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Dynamic deformable attention (DDANet) for
semantic segmentation

Kumar T. Rajamani, Hanna Siebert, and Mattias P. Heinrich,

Abstract— Deep learning based medical image segmen-
tation is an important step within diagnosis, which relies
strongly on capturing sufficient spatial context without
requiring too complex models that are hard to train with
limited labelled data. Training data is in particular scarce
for segmenting infection regions of CT images of COVID-19
patients. Attention models help gather contextual informa-
tion within deep networks and benefit semantic segmenta-
tion tasks. The recent criss-cross-attention module aims to
approximate global self-attention while remaining memory
and time efficient by separating horizontal and vertical self-
similarity computations. However, capturing attention from
all non-local locations can adversely impact the accuracy
of semantic segmentation networks. We propose a new Dy-
namic Deformable Attention Network (DDANet) that enables
a more accurate contextual information computation in a
similarly efficient way. Our novel technique is based on
a deformable criss-cross attention block that learns both
attention coefficients and attention offsets in a continu-
ous way. A deep segmentation network (in our case a U-
Net [1]) that employs this attention mechanism is able to
capture attention from pertinent non-local locations and
also improves the performance on semantic segmentation
tasks compared to criss-cross attention within a U-Net on
a challenging COVID-19 lesion segmentation task. Our val-
idation experiments show that the performance gain of the
recursively applied dynamic deformable attention blocks
comes from their ability to capture dynamic and precise
(wider) attention context. Our DDANet achieves Dice scores
of 73.4% and 61.3% for Ground-Glass-Opacity and Consoli-
dation lesions for COVID-19 segmentation and improves the
accuracy by 4.9% points compared to a baseline U-Net.

Index Terms— Attention Mechanism, CCNet, COVID-19,
Criss-Cross Attention, Deformable Attention, Segmenta-
tion, U-Net

I. INTRODUCTION

THE coronavirus COVID-19 pandemic is having a global
impact affecting 213 countries so far. The cases world

wide as reported on Worldometers [2] is about 16,482,271 as
of end July 2020. Many of the countries have steadily flattened
the curve by stringent social distancing measures. In the last
several months of managing this pandemic globally, several
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screening options have become main stream from Nucleic
Acid Amplification Tests (NAAT) assay tests, serological tests,
and radiological imaging (X-rays, CT). Recent studies have
also demonstrated that lack of taste and smell is a new
indicator for this virus [3].

The gold-standard for COVID-19 diagnosis is currently
using reverse-transcription polymerase chain reaction (RT-
PCR) testing [4]. It has been observed that RT-PCR also has
several vital limitations. The most pertinent of this limitation
is that the test is not universally available. To further com-
pound the drawbacks, the turnaround times for this test is
currently lengthy and the sensitivities vary. Some studies have
even pointed out that that sensitivity of this test is largely
insufficient [4]. To mitigate some of the challenges in rapid
screening given the large incidence rate of this virus and
limited testing facility, radiological imaging complements and
supports immensely stratify therapy options for more severe
cases of COVID-19.

Radiological imaging equipment, such as X-ray, are more
easily accessible to clinicians and also provide huge assis-
tance for diagnosis of COVID-19. CT imaging and Chest
radiographs (CXR) are two of the currently used radiological
imaging modalities for COVID-19 screening. Lung CT can
detect certain characteristic manifestations associated with
COVID-19. Several studies [5] [4] have demonstrated that CT
is more sensitive to detect COVID-19, with 97-98%, compared
to 71% for RT-PCR [4]. CXR might have lesser scope in the
first stages of the disease as the changes are not evident on
CXR. Studies have shown [6], [7] that CXR may even present
normal in early or mild disease , as demonstrated in Figure 1
[8]. CT is hence preferred for early stage screening and is also
generally better than X-rays as it enables three dimensional
views of the lung.

The typical signs of COVID-19 infection observed in CT
slices are ground glass opacities (GGO), which occur in the
early stages and pulmomary consolidation, which occur in
later stages. Detection of these regions in CT slices gives vital
information to the clinicians and helps in combating COVID-
19. Manual detection is laborious, highly time consuming,
tedious and error prone. It has to be pointed out that COVID-
19 associated abnormalities, such as ground glass opacities
and consolidations, are not characteristic for only COVID-19
but can occur in other forms of pneumonia.

Deep Learning plays a vital role in processing these medical
images and correctly diagnosing patients with COVID-19.
In regular clinical workflow, while assessing the risks for
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Fig. 1. Comparison of chest radiograph (A) and CT thorax coronal
image (B). The ground glass opacities in the right lower lobe periphery
on the CT (red arrows) are not visible on the chest radiograph, which
was taken 1 hour apart from the first study. Image courtesy - Ming-Yen
et al [9]

progression or worsening, the images need to be segmented
and quantified. Deep learning based algorithms are able to
automatically segment images when trained on manually
segmented lesion labels. Several researchers have already
established the efficacy of such algorithms on COVID-19
images. One of these early works was DenseUNet proposed
by [10] to segment the lesions, lungs and lobes in 3D. They
compute percentage of opacity and lung severity scores and
report this on entire lung and lobe-wise. The algorithm was
trained on 613 manually delineated CT scans (160 COVID-
19, 172 viral pneumonia, and 296 ILD). They report Pearson
Correlation coefficients between prediction and ground truth
above 0.95 for all the four categories. In CovidENet [11]
propose a combination of a 2D slice-based and 3D patch-
based ensemble architectures, trained on 23423 slices. Their
finding was that CovidENet performed equally well as trained
radiologists, with a Dice coefficient of 0.7.

