 

control HPV+ (n=11), LSIL (n=12), HSIL (n=27), and ICC (n=10). This yielded low predictive 389 

accuracy (micro-average AUC = 0.73, macro-average AUC = 0.64) (Supplemental Figure 14). 390 

Although many of the same carcinogenesis-related metabolites and immune markers were top 391 

predictors in these models (data not shown), accurate differentiation could not be achieved, 392 

primarily because of the low sample size and large class imbalances, but also due to the large 393 
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number of classes with borderline differences (e.g., high similarity led to misclassification 394 

between control HPV– and control HPV+ groups, and between LSIL and HSIL groups). Given 395 

the low per-group sample sizes, approaches to mitigate class imbalances were not feasible in 396 

the current study, but larger sample sizes and pooled analyses will facilitate better estimates in 397 

future studies. However, it should be noted that ICC predictive accuracy was moderately high 398 

(AUC = 0.79), in spite of the low sample size and class imbalance (Supplemental Figure 14). 399 

This indicates that ICC could be predicted with fairly high accuracy across subjects, but non-ICC 400 

groups could not be reliably distinguished due to the similarities between these groups. 401 

Combining LSIL and HSIL prior to classification increases accuracy, indicating ambiguity 402 

between these groups, as reflected in the imprecise distinction between these histological 403 

classifications. Hence, ICC elicits signature characteristics in the cervicovaginal 404 

microenvironment across subjects that can be used to identify these subjects, but intermediate 405 

stages of progression (HPV infection, LSIL, HSIL) cannot be fully distinguished. Larger sample 406 

sizes and longitudinal measurement in future studies may improve our ability to diagnose ICC or 407 

even predict cancer risk based on cervicovaginal microenvironment characteristics 408 

(metabolome, immunoproteome, microbiome). 409 

 410 

Discussion 411 

The vaginal microbiota, HPV infection and cervical neoplasm are related in ways that are still 412 

not fully understood. Emerging evidence suggests that Lactobacillus dominance (LD) in the 413 

vagina and cervix relates to HPV clearance and disease regression, whereas dysbiotic 414 

anaerobes contribute to HPV persistence and progression of cervical neoplasm (26-28). Host 415 

response to HPV and microbiota, which may result in genital inflammation, immune evasion, 416 

and altered metabolism, likely contribute to establishment of persistent infection and disease 417 

progression (29, 30, 50-53). Thus, improving our understanding of microbiota-virus-host 418 

interactions in the local cervicovaginal microenvironment is imperative for the development of 419 
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novel diagnostic, preventative and therapeutic approaches, which might help reduce cervical 420 

cancer burden among unvaccinated women in the future (54). 421 

We investigated relationships between multiple clinical “omics” datasets (microbiome, 422 

vaginal pH, metabolome, immunoproteome) collected from women (who had not been 423 

vaccinated against HPV) across cervical carcinogenesis (Fig. 1). Using recently developed 424 

integrated multi-omics bioinformatics tools, we aimed to establish predictive models and identify 425 

key signatures related to vaginal microbiota structure, vaginal pH, genital inflammation and 426 

cervical neoplasm status. We identified specific metabolites that were predictive of Lactobacillus 427 

dominance, vaginal pH, and genital inflammation (Fig. 3–5). These findings demonstrate that 428 

vaginal microbiota and host defense responses strongly influence cervicovaginal metabolic 429 

fingerprints (29, 30, 55) and indicate that cervicovaginal metabolic signatures might be 430 

promising biomarkers for gynecological conditions, including cervical cancer. In addition, select 431 

immune mediators and cancer biomarkers also exhibited high importance scores in our 432 

analyses for predictions of LD and vaginal pH (MIF and TNFα), as well as genital inflammation 433 

(IL-6, IL-10, leptin, VEGF), further confirming the link between vaginal microbiota and host 434 

immune responses (17, 31, 50, 56, 57). Intriguingly, microbial features did not rank among the 435 

top predictors of vaginal pH or genital inflammation. Our neural network analyses and cross-436 

validated Random Forest classification models showed that the abundance of bacterial taxa 437 

highly corresponded to levels of key metabolites, immune mediators, and cancer biomarkers 438 

related to cervicovaginal health or dysbiosis (Fig. 2), suggesting tight coupling of the 439 

microbiome, metabolome, and immunoproteome. 440 

Using our approach, we were unable to accurately predict cervical neoplasm status, with 441 

