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Abstract 

Background: Sleep traits are associated with cardiometabolic disease risk, with evidence 

from Mendelian randomization (MR) suggesting that insomnia symptoms and shorter sleep 

duration increase coronary artery disease risk. We combined adjusted multivariable 

regression (AMV) and MR analyses of phenotypes of unfavourable sleep on 113 

metabolomic traits to investigate possible biochemical mechanisms linking sleep to 

cardiovascular disease. 

Methods: We used AMV (N=17,370) combined with two-sample MR (N=38,618) to 

examine effects of self-reported insomnia symptoms, total habitual sleep duration, and 

chronotype on 113 metabolomic traits. The AMV analyses were conducted on data from 10 

cohorts of mostly Europeans, adjusted for age, sex and body mass index. For the MR 

analyses, we used summary results from published European-ancestry genome-wide 

association studies of self-reported sleep traits and of nuclear magnetic resonance (NMR) 

serum metabolites. We used the inverse-variance weighted (IVW) method and complemented 

this with sensitivity analyses to assess MR assumptions.  

Results: We found consistent evidence from AMV and MR analyses for associations of usual 

vs. sometimes/rare/never insomnia symptoms with lower citrate (-0.08 standard deviation 

(SD)[95% confidence interval (CI): -0.12, -0.03] in AMV and -0.03SD [-0.07, -0.003] in 

MR), higher glycoprotein acetyls (0.08SD [95%CI: 0.03, 0.12] in AMV and 0.06SD [0.03, 

0.10) in MR]), lower total very large HDL particles (-0.04SD [-0.08, 0.00] in AMV and -

0.05SD [-0.09, -0.02] in MR) and lower phospholipids in very large HDL particles (-0.04SD 

[-0.08, 0.002] in AMV and -0.05SD [-0.08, -0.02] in MR). Longer total sleep duration 

associated with higher creatinine concentrations using both methods (0.02SD per 1-hour 

[0.01, 0.03] in AMV and 0.15SD [0.02, 0.29] in MR) and with isoleucine in MR analyses 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.27.20173518doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.27.20173518


 

7 

 

(0.22SD [0.08, 0.35]). No consistent evidence was observed for effects of chronotype on 

metabolomic measures.  

Conclusions: Whilst our results suggested that unfavourable sleep traits may not cause 

widespread metabolic disruption, some notable effects were observed. The evidence for 

possible effects of insomnia symptoms on glycoprotein acetyls and citrate and longer total 

sleep duration on creatinine and isoleucine might explain some of the effects, found in MR 

analyses of these sleep traits on coronary heart disease, which warrant further investigation. 
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Introduction 

Several systematic reviews and large biobank studies have reported associations of self-

reported insomnia symptoms, short and long sleep duration, and chronotype (i.e., having an 

evening rather than morning preference) with increased risk of cardiovascular disease, type 2 

diabetes and risk factors for these1-9. The mechanisms underlying these associations are 

unclear, and it is plausible that specific sleep traits may contribute to the misalignment of 

various behavioral and internal physiological processes, including aspects of metabolism that 

causes adverse cardiometabolic health. 

 There is some evidence of poor sleep quality, shorter sleep duration and having an 

evening chronotype being associated with higher triglyceride, total cholesterol and low-

density lipoprotein cholesterol (LDL-C) levels and lower high-density lipoprotein cholesterol 

(HDL-C) concentrations10-12. However, the extent to which these associations are explained 

by confounding factors, such as body mass index11, is unclear. Beyond conventional 

multivariable-adjusted regression analyses, we have previously demonstrated that sleep 

duration modifies the associations of genetic variation with triglycerides, LDL-C and HDL-C 

in a large sleep-gene interaction analysis, suggesting that possible different biological 

mechanisms underlie the associations of short and long sleep duration with these lipid traits13. 

However, these genetic interaction analyses do not assess causality and, like previous 

multivariable-adjusted regression analyses, have focused on a limited number of lipid traits.  

Mendelian randomization (MR) uses genetic variants that are robustly associate with 

an exposure as an instrumental variable to obtain unconfounded effects of that exposure on an 

outcome of interest14-16. Recent MR analyses have suggested a causal effect of insomnia 

symptoms on coronary heart disease17 and of short (<6 hours) sleep duration on myocardial 

infarction risk18. 
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The aim of this study was to determine the possible causal effect of sleep traits on 

metabolomic traits. We compared findings from adjusted multivariable regression (AMV) 

and MR analysis, to determine the relationships between self-reported insomnia symptoms 

(usually vs sometimes/rare/never), total habitual sleep duration (per 1 hour longer) and 

chronotype (evening vs morning preference) and 113 nuclear magnetic resonance (NMR) 

metabolomic traits. Cross-sectional AMV was performed with adjustment for age, sex and 

BMI in 17,370 individuals from 10 cohorts of mostly Europeans. Two-sample MR used 

summary results from genome-wide association studies (GWAS) of different sleep traits in 