For the diagnosis of lung diseases, CT scans have been the
preferred modality, and this has therefore been actively utilized
in managing COVID-19 [12] [13] [14]. AI in medical imaging
has largely aided in automating the diagnosis of COVID-19
from medical images [15] [16]. A detailed review of AI in
Diagnosis of COVID-19 has been presented by Shi et al [12].
They broadly group AI based automated assistance for image
acquisition, accurate segmentation of organs and infections
and for clinical decision making. Under the segmentation
approaches they have comprehensively covered nearly all the
research that has happened so far in the automated segmenta-
tion of lung regions and lesion regions in CT and Xray images.

A variant of inception network was proposed by Wang [16]
for classifying COVID-19 from healthy. U-Net++ architecture
[17] has been effectively put to use for COVID-19 diagnosis,
which worked better than expert radiologists. In the realm of
segmentation based methods, [18] and [19] use VB-net [20] to
segment of lung and infection regions in CT images. Chaganti
et. al [10] use DenseUNet to 3D segment the lung and the
lesions.

Fan et al. [21] have reported in their paper the list of public
COVID-19 imaging datasets. As mentioned in their paper,
there is only one dataset which provides segmentation labels
[22]. From this public database [22], we have combined the
first dataset of 100 sparsely selected axial CT slices from over
40 patients with a dense set of slices from 9 patients CT scan

Fig. 2. Sample slice from one of the dataset and the corresponding
Ground-glass opacity lesion (GGO) marking in first row and GGO and
Consolidation lesion marking in second row. Dataset from website [22]

and use this larger datasets for our studies. A few exemplary
slices are demonstrated below to get a visual impression
of how the Ground-glass opacity lesions and Consolidation
lesions manifests itself in Figure 2.

In this paper, we propose Dynamic Deformable Attention
Network (DDANet), a novel deep network for COVID-19
infection segmentation in 2D CT slices. Our inspiration for
this network is the recent success of self attention mechanisms
and sparse deformable convolutions [23]. Attention blocks
do not have to be regularly structured, this opens the novel
research area that motivates our investigation of spatially-
adaptive attention filters. In this work we generalize criss-cross
attention [24] for semantic segmentation tasks. We enhance the
criss-cross attention and propose a novel deformable attention
in which both the attention filter offsets and coefficients
are learnt in a continuous, differentiable space. We carried
out extensive experiments of our novel algorithm on a large
publicly available COVID-19 dataset. Our proposed DDANet
achieves very good lesion segmentation and outperforms most
cutting-edge segmentation models reported so far on Ground-
glass opacity and consolidation lesions. The proposed so-
lution greatly enhances the performance of the baseline U-
Net architecture [25]. The baseline U-Net we have employed
in our work is from Oktay et al. [25], which has a well-
proven strong baseline. Our novel adaptation of the criss-cross
attention module is generic and can also be easily plugged
into any state-of-art segmentation architecture. These results
demonstrate that our proposed DDANet can be effectively used
in image segmentation in general and COVID-19 automated
image analysis in particular and can greatly aid in clinical
workflow handling of these images.

In summary, our main contributions in our work are:
• We propose a novel deformable attention module in

which sparse attention filter offsets are learnt in a con-
tinous differentiable space and can capture contextual
information in an efficient way

• We demonstrate that employing this new deformable
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attention mechanism within the U-Net architecture [25]
[1] achieves superior performance of lung infection seg-
mentation compared to conventional U-Nets or U-Nets
with criss-cross attention [24]

• The DDANet reaches state-of-the-art segmentation per-
formance of 73.4% and 61.3% for Ground-Glass-Opacity
and Consolidation lesions, on a large publicly available
CT COVID-19 infection dataset in a three-fold cross
validation on GGO and consolidation labels.

II. RELATED WORK

We discuss two areas of research that are related to our
work - Semantic segmentation and Attention mechanism,
specifically the criss-cross attention module.

A. Semantic Segmentation

Semantic segmentation has steadily progressed in the last
few years evolving from Fully Convolutional Network (FCN)
[26], to the use of dilated convolutions [27] and extensive
adaptation of encoder decoder architectures - U-Net [28],
Attention U-Net [25] [1], nnU-Net [29], DeepLabv3+ [30],
Semantic Prediction Guidance (SPGNet) [31], Discriminative
Feature Network (DFN) [32], RefineNet [33] and Multi-
Scale Context Intertwining (MSCI) [34]. To detect objects
of various scale, the convolution operator has been enhanced
using Deformable Convolution [35] [1] and Scale adaptive
convolutions [36]. Graphical models have also been employed
effectively for the task of semantic segmentation [37] [27].

Attention models initially gathered a lot of traction after
the successful introduction of transformer models in Natural
Language Processing (NLP) domain [38]. It has been demon-
strated that NLP models perform better when the encoder and
decoder are connected through attention blocks.