the exception of the cervical cancer group, which exhibited a moderate accuracy rate. Relatively 442 

low samples size and imbalance in disease classification, which are limitations of our study, 443 

might have impacted these predictions. Larger numbers of subjects as well as temporal data on 444 

subjects will likely improve predictive models in the future, and better support causal links 445 
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between microbial dysbiosis and HPV-mediated carcinogenesis. In addition, pathophysiological 446 

responses across the continuum of cervical neoplasm might not be uniform among patients with 447 

different disease classifications (for example CIN1 and CIN2/3). Indeed, clinical studies have 448 

shown contrasting results related to genital inflammation and cervical dysplasia. On one hand, 449 

infection with high-risk HPV types or precancerous dysplasia has not been associated with 450 

increased level of genital inflammation (17, 50, 53). On the other hand, one report showed 451 

increased inflammatory cytokines in patients with cervical dysplasia, but it did not control for 452 

microbiota composition (52). Despite not being able to predict disease status, our integrated 453 

analyses revealed that we were able to better predict the cervicovaginal microenvironment 454 

features. 455 

Our integrated analyses revealed that different classes of metabolites are important for 456 

prediction of different phenotypes: lipids were strong predictors of genital inflammation, while 457 

amino acids, peptides and nucleotides were predictive of the vaginal microbiota composition. 458 

Sphingolipids and long-chain unsaturated fatty acids in particular ranked as top predictors of 459 

genital inflammation. Emerging studies have demonstrated that sphingolipids are implicated in 460 

multiple pathological processes, such as inflammatory diseases, diabetes, and cancer (58). In a 461 

previous report we showed that women with cervical cancer had elevated sphingolipids in the 462 

cervicovaginal fluids, suggesting that cancer drives associations of phospholipids with 463 

inflammation. However, we observed the correlation with inflammation even after excluding 464 

cancer patients (29). In fact, sphingolipids are bioactive metabolites, which may mediate 465 

inflammatory signaling through TNFα activation (37). Using neural network analysis, we also 466 

showed the co-occurrence of many lipid metabolites and dysbiotic vaginal bacterial taxa 467 

(including multiple BV-associated bacteria and Streptococcus), linking microbiota to 468 

inflammatory markers. 469 

Predictions of vaginal microbiota and vaginal pH relied mostly on alterations in amino 470 

acid metabolism, which was in accordance with previous reports on cervicovaginal 471 
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metabolomes (30, 36, 55). Specifically we found that 3-hydroxybutyrate (β-hydroxybutyrate, 472 

BHB), a ketone body, was strongly correlated with abundance of dysbiotic bacterial species, 473 

such as Streptococcus, Prevotella, Megasphaera, Atopobium and Sneathia, and unexpectedly 474 

with one of predominant vaginal Lactobacillus spp., L. iners. Notably, in a longitudinal clinical 475 

study, L. iners-dominant vaginal microbiota has been shown to more often transition to dysbiotic 476 

NLD microbiota compared to other Lactobacillus spp. (59). Furthermore, L. iners produces a 477 

different ratio of lactic acid isoforms (60), which vary in bactericidal capacities (61); therefore, 478 

the protective role of L. iners in the cervicovaginal microenvironment is still questionable (62). 479 

We have previously demonstrated that 3-hydroxybutyrate (measured in the cervicovaginal 480 

fluids) is an excellent discriminator of cervical cancer patients compared to healthy controls (29). 481 

Several clinical studies also identified 3-hydroxybutyrate (but measured in serum or tissue 482 

effusions) as a potential biomarker of other gynecologic malignancies, such as endometrial 483 

cancer (63) and ovarian cancer (64, 65). Three-hydroxybutyrate has also been shown to 484 

suppress activation of NLRP3 inflammasome (66). Thus, dysbiotic cervicovaginal bacteria and 485 

L. iners might utilize this mechanism to evade host defense and, consequently, the 486 

inflammasome deregulation might contribute to progression of cervical neoplasm (67). 487 

Other key metabolites that we identify to highly correlate with dysbiotic microbiota were 488 

pipecolate and deoxycarnitine. In a previous study on metabolomes of women with BV, these 489 

two metabolites positively associated with BV status and the presence of “clue cells” (vaginal 490 

squamous epithelial cells covered with bacterial biofilm) (36), which is one of the clinical 491 

characteristics of BV. In our report, we also revealed that deoxycarnitine in cervicovaginal fluids 492 

can discriminate HPV-positive and HPV-negative women without neoplasia (29), linking vaginal 493 

dysbiosis with HPV infection. With regard to the healthy vaginal microbiota, Lactobacillus spp. 494 