1,331,010 (insomnia)19, 446,118 (sleep duration)20, and 651,295 (chronotype)21 European 

adults and summary results from four GWAS of 113 circulating metabolomic measures from 

NMR in 38,618 European adults. In secondary analyses, we explored effects of short (<7 vs 

7-<9 hours) and long (≥9 vs 7-<9 hours) sleep duration on the metabolomic traits. We 

highlight results that were consistent across both methods, as the different key sources of bias 

of the two methods (e.g., residual confounding in AMV and unbalanced horizontal pleiotropy 

in MR, respectively) mean that, where there is consistency, this is more likely to reflect a 

causal effect22. 
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Methods 

Studies used for AMV 

Cross-sectional AMV analyses were performed using data from 10 cohorts: the Active and 

Healthy Ageing (AGO) study23, the Dutch Hunger Winter Families Study (DWFS)24, the 

Healthy Life in an Urban Setting (HELIUS) Study25, the Leiden University Migraine Neuro-

Analysis (LUMINA)26, Netherlands Study of Depression and Anxiety (NESDA)27, the 

Netherlands Twin Register (NTR)28, the Netherlands Epidemiology of Obesity (NEO) 

Study29, and the Rotterdam Study cohorts 1, 2 and 3 (RS1, RS2 and RS3)30. Details, and 

distributions for characteristics, of each study are given in the Supplemental Material and 

Supplemental Table S1. Each participating study obtained written informed consent from all 

participants and received approval from the appropriate local institutional review boards. 

Before the analyses, we excluded all participants with diabetes (defined as self-report/hospital 

record, fasting plasma glucose >7 mmol/L and/or use of hypoglycaemic medication) given 

the known disturbances on many metabolomic traits.  

 

Studies used for MR analyses 

We performed two-sample MR analyses using publicly available summary-level data14 from 

the following GWAS: 

 

Sleep trait GWAS 

We selected genome-wide significant (p-value<5e-8) variants as instrumental variables from 

the following GWAS: 

• Insomnia: A GWAS that pooled data from two large biobanks (UK Biobank and 

23andMe) and included 1,331,010 unrelated European-ancestry adults. This GWAS 
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identified 248 variants for experience of insomnia symptoms (usually vs 

sometimes/rare/never)19.  

• Sleep duration: A GWAS undertaken in UK Biobank of 446,118 unrelated 

European-ancestry adults20. This GWAS identified 78 variants for total sleep duration 

(mean 7.2h; SD1.1h). In addition, this GWAS identified 27 variants for short sleep 

duration (<7 h vs 7 to <9 hours; N = 106,192 cases) and 8 for long sleep duration (≥9 

h vs 7 to <9 hours; N = 34,184 cases).  

• Chronotype: A GWAS that pooled data from two large biobanks (UK Biobank and 

23andMe) and included 697,828 unrelated European-ancestry adults (651,295 of 

whom were in the combined (both biobanks) GWAS of morning versus evening 

preference that we have used in this two-sample MR study. This GWAS identified 

351 variants for chronotype21. Because previous observational studies have found 

increased risk of  cardiometabolic diseases and risk factors in those with an evening 

preference, we transformed the GWAS results to reflect alleles associated with 

evening preference. 

 

NMR Metabolite GWAS  

• MAGNETIC consortium (N = 24,925)31 with summary-level GWAS data 

downloaded from http://www.computationalmedicine.fi/data#NMR_GWAS  

• In addition, to increase statistical power in the MR analyses, we generated new 

summary-level GWAS data from three cohorts using similar analyses procedures to 

the MAGNETIC consortium:  

o Oxford Biobank (N = 6,616)32;  

o NEO (N = 4,734)29; 
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o Pravastatin in Elderly Individuals at Risk of Vascular Disease (PROSPER) (N 

= 2,343; placebo arm only)33.  

All GWASs were undertaken in participants of European ancestry. Further details of the 

MAGNETIC consortium and the three additional cohorts are provided in Supplemental 

Methods. There was no overlap between the cohorts included in the sleep trait GWAS and 

those included in the NMR GWAS.  

 

Sleep traits 

In both AMV and MR analyses, sleep traits were self-reported and analysed in the same 

units/categories. Insomnia symptoms were assessed with a question similar to “Do you have 

trouble falling asleep at night or do you wake up in the middle of the night?” with the 

following answers possible: “never/rarely”, “sometimes”, “usually”, or “prefer not to 

answer”. In the AMV and GWAS analyses participants who answered “usually” were defined 

as having insomnia symptoms and were compared to those answering “never/rarely” or 