Attention mechanism have subsequently been utilized in
computer vision tasks to capture long-range dependencies.
The earlier approaches have tried to augment convolutional
models with content-based interactions [30] [39] [1]. The
seminal work in attention mechanisms was non-local means
[40], which was then followed by self-attention [39]. These
have helped achieve better performance on computer vision
tasks like image classification and semantic segmentation.
Attention-gates have also shown promising results when incor-
porated into U-Nets for 3D medical segmentation [1]. There
have also been successful experiments of building pure self-
attention vision models [41].

Non-Local Networks [40] enable full-image context in-
formation by utilizing self-attention which helps reference
features from any position to perceive the features of all
other positions. The drawback of Non-Local network is the
large time and space complexity (O(H ×W ) × (H ×W )))
to measure every pixel-pair relation, and also requiring large
GPU memory to train such models.

CCNet [24] elegantly solves the complexity issue by using
consecutive sparse attention. With two criss-cross attention
modules, CCNet captures contextual information from all
pixels with far less time and space complexity.

B. Criss-Cross Attention Module

The criss-cross attention module (CCA) proposed by Huang
et al. [24] aggregates contextual information in horizontal
and vertical directions for each pixel. The input image X
is passed through convolutional neural network (CNN) to
generate the feature maps H of reduced dimension. The CCA
module comprises of three convolutional layers applied on
H ∈ RC×H×W with 1× 1 as kernel size.

First, the local representation feature maps H are fed into
two convolutional layers in order to obtain two feature maps -
query Q and key K with the same reduced number of feature
channels C ′. By extracting feature vectors at each position u
from Q, a vector Qu ∈ RC′

is generated. From K feature
vectors in the same row and column as u are collected in
Ωu ∈ R(H+W−1)×C′

with elements Ωi,u ∈ RC′
.

Attention maps A ∈ R(H+W−1)×H×W are obtained by
applying the affinity operation di,u = QuΩu

T with di,u ∈ D
being the degree of correlation between feature Qu and Ωi,u,
i = [1, ..., |Ωu|], D ∈ R(H+W−1)×H×W followed by a
softmax layer on D over the channel dimension.

The third convolutional layer applied on H generates Value
V ∈ RC×H×W for feature adaption. Therefore, a feature
vector Vu ∈ RC and a set Φu ∈ R(H+W−1)×C are extracted
at each position u in the spatial dimension of V.

The contextual information is aggregated by

H′u =
∑

i∈|Φu|

Ai,uΦi,u + Hu (1)

with H′u being a feature vector in the module’s output feature
maps H′ ∈ RC×H×W at position u and Ai,u being a scalar
value at channel i and position u in A. Finally, the contextual
information is weighted with a learnable scalar γ and added
to the feature map H.

CCNet [24] was shown to enable improvements in computer
vision semantic segmentation tasks on Cityscapes, ADE20K
datasets. Tang et al. [42] have successfully employed criss
cross attention in medical organ segmentation (lung segmen-
tation). In their XLSor paper [42] they used a pretrained
ResNet101 replacing the last two down-sampling layers with
dilated convolution operation.

The aim of our work is two-fold. First, we evaluate whether
criss-cross attention can be employed within a U-Net [1] to
improve medical image lesion segmentation for labelled data
which is relatively small, a common scenario currently for
COVID-19. Second, we incorporate our novel adaptation of
this attention model and extend it with a dynamic deformable
attention mechanism where the attention filter offsets are learnt
in a continuous differentiable space. We strongly believe that
the deformable attention module that automatically adapt their
layout is an important step to get better insight into the compu-
tation mechanism of attention modules. We have discovered in
our work that capturing attention from all non-local locations
does negatively impact the accuracy of semantic segmentation
networks. Capturing only the necessary and essential non-local
contextual information in a smart and data driven way yields
far more promising segmentation results. We also demonstrate
that having the attention offsets learnable enables the network
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Q
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Fig. 3. A block diagram of the proposed Deformable Attention Net
(DDANet). Input image is progressively filtered and downsampled by
factor 2 at each scale in the encoding part. The deformable criss-cross
attention is inserted as an extension of the U-Net’s bottleneck in order to
capture contextual information from only the necessary and meaningful
non-local contextual information in smart and efficient way.

to smartly decide on its own the locations where to obtain
non-local attention from for improved results.

III. METHODS

In this section we explain the details of the proposed
network architectures. The basic idea of all variants presented
is that an attention module is integrated within the U-Net
architecture [1] as an extension of the U-Net’s bottleneck
in order to capture contextual information from only the
necessary and meaningful non-local contextual information in
smart and efficient way. Our models utilize the approach of the
criss-cross attention module proposed by [24] and modify it to
enhance the segmentation performance on COVID-19 datasets.

A. Network Architecture
The architecture of our model combines the concepts of U-

Net [28] and CCNet [24]. A block diagram of the proposed
Deformable Attention Net (DDANet) is shown in Figure 3.

We use a U-Net structure from Oktay et al. [25] [1], adapt-
ing it slightly by reducing one downsampling (and correspond-
ing upsampling path), to best process our image dimension
(256*256). It consists of three blocks in the downsampling
path and three blocks in the upsampling block. Each block
consists of 2×(Batch Normalization - 2D Convolution (kernel
size 3×3, stride 1, padding 1) - ReLU). The last block consists
of a 2D convolution with kernel size 1×1. For downsampling,
max pooling is applied in the downsampling path to halve the
spatial dimension of the feature maps after each block. In the
upsampling path ConvTranspose2d is used to double the size
of the spatial dimension of the concatenated feature maps. The
number of feature channels is increased 1−64−128−256−512
in the downsampling path and decreased again accordingly in
the upsampling path. The U-Net’s last layer outputs a number
of feature channels matching the number of label classes for
semantic segmentation.