(particularly L. crispatus) positively correlated with N-acetyl methionine sulfoxide, a reactive 495 

oxygen species. Production of hydrogen peroxide, another reactive oxygen species, by vaginal 496 

Lactobacillus spp. has been postulated to have a protective effect against invading pathogens 497 
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(68, 69). Similarly, an increase of N-acetyl methionine sulfoxide in the Lactobacillus-dominant 498 

cervicovaginal microenvironment might contribute to host protection via oxidative stress. 499 

Through our integrated multi-omics approach, we also identified key immune biomarkers 500 

associated with the vaginal microbiota composition and vaginal pH, for instance MIF, a 501 

pleiotropic cytokine regulating inflammatory reactions and stress responses (70). MIF was 502 

identified as a top predictive factor of vaginal pH and LD in our Random Forest analysis, which 503 

took into account multiple different “omics” data types (Figures 3-4), suggesting that 504 

Lactobacillus colonization may be closely involved in regulating markers of genital inflammation, 505 

including MIF. In accordance with our finding, several reports have demonstrated significantly 506 

increased levels of MIF in cervicovaginal fluids of women with vaginal dysbiosis or BV 507 

compared to women with healthy LD microbiota (57, 71, 72). In a previous report we identified 508 

MIF (in cervicovaginal fluids) as a potential biomarker discriminating women with cervical cancer 509 

from women with dysplasia and healthy controls (31). Other immunohistochemical studies 510 

demonstrated overexpression of MIF cervical cancer tissues compared to healthy cervix and 511 

dysplasia (73-75). Notably, MIF has been shown to promote cell proliferation, inhibit apoptosis 512 

(74) and directly induce secretion of VEGF, an angiogenesis factor (73). Thus, elevated MIF 513 

production induced by dysbiotic vaginal microbiota might contribute to cervical carcinogenesis. 514 

Our integrated analysis further highlighted the importance of this key immune mediator, and 515 

links its expression to vaginal microbiome and metabolome characteristics. 516 

Another pro-inflammatory cytokine that strongly correlated with dysbiotic microbiota and 517 

elevated pH was TNFα. Several clinical studies also demonstrated an increase of this cytokine 518 

in cervicovaginal fluids of women with vaginal dysbiosis or BV (57, 71, 72, 76). Similar to MIF, 519 

microbiota-induced TNFα might enhance cervical carcinogenesis, since this major inflammatory 520 

cytokine has been shown to exhibit not only anti-tumor, but also pro-tumor bioactivities (77). 521 

Interestingly, in vitro studies showed that only particular BV-associated species (for example, 522 

Atopobium vaginae and Mobiluncus mulieris, but not Prevotella bivia) induce TNFα production 523 
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by genital epithelial cells (76, 78-80), suggesting species-specific roles of microbes within 524 

dysbiotic polymicrobial consortia on host immunological response, which warrants further 525 

investigations. Other immune mediators and cancer biomarkers (IL-6, IL-10, leptin and VEGF) 526 

identified to be associated with genital inflammatory scores likely relate to cancer-induced 527 

inflammation rather than a host defense response to dysbiotic vaginal microbiota (31). Overall, 528 

our data indicate that mucosal inflammation is likely associated with cervical neoplasm via the 529 

effect of vaginal microbiota on induction of specific inflammatory mediators and metabolites. 530 

 531 

Integrative omics increases predictive accuracy 532 

Many of the predictive models used in this study integrate multiple omics datasets: metabolome, 533 

immunoproteome, and microbiome. We hypothesized that integrating multiple data types would 534 

lead to a cumulative increase in predictive accuracy, as accumulating more features could help 535 

refine the diagnostic signal of our random forests classifiers, different data types could yield 536 

different signature characteristics for the prediction of different subject traits (e.g., inflammation, 537 

disease state), and the combined signal could provide more subtle information to differentiate 538 

particular groupings of subjects (e.g., LD versus non-LD, disease category). To address this 539 

hypothesis directly, we evaluated the performance of each random forest classifier with different 540 

combinations of omics data types with the expectation that more data types could only yield 541 