“sometimes”. Habitual sleep duration was assessed using a question similar to “On an 

average day, how many hours of sleep do you get?”. For our main analyses, we examined 

effects of total sleep duration (per 1 hour longer) on metabolomic measures. In secondary 

analyses, we explored associations of short (<7 vs 7-<9) and long (≥9 vs 7-<9 hours) habitual 

sleep. These latter two analyses were considered exploratory because of lower statistical 

power and possible weak instrument bias in the MR analyses. For chronotype, a question 

similar to “Are you naturally a night person or a morning person?” with the possible 

responses “Night owl/night person”, “Early bird/morning person”, “Neither/not sure” was 

used in most studies. A variation on the question in UK Biobank included more responses: 

“Definitely a morning person”, “More a morning than evening person”, “More an evening 

than a morning person”, “Definitely an evening person”, “Do not know”. Participants were 
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classified as having a ‘morning preference’ (“Early bird/morning person”, “Definitely a 

morning person” or “More a morning than evening person”), the reference group, or an 

‘evening preference’ (“Night owl/night person”, “More an evening than a morning person” or 

“Definitely an evening person”). For all traits those responding “do not know”, “unsure” or 

“prefer not to answer” were excluded.  

 

NMR-based metabolomic profiling  

In both the metabolite GWAS and studies included in the AMV meta-analysis, metabolites 

were quantified using a high-throughput proton (1H) NMR metabolomics platform34 

(https://nightingalehealth.com/) to quantify a maximum of 148 (excluding ratios) lipid and 

lipoprotein and metabolite concentrations in fasting serum or plasma samples. The 

quantitative NMR measures include numerous lipid species and fatty acids, as well as some 

amino acids, markers of glucose homeostasis, fluid balance and an inflammatory marker. 

This platform has been used widely in population-based studies of cardiometabolic diseases, 

and has been described in detail elsewhere34-36. There were 113 metabolomic trait 

measurements that were available for both AMV and MR analyses. 

 

Statistical Analyses  

In both AMV and MR analyses, we estimated the same effect: the difference in mean NMR 

metabolites (SD units of the natural log-transformed metabolomic traits; as dependent 

variables) comparing (i) usually experiencing insomnia symptoms to sometimes, rarely or 

never, (ii) per 1 hour longer habitual sleep duration and (iii) an evening to a morning 

preference. All analyses were performed in R (v3.6.1)37. 

 

Multivariable-adjusted regression meta-analysis 
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Cross-sectional AMV was performed by each of the individual cohorts according to a pre-

specified analysis plan and standardized analysis script. Results were collected centrally for 

quality control subsequent fixed-effect meta-analyses using the R “rmeta” package, using 

similar procedures as described previously38. AMV analyses adjusted for age, sex and BMI.  

 

MR analyses 

We excluded all palindromic single nucleotide polymorphisms (SNPs) and those in 

linkage disequilibrium at R2>0.001 (based on the 1000genomes (phase 1) panel). After these 

exclusions, we searched for all remaining independent sleep-associated variants (149 for 

insomnia, 57 for total sleep duration [and an additional 25 and 71 variants for short and long 

habitual sleep duration, respectively] and 208 for chronotype) in the GWAS of NMR 

metabolomic measures, and the directions of the summary data were harmonised (i.e. making 

sure that each effect estimate was coded in the same direction with respect to the effect allele 

as SNP associations from the summary sleep trait data) with those of the sleep trait summary 

data.  

The MRCIEU/TwoSampleMR package was used for harmonization of the exposure 

and outcome SNPs and to perform the MR analyses16. For our main analyses, we used the 

multiplicative random effects inverse variance-weighted (IVW) approach39. This method 

generates a causal estimate of the sleep traits on metabolomic traits by regressing the SNP-

sleep trait association on the SNP-metabolomic measure association, weighted by the inverse 

of the SNP-metabolomic measure association, and constraining the intercept of this 

regression to zero. Standard errors are corrected to take into account any between SNP 

heterogeneity and assumes that there is no directional horizontal pleiotropy. To explore this 

assumption further, we performed sensitivity analyses using MR-Egger40 and weighted-

median estimator41 methods. MR-Egger is similar to the IVW method but does not force the 
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regression line (i.e., of the SNP-sleep trait association on the SNP-metabolomic measure 

association) through an intercept of zero. It is statistically less efficient (providing wider 

confidence intervals) but provides a causal estimate (i.e., the regression slope) that is 

corrected for directional horizontal pleiotropy, and a non-zero intercept is an indication of the 

existence of directional pleiotropy. The weighted-median estimator is valid if more than 50% 

of the weight of the genetic instrument is from valid variants (i.e., if one single SNP or 

several SNPs jointly contributing 50% or more of the weight in the MR analysis exhibit 

horizontal pleiotropy the calculated effect estimate may be biased).  

We performed MR analyses for all sleep traits with each of the 4 metabolomic GWAS 

data sources (MAGNETIC, Oxford Biobank, NEO and PROSPER) and the results were 

subsequently meta-analysed using fixed-effect meta-analyses as implemented in the R 

package rmeta.  