The local representation feature maps H being output from
the U-Net’s last block within the downsampling path serve
as input of reduced dimension to the criss-cross module. The
attention module is inserted in the bottleneck, as the feature
maps are of reduced dimension, and hence the attention maps

Q

K

V

Fig. 4. A block diagram of the proposed deformable criss-cross atten-
tion module. In our deformable criss-cross, we have the H + W − 1
learnable attention offset parameters for each of the criss-cross loca-
tions. Differentiable bilinear interpolation is used to sample the attention
values for the query, key and value feature maps from the learnt
positions of deformed criss-cross offset locations.

have smaller, more manageable time and space complexity.
In the orginial CCNet [24], the following attention module
gathers contextual information in the criss-cross path of each
pixel leading to feature maps H′. In our proposed novel
DDANet, the pattern is dynamic and learnable, and hence
a dynamic deformable criss-cross path is used to obtain the
attention feature maps DH′. These feature maps are again
passed through the dynamic deformable attention module
again which results in feature maps DH′′ capturing attention
information from the most relavant locations from the whole-
image at each of its positions. The contextual features DH′′

obtained after passing R = 2 loops through the attention
module are concatenated with the feature maps X and merged
by a convolutional layer. The resulting feature maps are then
passed through the U-Net’s upsampling path.

We implement the following modifications of the criss-cross
attention module: Deformable CCA module with R = 2 loops,
X + γDH′′

Differentiable attention sampling : Consider a classical
criss-cross attention operation which gathers non-local infor-
mation on a feature map of Height H and width W . The initial
shape of the criss-cross pattern is a cross as the orginial CCNet
[24] which aggregates contextual information for each pixel in
its criss-cross path. We have realized the baseline criss-cross
attention by first initializing statically defined locations in a
2D flow field (sampling grid), of size H ∗W . The attention
filter offsets for the vertical direction is defined as the locations
where the x coordinates matches a tensor of length H equally
spaced points between −1 and 1. Similarly, the attention filter
offsets for the horizontal direction is defined as the locations
where the y coordinates match tensor of length W equally
spaced points between −1 and 1. These vertical and horizontal
offsets help to compute the attention along a cross pattern at
H + W non-local locations.

To make the attention map differentiable, we compute
displacement for the horizontal and vertical offsets. For com-
puting the displacement for each of the horizontal and vertical
locations we use H+W random locations sampled from a
standard normal distribution. We distribute these displacement
locations smoothly by convolving them three times with
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gaussian kernel with a kernel size 5. We then use spatial
transformer network to sample the attention values from the
offset locations coupled with the displacements. To obtain
the attention output for inputs on a discrete grid, we use
differentiable bilinear interpolation. This makes our attention
sampling differentiable and the attention locations are dynamic
and deformable.

We realized our dynamic deformable attention mechanism
by the differentiable attention sampling described above which
deforms the criss-cross pattern. In our deformable attention
implementation, we have included H + W learnable attention
offset parameters in our deep neural network definition. These
are the learnt displacements for each of the criss-cross loca-
tions. The learnt displacement vector (x and y displacement)
for each of the criss-cross locations is used to displace the
horizontal and veritcal offsets, while sampling the attention
maps. For the second recurrence, a second set of different
H + W learnable attention parameters is used for determining
the displacements.

We use differentiable bilinear interpolation to differentiably
sample the attention values for the query, key and value feature
maps from the deformed and dynamically learnt positions of
criss-cross offset locations. Hence the attention filter offsets
for each of the original criss-cross pattern are learnt in con-
tinuous differentiable space. The proposed deformable criss-
cross attention is depicted in the CCA-Module in Figure 4.
As depicted in the figure, the criss-cross pattern is learnt and
dynamically deformed to best capture the most relevant non-
local information.

The infection class in COVID-19 data is generally under
represented as compared to the background class especially
in early stages of the disease. This leads to a large class
imbalance problem. As found in several studies, Ground-
glass opacities generally precede consolidations lesions. This
progression of the lesion development in COVID-19 leads
to the another scenario of class-imbalance. In some patients
only one of the lesions is largely present and the second
lesion is highly under-represented (less than 10% of the total
infection labels. This also leads to a second category of class-
imbalance. To address all of these class-imbalance issues,
especially present in COVID-19 lesion segmentation scenarios,
we propose to use the inverse class-weighted cross-entropy
loss. The weights are computed to be inversely proportional
to the square root of class frequency. Given a sample with
class label y, this inverse class-weighted cross-entropy loss
can be expressed as

CE(z, y) = wy

(
−log

(
exp(zy)∑C
j=1 exp(zj)

))
(2)

with C being the total number of classes and z the output
from the model for all classes. The weighting factor

wy =

√
1
zy

1
C

∑C
j=1

√
1
zj

(3)

is determined with help of the inverse square root of
the number of samples in each label class to address the

problem of training from imbalanced data. The training and
validation sets also have different distributions, hence we have
computed the inverse weighting separately for the train and
validation sets. We have also used learning rate finder [43]
to find the optimal learning rate, and a 1cycle learning rate
policy scheduler, where the maximum learning rate was also
determined using the learning rate finder.