better predictive accuracy.  542 

Results indicate that integrating data led to modest increases in accuracy for most 543 

classification tasks, but with mixed results (Figure 6). For LD, combining multiple datasets led to 544 

very modest increases in accuracy (Figure 6A). Metabolites alone could predict LD status with 545 

high accuracy; immunoproteome data exhibited much poorer accuracy, but combining both data 546 

types yielded a slight increase in mean accuracy. For pH prediction, both metabolites and 547 

microbiome datasets on their own could predict pH with moderate accuracy, but 548 
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immunoproteome could not; integrating all three omics datasets led to a slight increase in mean 549 

accuracy (Figure 6B). 550 

Genital inflammation was the one measurement that showed little change in accuracy 551 

with integration of multiple omics datasets (Figure 6C). Both metabolome and immunoproteome 552 

datasets yielded nearly identical high predictive accuracy, whereas microbiome data exhibited 553 

poor predictive accuracy. Combining all three datasets led to no change in predictive accuracy.  554 

Interestingly, for all tests combining datasets narrowed the variance in accuracy performance 555 

(Figure 6A-C), suggesting that even if integrating multiple omic data types does not lead to 556 

appreciably better accuracy, it could lead to improved reproducibility, but more investigation is 557 

required to assess whether this performance enhancement is observed in other studies and 558 

disease systems. 559 

 560 

Relevance of a multi-omics approach 561 

Given that we observed only a modest increase in classifier performance accuracy with the use 562 

of multiple “omics” data types, it may seem that the benefit of including these additional data 563 

does not justify their cost. However, it is important to note that we did not know, a priori, which 564 

data type would provide the best predictive accuracy in this study. Furthermore, different 565 

features types were differentially useful for predicting different features of the cervicovaginal 566 

environment. Profiling different feature types therefore enabled discoveries that would not have 567 

been possible had we focused only on a single feature type (e.g., the microbiome or the 568 

metabolome). 569 

Beginning to collect multi-omics data in human microbiome studies will enable a broader 570 

understanding of the complex mechanistic interplay between microbes, metabolites, the host 571 

immune system, and host phenotype. We suspect that this additional data will initially improve 572 

our ability to make predictions about phenotype, as we have shown in this study. Inspection of 573 

our machine learning models to discover important features enables us to develop hypotheses 574 
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about causation that can be prioritized for evaluation in future studies, and understanding which 575 

feature types are most useful in predictive models can provide additional clues for 576 

understanding the underlying biology. As our bioinformatics approaches for integrating multi-577 

omics data continue to improve, and as we continue to amass data relating microbes and 578 

metabolites to the host immune system and phenotype, we will ultimately improve our ability to 579 

model features (such as genital inflammation) based on combinations of microbes and 580 

metabolites. This will enable design of treatments based on an understanding of, for example, 581 

how the presence of a metabolite will impact the abundance of a group of microbes, which in 582 

turn will drive or suppress an immune response.  583 

 584 

Conclusions 585 

There is much work to be done to improve our approaches for integrated multi-omics analyses. 586 

For example, developing machine learning classification tools for microbiome multi-omics data 587 

that can handle multiple observations per subject to make better use of longitudinal data, and 588 

interactive visualization tools that can assist with exploration and interpretation of multi-omics 589 

network data will facilitate work. Combining these approaches with novel methods (44) and 590 

databases (46, 47) for accurate taxonomic classification of vaginal microbiota will further 591 

advance our ability to identify microbial species linked to carcinogenesis and prevention. We 592 

posit that integrated multi-omics approaches are essential to enabling many of the advances in 593 

human medicine that are promised by microbiome research. 594 

 595 

List of abbreviations: 596 

ASV: amplicon sequencing variants 597 

AUC: area under the curve 598 

BV: bacterial vaginosis 599 

CIN: cervical intraepithelial lesion 600 
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Ctrl: control 601 

CVL: cervicovaginal lavage 602 

HPV: human papillomavirus 603 

HSIL: high grade squamous intraepithelial lesions 604 

ICC: invasive cervical carcinoma 605 

LD: Lactobacillus dominance 606 

LSIL: low grade squamous intraepithelial lesions 607 

NHW: non-Hispanic white 608 

NLD: non-Lactobacillus dominance 609 

 610 

Declarations 611 

Ethics approval and consent to participate 612 

All participants provided informed written consent and all research and related activities 613 

involving human subjects were approved by the Institutional Review Boards at St. Joseph’s 614 