 

Comparing multivariable regression and MR analysis results 

Circos plots were used to summarise and visually compare the AMV and the IVW 

MR results. These were generated using R package EpiViz (version 0.1.0) (further details in 

the Supplemental material). We also generated scatter plots of the AMV vs MR results for 

each metabolite and compared the linear fit across all metabolites to a slope of perfect 

concordance and used R2 as a measure of goodness of fit (agreement) between the two 

methods across all 113 metabolomic traits. 

Having compared results for the AMV and IVW MR methods across all metabolites, 

we then selected all sleep trait-metabolite associations that reached a pre-defined p-value 

threshold in AMV or IVW MR. We then compared results across AMV, IVW MR, MR-

Egger and weighted median MR for those selected associations. Whilst we focus on results 

reaching a pre-defined p-value threshold in either AMV or IVW MR in the main paper and 
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our conclusion, a full set of all results (AMV, unadjusted MV, IVW MR and all MR 

sensitivity analyses) are presented in Supplemental Tables S2 to S11 in the Supplemental 

Tables File. We applied the same Bonferroni multiple testing corrected p-value threshold 

separately to the AMV and MR analyses. The threshold was determined taking into account 

the correlation structure of the metabolomic measures by using information from previous 

studies that have identified 17 principal components, which explain 95% of the metabolomic 

traits data variance42. Therefore, the two-sided threshold of P < 0.05 adjusted for multiple 

testing becomes P < 0.0029 (0.05/17). For any association that passed this threshold with 

either AMV or IVW MR we considered the result from the second method to be consistent if 

the point estimate had a similar direction of effect and the p-value for the second association 

was <0.05. This was justified on the basis that once one method passed the Bonferroni 

threshold, we were treating that result as a hypothesised effect and seeking replication and 

triangulation in the second method. 
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Results 

Full results of all AMV and MR analysis, including MR sensitivity analysis results, are 

presented in Supplemental Tables S2 to S11 in the Supplemental Tables File.  

 

Insomnia symptoms 

Visually inspecting the circos plot shows there was directional consistency between the AMV 

and IVW MR results for most of the metabolomic traits (Figure 1). With both methods, 

insomnia symptoms were associated with higher concentrations of small and medium very 

large density lipoprotein (VLDL) particles, small HDL particles and glycoprotein acetyls, and 

with lower concentrations of large HDL particles. Across all 113 metabolomic traits, there 

was good concordance of effect size and direction (Figure 2; R2 = 0.57).  

Associations of insomnia symptoms with the 113 metabolomic traits passed the 

multiple testing threshold (P < 0.0029) for 13 in the AMV analyses, and for 3 in the MR 

analyses (glycoprotein acetyls passed the threshold in both). Based on our pre-specified 

definition of consistency (i.e. same direction and p-value <0.05 in MR for any AMV results 

reaching the corrected p-value, and vice versa) we found consistent evidence from AMV and 

MR analyses for 4 associations. Specifically, usual vs. sometimes/rare/never insomnia 

symptoms lowered citrate (-0.08SD [95%CI: -0.12, -0.03] in AMV and -0.03SD [-0.07, -

0.003] in MR), increased glycoprotein acetyls (0.08SD [95%CI: 0.03, 0.12] in AMV and 0.06 

[0.03, 0.10] in MR), and lowered total very large HDL particles (-0.04SD [-0.08, 0.00] in 

AMV and -0.05SD [-0.09, -0.02] in MR) and phospholipids in very large HDL particles (-

0.04SD [-0.08, 0.002] in AMV and -0.05SD [-0.08, -0.02] in MR) (Figure 3). MR sensitivity 

analyses were generally consistent with the main IVW analyses though confidence intervals 

were wide for the MR-Egger results. (Figure 3).  
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Sleep duration 

Several associations of total sleep duration with metabolomics traits were directionally 

consistent in the the AMV and MR analyses (Figure 4). Where association directions were 

consistent, the MR results often had a stronger magnitude of association than the AMV 

results. Consistency of magnitude (as well as direction) was poor to moderate between the 

two methods (Figure 5, R2 = 0.37).  

Associations for total sleep duration passed the multiple testing threshold for 8 of the 

113 metabolomic trait associations in AMV analyses and one in MR. Only one of the 8 AMV 

associations replicated in the MR analyses (difference in mean creatinine for a 1 hour longer 

sleep was 0.02SD [0.01, 0.03] in AMV and 0.15 [0.02, 0.29] in MR). Isoleucine was the one 

metabolite to pass the multiple testing threshold in IVW MR analyses but it did not replicate 

in AMV analyses (0.01SD [-0.001, 0.02] in AMV and 0.22 [0.08, 0.36] in MR analyses]) 

(Figure 6). For the associations with creatinine, the weighted median MR result was 

consistent with that of the main (IVW) results but MR-Egger was in the opposite direction 

(though with very wide confidence intervals). For isoleucine, both MR sensitivity analyses 

had point estimates that were directionally, and in magnitude, similar to the main IVW MR 

results (Figure 6).  