IV. EXPERIMENTAL SETUP AND RESULTS

We have used the publically available COVID-19 CT seg-
mentation dataset [22]. We have taken the 100 axial CT images
from different COVID-19 patients. This first collection of
data is from the Italian Society of Medical and Interven-
tional Radiology. We have also utilized the second dataset
of axial volumetric CTs of nine patients from Radiopaedia.
This second dataset with whole volumes having both positive
(373 positive) and negative slices (455 negative slices). We
perform experiments with a 3-fold cross validation on this
combined dataset consisting of 471 two-dimensional axial
lung CT images with segmentations for ground glass opacities
(GGO) and consolidation lesions. Each fold comprises data
acquired from three different patients plus one third of images
from the 100 slice CT stack taken from more than 40 different
patients. The CT images are cropped and rescaled to a size
of 256 × 256. During training, we perform random affine
deformations for data augmentation.

Training is performed for 500 epochs using the Adam
optimizer and an initial learning rate of 0.002. We further use
a cyclic learning rate with an upper boundary of 0.005 and
a class-weighted cross-entropy loss to address the problem of
training from imbalanced data.

For the infection region experiments and multi-class label-
ing we compared our model with two cutting-edge models:
U-Net [25] and Criss-Cross Attention [24]. The number of
trainable parameter for the U-Net [25] is 611K. For the U-
Net incorporated with the criss cross attention the parameter
count is 847K. Our proposed variant of modified CCNet has
slightly more parameters at 849K. We have used four widely
adopted metrics, i.e., Dice similarity coefficient, Sensitivity
(Sen.), Specificity (Spec.) and Mean Absolute Error (MAE).
If we denote the final prediction as Fp and the object-level
segmentation ground-truth as G, then the Mean Absolute Error
which measures the pixel-wise error between final prediction
and ground truth is defined as

MAE =
1

w × h

w∑
x

h∑
y

| Fp(x, y)−G(x, y)) | (4)

We have adopted a similar approach to Fan et al. [21] and
present first the results of our proposed DDANet on detecting
lung infections. Our network is trained on multi-class lung
infection (GGO and consolidation) and during evaluation we
combine these multiple classes into one infection label. We
present our 3-fold cross-validation studies results in Table I,
which is averaged over multiple runs that we have conducted.
We have also included the results from Fan et al. [21] in
each of our experiments. It has to be noted that Inf-Net
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Fig. 5. Visual comparison of multi-class lung segmentation results, where the red and green labels indicate the GGO and Consolidation,
respectively

Input Image GT UNET CCNET DDANET

was only trained with the first dataset which is smaller (100
axial slices) and Semi-Inf-Net was trained with pseudo labels
from unlabelled CT images. As captured in the Table I, our
proposed DDANet achieves the best Dice scores in each of the
folds. The best Dice score obtained is 0.814 and least mean
absolute error (MAE) is 0.0185. We have also captured the
average infection segmentation performance of our network
in the same Table I. Our proposed DDANet has the best
infection segmetation performance in average with the average
Dice score of 0.791). In terms of Dice, our proposed DDANet
out-performs the cutting-edge U-Net model [25] by 1.91% on
average infection segmentation.

We have also include the infection segmentation perfor-
mance of our DDANet on each of the Patients in the sup-
plementary materials. In each of the patients, our proposed
DDANet had the best Dice score and the minimum MAE. The
average across all the patients is captured in Table II. In terms
of Dice, our DDANet method achieves the best competitive
performance of 0.7789 averaged across all the patients. It
outperforms the baseline best U-Net model Dice by 3.658%
on infection segmentation.

We have included the fold-wise performance of our
DDANet on multi-class labeling in the supplement section.

We have captured the average multi-label segmentation per-
formance of our network in Table III. We have also compared
our results with the results from Inf-Net by Fan et al. [21].
Our baseline U-Net [25] and proposed DDANet has far less
trainable parameters at (611K) and (849K) as compared to
33M in Inf-Net [21]. Our proposed DDANet has the best
multi-label segmetation performance also in average with the
best Dice score of 0.734) for GGO lesions and best Dice score
of 0.613) for Consolidation lesions. Our proposed DDANet
has average best dice score of 0.673 for detecting COVID-19
lesions. In terms of Dice, our proposed DDANet out-performs
the cutting-edge U-Net model [25] by 4.90% on average multi-
label segmentation. We have increased the trainable parameters
in our proposed DDANet only by a neglible amount of 2450
(or 0.3%) in comparison to the original model with criss-cross
attention.