Hospital and Medical Center, University of Arizona Cancer Center and Maricopa Integrated 615 

Health Systems, all located in Phoenix, AZ. 616 

 617 

Consent for publication 618 

Not applicable. 619 

 620 

Availability of data and materials 621 

Bacterial 16s RNA gene sequence data analyzed in this study were deposited in SRA 622 

(PRJNA518153). Immunoproteome and metabolome data are available online as 623 

supplementary materials accompanying our previous reports (17, 18, 31, 32). 624 

 625 

Competing interests 626 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.27.20183426doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.27.20183426


 

 

Authors declare no competing interests. 627 

 628 

Funding 629 

This study was supported by the Flinn Foundation Grant #1974 to D.M.C. and M.M.H-K., Flinn 630 

Foundation Grant #2244 to M.M.H-K. and the National Institutes of Health NCI awards for the 631 

Partnership of Native American Cancer Prevention U54CA143924 (UACC) to M.M.H-K and 632 

U54CA143925 (NAU) to G.J.C. 633 

 634 

Authors' contributions 635 

M.M.H.-K. and D.M.C conceived and designed the study. D.M.C. participated in the patient 636 

recruitment and sample collection. P.Ł. processed the samples and performed the biological 637 

assays. N.A.B. performed bioinformatic analyses. N.A.B., P.Ł., G.J.C. and M.M.H-K. analyzed 638 

and interpreted the data. P.Ł and N.A.B. drafted the manuscript. M.M.H-K., G.J.C. and D.M.C. 639 

critically reviewed the manuscript. All authors read and approved the final version of the paper.  640 

 641 

Acknowledgements 642 

We would like to thank the patients who enrolled in the study and acknowledge Kelli Williamson, 643 

Ann De Jong, Eileen Molzen, Liane Fales, Maureen Sutton for the kind assistance in patient 644 

recruitment and sample collection and Drs. Dominique Barnes and Alison Goulder for the 645 

assistance with clinical sample and data collection. 646 

 647 

Figure legends 648 

 649 

Figure 1. Schematic of a multi-omics approach to study the complex interplay between 650 

HPV, host and microbiota in women across cervical neoplasia. In this multicenter study 651 

n=100 women were enrolled with invasive cervical carcinoma (ICC), high- and low-grade 652 
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squamous intraepithelial lesions (HSIL, LSIL), as well as, HPV-positive and healthy HPV-653 

negative controls (Ctrl). Vaginal swabs and cervicovaginal lavages (CVL) were collected for 654 

vaginal pH, microbiome, metabolome and immunoproteome analyses. Patient-related metadata, 655 

including age, body mass index (BMI), ethnicity, were also collected through medical records 656 

and surveys. The vaginal microbiota compositions were determined by 16S rRNA gene 657 

sequencing (n=99) revealing 849 amplicon sequencing variants (ASVs). Cervicovaginal 658 

metabolic fingerprints were profiled by liquid chromatography-mass spectrometry (n=78) and 659 

identified 475 unique metabolites. Levels of immune mediators (n=100) and other cancer-660 

related proteins (n=78) in CVL samples (73 targets) were evaluated using multiplex cytometric 661 

bead arrays. Principal component, hierarchical clustering, neural network (mmvec) and Random 662 

Forest analyses were utilized to explore associations among multi-omics data sets to predict 663 

Lactobacillus dominance (dominant vs. non-dominant), vaginal pH (low ≤5 vs. high >5), 664 

evidence of genital inflammation (high, low, none) and disease status (Ctrl HPV–, Ctrl HPV+, 665 

LSIL, HSIL, ICC). 666 

 667 

Figure 2. Microbiome-metabolome interaction probabilities via mmvec predicts strong 668 

associations between lipid metabolites with Prevotella, Streptococcus, Atopobium, 669 

Sneathia and other clades [MH1] . A. The principal component analysis (PCA) biplot displays 670 

the top correlations, colored by genus (for microbial features) or by super pathway (for 671 

metabolite features). The correlations were tested using mmvec. This method uses neural 672 

networks for estimating microbe-metabolite interactions through their co-occurrence 673 

probabilities[MH2]. Microbes (points) and metabolites (arrows) that appear closer to each other 674 

in the biplot have a higher likelihood of co-occurring. B. The heatmap depicts the correlation 675 

coefficients between ASVs and metabolites; hierarchical clustering was done via average 676 

weighted Bray-Curtis distance. ASVs were determined using the consensus taxonomy (see 677 