In exploratory analyses, most associations of short sleep duration (<7 hours) were 

close to the null in both AMV and MR analyses, with very little overall agreement between 

the two methods (R2=0.09, Supplemental Figures S1 and S2). Two associations of short 

sleep passed the multiple testing corrected p-value in AMV analyses (22:6 docosahexonic 

acid (DHA) and omega-3 fatty acids), with short sleep duration associated with lower levels 

for both of these; none passed the multiple testing threshold in the MR analyses. For 

docosahexonic acid (DHA) and omega-3 fatty acids there was an inverse association in IVW 
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MR analyses that had a larger effect estimate than in the AMV analyses but with wide 

confidence intervals that included the null (Supplemental Figure S3).  

 A total of 31 of the 113 metabolites passed the multiple testing threshold in the AMV 

analyses of long sleep duration (≥9 hours), including higher concentrations of most extremely 

large, large and medium VLDL, triglycerides, and concentrations of glycoprotein acetyls and 

isoleucine (Supplemental Figures S4). MR analyses did not support a causal effect for any 

of these, with MR analysis point estimate close to the null or in the opposite direction 

(Figure S6). We did not identify any metabolic traits passing the multiple testing threshold in 

IVW MR. 

 

Chronotype 

There was very little consistency in direction and magnitude of association between 

AMV and MR analyses of chronotype with the metabolomic traits (Figures 7 and 8, R2 = 

0.17). Chronotype was associated with isoleucine after multiple testing correction in the 

AMV analyses (difference in mean comparing evening to morning preference (0.13SD [0.04, 

0.21]), but this was not supported in MR analyses (-0.02 [-0.05, 0.02])) (Figure 9). No 

associations of chronotype with the metabolomics traits passed the multiple testing threshold 

in the IVW MR analyses. 
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Discussion  

With the present multi-cohort effort, we intended to identify the potential biochemical 

mechanisms linking sleep to cardiometabolic disease risk. We found consistent evidence with 

both AMV and MR that usually (vs. sometimes, rarely or never) experiencing insomnia 

symptoms causes lower concentrations of citrate, total very large HDL particles and 

phospholipids in very large HDL particles and higher concentrations of glycoprotein acetyls. 

There was little consistency between AMV and MR results for total habitual sleep duration 

across all metabolomic traits, though a longer total sleep duration was associated with higher 

concentrations of creatinine in both methods. For chronotype, whilst having an evening 

preference was associated with higher isoleucine concentrations at our multiple-testing 

threshold in the AMV analyses, MR analyses did not support causality. Chronotype did not 

pass multiple testing with any other metabolites. Therefore, our findings do not support the 

notion that sleep traits have widespread effects on the investigated metabolomic traits. 

Nevertheless, they suggest that insomnia symptoms may influence cardiometabolic disease 

(as previously shown in MR17) through increased inflammation, and also result in lower 

citrate levels. 

The lack of a more widespread impact of sleep traits on multiple metabolomic traits is 

in contrast with some experimental sleep studies, although direct comparisons are not 

possible. For example, targeted and untargeted mass spectrometry measurements performed 

in frequently sampled blood (every 2 hours) from 12 healthy men revealed that 109 out of 

171 metabolites exhibited a circadian rhythm43. Furthermore, in controlled experimental 

conditions this circadian variation was maintained for 78 out of these 109 metabolites over a 

24-hour period of total sleep deprivation. For 27 metabolites, including some lipids (13 

glycerophospholipids and 3 sphingolipids), as well as tryptophan, serotonin, taurine and 8 

acylcarnitines, marked acute increases in concentrations were observed during 24 hours of 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.27.20173518doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.27.20173518


 

21 

 

sleep deprivation compared with the 24 hours of habitual sleep43. Importantly, the MR 

analyses assessed long-term (lifelong), rather than acute, effects of a predisposition for 

unfavourable quality or quantity of sleep on metabolic disturbances, which could explain the 

generally stronger effects in the total sleep duration MR analyses.  

Glycoprotein acetyls, which we identified as a novel trait potentially influenced by 

insomnia symptoms, are elevated in response to infection and inflammation. C-reactive 

protein (CRP) is the most widely recognized marker of acute and chronic inflammation in 

epidemiological studies. Whilst observational studies have shown that higher circulating CRP 

is associated with increased cardiovascular disease risk, MR studies suggest this is not a 

causal relationship44, 45. Glycoprotein acetyls have emerged as a potentially better measure of 

cumulative inflammation than CRP, since glycoprotein acetyls increase late in the 

inflammatory process and levels are relatively stable within individuals over many years46, 47. 