We have also captured the multi-label segmentation perfor-
mance of our DDANet on each of the Patients in the sup-
plementary materials. In terms of Dice, our DDANet method
achieves the best competitive performance of 0.702 for GGO
lesion and 0.681 for Consolidation lesion averaged across all
the patients. In average the proposed DDANet outperforms
the baseline best U-Net model Dice by 2.86% on GGO ,
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TABLE I
PERFORMANCE (AVERAGED) OF INFECTION REGIONS ON COVID-19
DATASETS. WE HAVE SPLIT OUR DATA INTO THREE FOLDS, AND THE

RESULTS HERE ARE AVERAGED OVER MULTIPLE RUNS FOR EACH FOLD.
THESE ARE QUANTITATIVE RESULTS OF INFECTION REGIONS

COMPUTED FOLD-WISE AND WE REPORT 3D DICE-SCORES

Model Fold Dice Sen. Spec. MAE

Inf-Net [21] 0.682 0.692 0.943 0.082

Semi-Inf-Net [21] 0.739 0.725 0.960 0.064

0.800 0.879 0.989 0.0208
UNET 0.787 0.776 0.887 0.985 0.0274

0.740 0.823 0.984 0.0331
0.809 0.876 0.990 0.0192

+CCA 0.798 0.781 0.888 0.986 0.0258
0.735 0.850 0.981 0.0357
0.814 0.889 0.989 0.0185

DDANet 0.808 0.791 0.872 0.988 0.0240
0.750 0.825 0.985 0.0318

TABLE II
PERFORMANCE (AVERAGED) ON NINE REAL CT PATIENT DATA. THESE

ARE QUANTITATIVE RESULTS OF INFECTION REGIONS COMPUTED

PATIENT-WISE AND WE REPORT 3D DICE-SCORES. THE BEST RESULTS

ARE SHOWN IN BLUE FONT AND THE GAIN WITH RESPECT TO BASELINE

UNET IS SHOWN IN GREEN.

Model Dice Sen. Spec. MAE % Gain
Inf-Net [21] 0.579 0.87 0.974 0.047
Semi-Inf-Net [21] 0.597 0.865 0.977 0.033

UNET 0.7515 0.8811 0.9904 0.0149
+CCA 0.7633 0.8934 0.9908 0.0143 1.5819

DDANet 0.7789 0.8840 0.9915 0.0135 3.658

4.73% on Consolidation and in average 3.52% on multi-label
segmentation. The distribution of the GGO and Consolidation
lesions are not even among the different patient scans. Some
patients had predominantly only GGO (Patient-8) while other
patients had predominantly Consolidation (Patient-3). This
skew in distribution impacts the segmentation dice scores
significantly, when the lesions are minimally represented in
the patients.

V. DISCUSSION

COVID-19 lesion segmentation is a very challenging prob-
lem. One of the major challenge is the regional manifestation
of lesions especially in the early stages of the disease, and this
can be very hard to get good segmentation in those high class-
imbalance scenarios. A similar challenge arises when one of

TABLE III
QUANTITATIVE RESULTS OF GROUND-GLASS OPACITIES AND

CONSOLIDATION. THE RESULTS ARE AVERAGED ACROSS MULTIPLE

FOLDS AND MULTIPLE RUNS. THE BEST RESULTS ARE SHOWN IN BLUE

FONT.

Model GGO Consol. Avg %Gain #Params
Semi-Inf-Net+FCN8s 0.646 0.301 0.474 33.1M

Semi-Inf-Net+MC 0.624 0.458 0.541 33.1M
UNet 0.717 0.566 0.641 611.7 K
+CCA 0.723 0.596 0.660 2.84 847.3K

DDANet 0.734 0.613 0.673 4.90 849.7K

the lesion classes is majorly represented and the other class is
highly under-represented which makes it very difficult. This
also is a challenging scenario of skewed class-imbalance and
gets very hard to get good segmentation in this context as
well. The third challenge is the very limited availability of
large public datasets, which has been the case until recently.
Slowly a number of COVID-19 datasets are made publically
available and this scenario could change quite dramatically in
the future. This would then enable further research into more
compelling algorithms to address this challenging problem.

Our proposed deformable attention is only one of the
potential ways to realize learnable attention mechanisms that
are smarter elegant and have better performance than earlier
proposed criss-cross attention or non-local methods. There are
lots of research possibilities to make this even better. There is
no requirement or limitation to gather attention from H+W
locations as we are currently computing. We have currently
computed it that way to make it comparable to criss-cross
attention. The attention could be gathered from lesser or more
locations. One of the next research problems could be to
explore what could be the optimal or minimal number of non-
local attention that needs to be gathered to get the best results.
It would also be interesting to establish theoretical upper and
lower bounds for number of locations to get non-local attention
and its impact on performance. Our work opens up all these
and more possible research directions and can be the trigger for
more fundamental work on learnable attention mechanisms.

VI. CONCLUSION

In this paper, we have proposed a novel adaptation to the
criss-cross attention module with deformable criss-cross at-
tention. This has been incorporated into the U-Net framework
(DDANet) to improve the segmentation of lesion regions in
COVID-19 CT scans. Our extensive experiments have demon-
strated that both adapting the U-Net with a straightforward
incorporation of the CCNet module and also extending this
CCNet with multilpe recurrent application does not yield sub-
stantial improvements in segmentation quality. Our novel so-
lution and smart combination of adapted dynamic deformable
spatial attention have shown to be a working combination
yielding superior and promising results. This solution has
immense potential in better aiding clinicians with state-of-art
infection segmentation models. For our future studies, we plan
to apply explore its adaptation in ResNet like architectures
for 2D and once more labelled 3D scans become available
the module can easily be adapted to 3D V-Net architectures.
We will make our source-code and trained models publicly
available.
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Supplementary Materials:
Dynamic deformable attention (DDANet) for

semantic segmentation
Kumar T. Rajamani, Hanna Siebert, and Mattias P. Heinrich,

I. INTRODUCTION

The Supplementary Material section provides the following
further details of the main paper topics:

1) Enlarged depiction of the block diagram of our proposed
Deformable Attention Net (DDANet) is shown in Figure
1;

2) Enlarged depiction of the block diagram of the proposed
deformable criss-cross attention module is shown in
Figure 2;

3) One Exemplary Slice Showing Difference between
UNet+CCNet (state-of-art) and Proposed DDANet.