Methods section).  678 
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 679 

Figure 3.  Metabolites (particularly xenobiotics, carbohydrates, amino acids and 680 

peptides) and the inflammatory cytokine MIF can accurately predict Lactobacillus 681 

dominance. Integrated vaginal metabolome and immunoproteome profiles were used as 682 

predictive features for training cross-validated Random Forest classifiers to predict whether a 683 

subject’s vaginal microbiota is Lactobacillus dominant (LD ≥ 80% relative abundance consists of 684 

Lactobacillus ASVs) or non-LD (NLD < 80% relative abundance consists of lactobacilli). 685 

Combined measurements predict the Lactobacillus dominance [MH3] at an overall accuracy 686 

rate of 88.9%. A 1.6-fold improvement over baseline accuracy was observed. Receiver 687 

operating characteristics (ROC) analysis showing true and false positive rates for each group, 688 

indicating excellent predictive accuracy for both LD (AUC = 0.94) and NLD groups (AUC = 0.94) 689 

(A). The confusion matrix illustrates the proportion of times each sample receives the correct 690 

classification (B). The graphs depict the 25 most strongly predictive features ranked by relative 691 

importance score, a measure of their contribution to classifier accuracy (C). 692 

 693 

Figure 4. Metabolites (particularly amino acids, peptides and nucleotides) and 694 

inflammatory cytokine MIF are the best predictors of vaginal pH. Integrated vaginal 695 

microbiome, metabolome, and immunoproteome profiles were used as predictive features for 696 

training cross-validated Random Forest classifiers to predict whether a subject’s vaginal pH was 697 

low (≤ 5.0) or high (> 5.0). Combined measurements predict vaginal pH at an overall accuracy 698 

rate of 72.6%. A 1.4-fold improvement over baseline accuracy was observed. Receiver 699 

operating characteristics (ROC) analysis showing true and false positive rates for each group, 700 

indicating weak predictive accuracy (micro-average AUC = 0.70) for both low (AUC = 0.70) and 701 

high pH groups (AUC = 0.70) (A). The confusion matrix illustrates the proportion of times each 702 

sample receives the correct classification (B). The graphs depict the 25 most strongly predictive 703 
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features ranked by relative importance score, a measure of their contribution to classifier 704 

accuracy (C). 705 

 706 

Figure 5.  Various metabolites (particularly long-chain fatty acids, sphingolipids and 707 

glucose), inflammatory cytokines (IL-6, IL-10, MIP-1alpha) and cancer biomarkers (leptin, 708 

VEGF) are the best predictors of the genital inflammation. Integrated vaginal microbiome, 709 

metabolome, and immunoproteome profiles (excluding the 7 cytokines used to score genital 710 

inflammation) were used as predictive features for training cross-validated Random Forest 711 

classifiers to predict whether a subject’s genital inflammation score was “no inflammation” (0), 712 

low (1-4), or high (≥ 5.0). Combined measurements predict inflammation score at an overall 713 

accuracy rate of 75.3%. A 1.6-fold improvement over baseline accuracy was observed. 714 

Receiver operating characteristics (ROC) analysis showing true and false positive rates for each 715 

group, indicating moderate average accuracy (micro-average AUC = 0.88) and weak to good 716 

predictive accuracy for each group (A). The confusion matrix illustrates the proportion of times 717 

each sample receives the correct classification (B). The graphs depict the 25 most strongly 718 

predictive features ranked by relative importance score, a measure of their contribution to 719 

classifier accuracy (C). 720 

  721 

Figure 6. Integrating multiple –omics datasets does not dramatically improve overall 722 

prediction accuracy; however, different integration of various measurements are needed 723 

for the best prediction of distinct features. Graphs show stepwise accuracy levels for 724 

Lactobacillus dominance (A), vaginal pH (B) and genital inflammation (C) when random forest 725 

models are trained on a single omics dataset or combined data containing 2-3 omics datasets. 726 

Lactobacillus dominance can be explained mostly by metabolome data, vaginal pH by 727 

metabolome and microbiome datasets, and genital inflammation by metabolome and 728 

immunoproteome datasets. Combining omics datasets leads to slightly higher average accuracy 729 
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scores for Lactobacillus dominance and vaginal pH classification, but no effect on genital 730 

inflammation classification. 731 
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