In AMV analyses in prospective cohorts, glycoprotein acetyls were positively associated with 

cardiovascular diseases and type 2 diabetes, independently of established risk factors and 

CRP47. If these associations are shown to be causal, then it is possible that cumulative chronic 

inflammation, as measured by glycoprotein acetyls, mediates the effect of insomnia on 

coronary heart disease identified in MR analyses17. However, we acknowledge that our 

results for the effect of insomnia on glycoprotein acetyls require replication in independent 

and larger studies and testing in ancestries other than Europeans. 

 The inverse association of insomnia symptoms with citrate in both AMV and MR 

analyses is novel. A recent narrative review highlighted the physiological control of plasma 

citrate concentrations in health and disease48. One possible mechanism through which 

insomnia might influence citrate is via the relationship of insomnia with night-time eating 

(which is also accompanied with higher night physical activity)49, which would result in 

higher TCA cycle activity and consequently lower plasma citrate concentrations. However 
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despite a plausible role, there is a paucity of clinical and epidemiological studies of the effect 

of citrate levels on disease outcomes48. Therefore, the meaning of a possible effect of 

insomnia on citrate levels is hard to discern.  

 We found evidence for associations of experiencing insomnia symptoms with higher 

concentrations of very large total HDL particles and phospholipids in very large HDL 

particles. MR and randomized controlled trials suggest that circulating HDL cholesterol is not 

causally related to cardiovascular disease50-52. The amount of cholesterol carried in HDL 

particles increases with increasing particle size and emerging evidence highlights the 

importance of considering size, structure and composition of lipoprotein particles when 

exploring their effects on cardiovascular disease53. In AMV analyses, inverse associations of 

very large, large, medium and small HDL particles with cardiovascular disease have been 

observed, but these attenuated to the null with adjustment for lipids used by clinicians36. 

Thus, the relevance of possible insomnia effects on very large HDL particle concentrations, 

and specifically phospholipids in these particles, is unclear and require additional studies.  

 We found evidence in both AMV and MR analyses of a possible association of longer 

total sleep duration with higher creatine concentrations, a biomarker used to estimate kidney 

function. Established cardiovascular risk factors, such as high blood pressure and type 2 

diabetes, are associated with higher creatinine concentrations54. Findings from multivariable 

regression suggest that the association of kidney function with cardiovascular disease largely 

reflects confounding and/or reverse causality55. Thus, our observations possibly suggest that 

longer sleep duration is an additional risk factor for chronic kidney disease rather than 

cardiovascular diseases, though we acknowledge MR sensitivity analyses did not support a 

causal effect. We also found a novel association of longer total sleep duration with the 

branched-chain amino acid isoleucine in MR analyses. Higher concentrations of branched-

chain amino acids, including isoleucine, are associated with increased risk of cardiovascular 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.27.20173518doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.27.20173518


 

23 

 

disease36, though this has not been explored in MR studies. MR analyses supports a causal 

effect of the branched-chain amino acids on type 2 diabetes56 and our results suggest that 

longer total sleep duration may mediate some of this effect. 

Key strengths of our study are its novelty and the comparison of results from the 

largest AMV study of sleep traits with multiple circulating metabolomic measures22 with 

equivalent results from MR. We harmonised questionnaire-based sleep data across all 

contributing studies and the NMR metabolomic platform was consistent across studies in 

both the AMV and MR analyses. We were able to increase the power of our two-sample MR 

analyses by combining unpublished summary-level GWAS results from three cohorts (total 

N=13,693) with those of the largest published GWAS of the same NMR platform (N=24,925) 

to date31. Two-sample MR assumes that the two samples are from the same underlying 

population and independent of each other. Given all GWAS were undertaken in adults of 

European ancestry and the lack of overlap in studies contributing to the metabolite GWAS 

with any of the sleep trait GWAS, we are confident this assumption is largely met. Most 

observed differences in mean metabolomic concentrations were close to the null, and in 

general (true) null results are less subject to bias than non-null results57.  

Important limitations include the lack of statistical power, particularly to explore 

possible non-linear associations for sleep duration. The platform misses a high proportion of 

currently quantifiable metabolites in human serum/plasma, including markers of energy 

balance, microbiota metabolism, vitamins, co-factors and xenobiotics, that may be influenced 

by sleep traits43. Still the NMR platform used in the analyses covers considerably more of the 

lipidome than conventional clinical chemistry measures (total cholesterol, LDL-C, HDL-C 

and triglycerides) that have previously been explored, and in addition includes amino acids, 

glycolysis metabolites, ketone bodies and an inflammatory marker. Whilst we adjusted for 

age, sex and BMI, the results obtained in multivariable-adjusted regression may be 
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exaggerated by residual confounding from unobserved confounders such as socioeconomic 

position, smoking, and physical activity. As the AMV results were cross-sectional it is also 

possible that variation in metabolomic traits influences sleep patterns, and some of the 

multivariable regression results not verified in MR are due to reverse causality. In addition, 

we restricted the analyses to cohorts containing mostly European participants (one cohort 

contributing to AMV meta-analysis, HELIUS, included non-European participants, whereas 

all MR analyses were restricted to Europeans). This reduces the potential for population 

stratification to bias our MR analyses, but hampers generalization of our findings to other 

ancestry groups. The MR results may have been influenced by weak instrument bias, which, 

if present, would be expected to bias results towards the null. Sensitivity analyses exploring 

possible bias due to directional horizontal pleiotropy were mostly consistent with the main 

IVW findings, though MR-Egger estimates, were imprecise as expected with this method 

which is statistically less efficient than the main IVW method.  