4) The infection segmentation performance of our DDANet
on each of the Patients in Table I;

5) The multi-label segmentation (GGO and Consolidation)
performance of our DDANet on each of the Patients
through 3D dice scores in Table II;

6) The multi-label segmentation (GGO and consolidation),
on each of the folds through 3D dice scores in Table
III. The results are shown across three folds.

We first present the expanded view of the block diagram of
the proposed Deformable Attention Net (DDANet) is shown in
Figure 1. The input image is progressively filtered by two con-
secutive convolution blocks. The number of activation maps or
feature channels is increased in the second convolution block.
The number of feature channels is progressively increased
1 − 64 − 128 − 256 − 512 in the downsampling path. This
double convolution block is then followed by maxpooling
lyer. The maxpool layer downsamples the activation maps by
factor 2 at each scale in the encoding part. The deformable
criss-cross attention is inserted as an extension of the U-
Net’s bottleneck in order to capture contextual information
from only the necessary and meaningful non-local contextual
information in smart and efficient way.

In the upsampling path ConvTranspose2d is used to double
the size of the spatial dimension of the concatenated feature
maps. The number of feature channels is decreased 512 −
256− 128− 64−NCL in the upsampling path. The U-Net’s
last layer outputs a number of feature channels matching the
number of label classes for semantic segmentation.

We next present the expanded view of the block diagram of
the proposed deformable criss-cross attention module in Figure
2. In our deformable criss-cross, we have the H+W − 1
learnable attention offset parameters for each of the criss-

cross locations. Differentiable bilinear interpolation is used to
sample the attention values for the query, key and value feature
maps from the learnt positions of deformed criss-cross offset
locations.
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Q
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Fig. 1. A block diagram of the proposed Deformable Attention Net (DDANet). Input image is progressively filtered and downsampled by factor 2
at each scale in the encoding part. The deformable criss-cross attention is inserted as an extension of the U-Net’s bottleneck in order to capture
contextual information from only the necessary and meaningful non-local contextual information in smart and efficient way.

Q

K

V

Fig. 2. A block diagram of the proposed deformable criss-cross attention module. In our deformable criss-cross, we have the H + W − 1 learnable
attention offset parameters for each of the criss-cross locations. Differentiable bilinear interpolation is used to sample the attention values for the
query, key and value feature maps from the learnt positions of deformed criss-cross offset locations.
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GT CCNET DDANET

Fig. 3. One exemplary slice showing difference between UNet+CCNet (state-of-art) and Proposed DDANet. As is clearly evident UNet+CCNet
segmentations leaks into the background when the contrast between structures is smaller and hence it generate spurious segmentations whereas
our proposed DDANet has lesser of such leaky effects and has superior performance.

In the Figure 3, we demonstrate one exemplary slice showing Difference between UNet+CCNet (state-of-art) and Proposed
DDANet. As is clearly evident UNet+CCNet segmentations leaks into the background when the contrast between structures is
smaller and hence it generate spurious segmentations whereas our proposed DDANet has lesser of such leaky effects and has
superior performance.
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TABLE I
PERFORMANCE ON NINE REAL CT PATIENT DATA. THESE ARE QUANTITATIVE RESULTS OF INFECTION REGIONS COMPUTED PATIENT-WISE AND WE

REPORT 3D DICE-SCORES

Pat-1 Dice Sen. Spec. MAE.

UNet 0.85 0.92 0.99 0.017

+CCA 0.86 0.90 0.99 0.016

DDAN 0.87 0.89 0.99 0.014

Pat-2 Dice Sen. Spec. MAE.

UNet 0.79 0.92 0.99 0.009

+CCA 0.81 0.88 0.99 0.007

DDAN 0.85 0.88 0.99 0.006

Pat-3 Dice Sen. Spec. MAE.

UNet 0.63 0.86 0.99 0.016

+CCA 0.71 0.96 0.99 0.013

DDAN 0.72 0.97 0.992 0.013

Pat-4 Dice Sen. Spec. MAE.

UNet 0.76 0.87 0.98 0.025

+CCA 0.76 0.91 0.98 0.027

DDAN 0.76 0.88 0.98 0.026

Pat-5 Dice Sen. Spec. MAE.

UNet 0.63 0.85 0.99 0.021

+CCA 0.64 0.88 0.98 0.021

DDAN 0.64 0.88 0.98 0.021

Pat-7 Dice Sen. Spec. MAE.

UNet 0.84 0.91 0.99 0.002

+CCA 0.79 0.96 0.99 0.003

DDAN 0.83 0.94 0.99 0.002

Pat-8 Dice Sen. Spec. MAE.