Taken together, our findings do not suggest widespread metabolic disruption caused 

by sleep traits. However, the evidence for possible effects of insomnia symptoms on 

glycoprotein acetyls and citrate, and longer total sleep duration on creatinine and isoleucine 

might explain some of the effects, found in MR analyses, of these sleep traits on 

cardiometabolic diseases. These warrant further investigation. 
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Figure 1: IVW Mendelian randomization estimates and age-, sex- and BMI-adjusted 
multivariable regression estimates for the associations between insomnia symptoms and 
113 NMR-derived metabolomic measures. 
 

  
Results are expressed as the difference in mean metabolite concentrations (in standard 
deviation units) between those reporting usually versus sometimes/rarely/never experiencing 
insomnia symptoms. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression; 
BMI, body mass index; IDL, intermediate density lipoprotein; IVW MR, Inverse variance 
weighted Mendelian randomization; LDL, low density lipoprotein; NMR, nuclear magnetic 
resonance; VLDL, very large density lipoprotein.  
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Figure 2: Comparison of the point estimates of the IVW Mendelian randomization and 
age-, sex- and BMI-adjusted multivariable regression analyses for the associations 
between insomnia symptoms and 113 NMR-derived metabolomic measures.  

 

Each green dot in the scatter plot represents a metabolic trait and the positions of the dots 
are determined by the differences in mean metabolite concentrations (in standard deviation 
units) between those reporting usually versus sometimes/rarely/never experiencing insomnia 
symptoms. These are estimated by Inverse variance weighted (IVW) Mendelian 
randomization (vertical axes) and age, sex and BMI adjusted multivariable regression 
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(horizontal axes). The vertical grey lines for each dot indicate the 95% confidence intervals 
(CI) for the Mendelian randomization estimates and the horizontal grey lines for each dot 
indicate the 95% CI for the adjusted multivariable regression estimates. A linear fit (red 
dashed line) summarizes the similarity between the two estimates. A slope of 1 with an 
intercept of 0 (dashed grey line), with all green dots sitting on that line (R2 = 1), would 
indicate identical magnitude and direction between the two methods. R2 indicates goodness 
of linear fit and is a measure of the consistency between the two estimates. Abbreviations: 
AMV, adjusted (age, sex, BMI) multivariable regression; BMI, body mass index; CI, 
confidence interval; DHA, 22:6, docosahexaenoic acid; IVW MR, Inverse variance weighted 
Mendelian randomization, SD, standard deviation. 
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Figure 3: Mendelian randomization and age-, sex- and BMI-adjusted multivariable 
regression analyses results for select associations of insomnia symptoms with NMR-
derived metabolomic measures.

 

Figure shows inverse variance weighted (IVW) Mendelian randomization, Mendelian 
randomization sensitivity (weighted median (WM) and MR-Egger) and adjusted 
multivariable (AMV) regression analysis results. Results presented were selected on the basis 
of passing multiple testing threshold for either IVW or AMV (p-values < 0.0029) The 
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estimates are the difference in mean metabolite (in standard deviation units) between those 
reporting usually versus sometimes/rarely/never experiencing insomnia symptoms. 
Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression; BMI, body mass 
index; IVW MR, Inverse variance weighted Mendelian randomization; NMR, nuclear 
magnetic resonance; SD, Standard Error; VLDL, very low density lipoprotein; WM, 
Weighted Median. 
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Figure 4: IVW Mendelian randomization estimates and age-, sex- and BMI-adjusted 
multivariable regression estimates for the associations between total sleep duration and 
113 NMR-derived metabolomic measures. 

 
Results are expressed as the difference in mean metabolite concentrations (in standard 
deviation units) for each 1 hour greater reported total sleep duration. For visualization 
purposes the axes have unequal scaling. Abbreviations: AMV, adjusted (age, sex, BMI) 
multivariable regression; BMI, body mass index; IDL, intermediate density lipoprotein; IVW 
MR, Inverse variance weighted Mendelian randomization; LDL, low density lipoprotein; 
NMR, nuclear magnetic resonance; VLDL, very large density lipoprotein.  
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Figure 5: Comparison of the point estimates of the IVW Mendelian randomization and 
age-, sex- and BMI-adjusted multivariable regression analyses for the associations 
between total sleep duration and 113 NMR-derived metabolomic measures.  
 

 

Each green dot in the scatter plot represents a metabolic trait and the positions of the dots 
are determined by the differences in mean metabolite concentrations (in standard deviation 
units) for each 1 hour greater reported total sleep duration. These are estimated by Inverse 
variance weighted (IVW) Mendelian randomization (vertical axes) and age, sex and BMI 
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adjusted multivariable regression (horizontal axes). The vertical grey lines for each dot 
indicate the 95% confidence intervals (CI) for the Mendelian randomization estimates and 
the horizontal grey lines for each dot indicate the 95% CI for the adjusted multivariable 
regression estimates. A linear fit (red dashed line) summarizes the similarity between the two 
estimates. A slope of 1 with an intercept of 0 (dashed grey line), with all green dots sitting on 
that line (R2 = 1), would indicate identical magnitude and direction between the two 
methods. R2 indicates goodness of linear fit and is a measure of the consistency between the 
two estimates. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression; BMI, 
body mass index; CI, confidence interval; IVW MR, Inverse variance weighted Mendelian 
randomization, SD, standard deviation. 
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Figure 6: Mendelian randomization and age-, sex- and BMI-adjusted multivariable 
regression analyses results for selected associations of total sleep duration with NMR-
derived metabolomic measures . 

  

Figure shows inverse variance weighted (IVW) Mendelian randomization, Mendelian 
randomization sensitivity (weighted median (WM) and MR-Egger) and adjusted 
multivariable (AMV) regression analysis results. Results presented were selected on the basis 
of passing multiple testing threshold for either IVW or AMV (p-values < 0.0029). The 
estimates are the difference in mean metabolite (in standard deviation units) per 1 hour 
greater total sleep duration. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable 
regression; BMI, body mass index; DHA, 22:6, docosahexaenoic acid; HDL, high density 
lipoprotein; IVW MR, Inverse variance weighted Mendelian randomization; NMR, nuclear 
magnetic resonance; SD, Standard Error; WM, Weighted Median. 
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Figure 7: IVW Mendelian randomization estimates and age-, sex- and BMI-adjusted 
multivariable regression estimates for the associations between chronotype and 113 
NMR-derived metabolomic measures. 

 

  
 
Results are the difference in mean metabolite concentrations (in standard deviation units) 
between those reporting an evening versus morning preference. Abbreviations: AMV, 
adjusted (age, sex, BMI) multivariable regression; BMI, body mass index; IDL, intermediate 
density lipoprotein; IVW MR, Inverse variance weighted Mendelian randomization; LDL, low 
density lipoprotein; NMR, nuclear magnetic resonance; VLDL, very large density 
lipoprotein.  
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Figure 8: Comparison of the point estimates of the IVW Mendelian randomization and 
age-, sex- and BMI-adjusted multivariable regression analyses for the associations 
between chronotype and 113 NMR-derived metabolomic measures. 

 

Each green dot in the scatter plot represents a metabolic trait and the positions of the dots 
are determined by the differences in mean metabolite concentrations (in standard deviation 
units) comparing those reporting an evening preference versus morning preference. These 
are estimated by Inverse variance weighted (IVW) Mendelian randomization (vertical axes) 
and age, sex and BMI adjusted multivariable regression (horizontal axes). The vertical grey 
lines for each dot indicate the 95% confidence intervals (CI) for the Mendelian 
randomization estimates and the horizontal grey lines for each dot indicate the 95% CI for 
the adjusted multivariable regression estimates. A linear fit (red dashed line) summarizes the 
similarity between the two estimates. A slope of 1 with an intercept of 0 (dashed grey line), 
with all green dots sitting on that line (R2 = 1), would indicate identical magnitude and 
direction between the two methods. R2 indicates goodness of linear fit and is a measure of the 
consistency between the two estimates. Abbreviations: AMV, adjusted (age, sex, BMI) 
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multivariable regression; BMI, body mass index; CI, confidence interval; IVW MR, Inverse 
variance weighted Mendelian randomization, SD, standard deviation. 
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Figure 9: Mendelian randomization and age-, sex- and BMI-adjusted multivariable 
regression analyses results for selected associations of chronotype with NMR-derived 
metabolomic measures 

 

Figure shows inverse variance weighted (IVW) Mendelian randomization, Mendelian 
randomization sensitivity (weighted median (WM) and MR-Egger) and adjusted 
multivariable (AMV) regression analysis results. Results presented were selected on the basis 
of passing multiple testing threshold for either IVW or AMV (p-values < 0.0029). The 
estimates are the difference in mean metabolite (in standard deviation units) comparing 
report of having an evening versus morning preference. Abbreviations: AMV, adjusted (age, 
sex, BMI) multivariable regression; BMI, body mass index; IVW MR, Inverse variance 
weighted Mendelian randomization; NMR, nuclear magnetic resonance; SD, standard 
deviation; WM, Weighted Median. 
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