UNet 0.66 0.80 0.99 0.003

+CCA 0.69 0.78 0.99 0.003

DDAN 0.70 0.72 0.99 0.002

Pat-9 Dice Sen. Spec. MAE.

UNet 0.86 0.91 0.98 0.027

+CCA 0.86 0.88 0.99 0.024

DDAN 0.87 0.92 0.98 0.022

Avg Pat Dice Sen. Spec. MAE.

UNet 0.75 0.88 0.99 0.015

+CCA 0.76 0.89 0.99 0.014

DDAN 0.78 0.88 0.99 0.014

We have also captured the infection segmentation performance of our DDANet on each of the Patients in Table I. We have
skipped using one Patient (Patient-6) from the dataset, as that had only one slice with infection and only 85 voxels of infection
marked in that slice against the total 167M voxels. In each of the patients, our proposed DDANet is having the best Dice score
and the minimum MAE. In terms of Dice, our DDANet method achieves the best competitive performance of 0.78 and MAE
of 0.014 for Infection segmentation averaged across all the patients.
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TABLE II
PERFORMANCE ON NINE REAL CT PATIENT DATA. THESE ARE QUANTITATIVE RESULTS OF MULTI-LABEL REGIONS COMPUTED PATIENT-WISE AND

WE REPORT 3D DICE-SCORES

Patient-1 GGO Consolidation

UNet 0.8133 0.5233

UNet+CCA 0.7999 0.5837

DDANet 0.8248 0.5973

Patient-2 GGO Consolidation

UNet 0.3225 0.861

UNet+CCA 0.3378 0.867
DDANet 0.396 0.861

Patient-3 GGO Consolidation

UNet NA 0.7663

UNet+CCA NA 0.7942

DDANet NA 0.8053

Patient-4 GGO Consolidation

UNet 0.7352 NA

UNet+CCA 0.7359 NA

DDANet 0.7432 NA

Patient-5 GGO Consolidation

UNet 0.5599 0.4517

UNet+CCA 0.5694 0.4696
DDANet 0.5555 0.4616

Patient-7 GGO Consolidation

UNet 0.8403 NA

UNet+CCA 0.7973 NA

DDANet 0.8268 NA

Patient-8 GGO Consolidation

UNet 0.6533 NA

UNet+CCA 0.6843 NA

DDANet 0.695 NA

Patient-9 GGO Consolidation

UNet 0.8529 NA

UNet+CCA 0.8613 NA

DDANet 0.8726 NA

Mean-Ac. Pat. GGO Consolidation

UNet 0.683 0.651

UNet+CCA 0.684 0.679

DDANet 0.702 0.681

We have also captured the multi-label segmentation performance of our DDANet on each of the Patients through 3D dice
scores in Table II. We have again skipped Patient-6 (due to low lesion representation). The average across all the patients is
also captured in the same table in the last block. In six out of the eight patients, our proposed DDANet had the best Dice score
for both GGO and Consolidation lesion. In terms of Dice, our DDANet method achieves the best competitive performance of
0.702 for GGO lesion and 0.681 for Consolidation lesion averaged across all the patients.

In average the proposed DDANet outperforms the baseline best UNet model Dice by 2.86% on GGO , 4.73% on Consolidation
and in average 3.52% on multi-label segmentation. The distribution of the GGO and Consolidation lesions are not even among
the different patient scans. Some patients had predominantly only GGO (Patient-8) while other patients had predominantly
Consolidation (Patient-3). This skew in distribution impacts the segmentation dice scores significantly, when the lesions are
minimally represented in the patients. We have not taken into consideration those labels in some of the patients when the
representation is lower than 10% of the overall lesion distribution as the dice scores gets impacted due to this skewed distribution.
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TABLE III
QUANTITATIVE RESULTS OF GROUND-GLASS OPACITIES AND CONSOLIDATION. THE RESULTS ARE SHOWN ACROSS THREE FOLDS AND AVERAGED

OVER MULTIPLE RUNS. THE BEST RESULTS ARE SHOWN IN BLUE FONT AND THE GAIN WITH RESPECT TO BASELINE UNET IS SHOWN IN GREEN.

Model Fold GGO %Gain Consol. %Gain
Semi-Inf-Net+FCN8s 0.646 0.301

Semi-Inf-Net+MC 0.624 0.458
fold0 0.7687 0.6799

UNET fold1 0.7225 0.5699
fold2 0.659 0.4485
fold0 0.7809 0.7153

+CCA fold1 0.7254 0.89 0.6055 5.3
fold2 0.6631 0.4676
fold0 0.787 0.733

DDANet fold1 0.738 2.38 0.6085 8.22
fold2 0.675 0.4967

We have capture the performance of our DDANet on multi-class labeling. We present our 3-fold cross-validation studies
results in Table III, which is averaged over multiple runs that we have conducted. We have also included the results from Fan
et al. [1] in each of our experiments. As captured in the Table III, our proposed DDANet achieves the best Dice scores in each
of the folds. The Best Dice score achieved for GGO is 0.787 and best Dice score for Consolidation is 0.733. Our proposed
DDANet outperforms the cutting-edge UNet model, in terms of Dice, by 2.38% in GGO lesion and 8.22% in Consolidation
lesion segmentation in average. Our proposed deformable criss-cross attention is able to segment GGO and consolidation
lesions far better than the state-of-art models or baseline UNet models.
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