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1 World Mosquito Program, Colombia
2 Department of Geosciences and Environment, Universidad Nacional de Colombia,
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Abstract

Dengue virus (DENV) is an endemic disease in the hot and humid low-lands of
Colombia. We characterize diverse temporal and spatial patterns of monthly series of
dengue incidence in diverse regions of Colombia during the period 2007-2017 at different
spatial scales, and their association with indices of El Niño/Southern Oscillation
(ENSO) at the tropical Pacific and local climatic variables. For estimation purposes, we
use linear analysis tools including lagged cross-correlations (Pearson test), cross wavelet
analysis (wavelet cross spectrum, and wavelet coherence), as well as a novel nonlinear
causality method, PCMCI, that allows identifying common causal drivers and links
among high dimensional simultaneous and time-lagged variables. Our results evidence
the strong association of DENV cases in Colombia with ENSO indices and with local
temperature and rainfall. El Niño (La Niña) phenomenon is related to an increase
(decrease) of dengue cases nationally and in most regions and departments, with
maximum correlations occurring at shorter time lags in the Pacific and Andes regions,
closer to the Pacific Ocean. This association is mainly explained by the ENSO-driven
increase in temperature and decrease in rainfall, especially in the Andes and Pacific
regions. The influence of ENSO is not stationary (there is a reduction of DENV cases
since 2005) and local climate variables vary in space and time, which prevents to
extrapolate results from one site to another. The association between DENV and ENSO
varies at national and regional scales when data are disaggregated by seasons, being
stronger in DJF and weaker in SON. Specific regions (Pacific and Andes) control the
overall relationship between dengue dynamics and ENSO at national scale, and the
departments of Antioquia and Valle del Cauca determine those of the Andes and Pacific
regions, respectively. Cross wavelet analysis indicates that the ENSO-DENV relation in
Colombia exhibits a strong coherence in the 12 to 16-months frequency band, which
implies the frequency locking between the annual cycle and the interannual (ENSO)
timescales. Results of nonlinear causality metrics reveal the complex concomitant effects
of ENSO and local climate variables, while offering new insights to develop early
warning systems for DENV in Colombia.

Introduction 1

Dengue virus (DENV) is considered the most important vector-borne viral disease, 2

infecting around 50 million people per year [1] and with an estimation of 3.9 billion 3
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people at risk of contracting dengue in over 128 countries [2]. It is the arboviral disease 4

provoking more human morbidity and mortality [3–7]. DENV incidence has shown an 5

evident increase in the last decades [4, 8, 9], which has been associated with population 6

growth, urbanization, and climate change, extending the geographical range where it is 7

viable [7, 10,11]. In spite of many efforts to curtail and prevent the incidence, DENV 8

has continued to expand in endemic and new areas [6, 12]. Public expenditures to cover 9

treatments have increased accordingly [13], so that the cost of dengue in 18 countries in 10

2015 amounted to USD 3.3 billion expressed in terms of the Purchasing Power Parity 11

(PPP) [14]. 12

DENV is transmitted by Aedes mosquitoes, mainly by Aedes aegypti [15–17], an 13

endophilic mosquito that lives in tropical and subtropical regions [18]. Given that there 14

is a good correlation between the incidence rate of DENV and both adult and egg 15

count [19, 20], the increase of DENV cases could be related to an increase in mosquitoes 16

population. The spread of Ae. aegypti is attributed to anthropogenic and climate 17

conditions [3, 21–26], mainly affecting the most vulnerable human populations of 18

low-income urban centers [8, 27]. In spite that weather and climate are considered to 19

play an important role in the temporal and spatial distribution of DENV, the 20

identification and relative importance of climatic variables can be 21

controversial [10, 11,28] and may differ among environments [29,30]. The relationship 22

between climate variability and the incidence of dengue has been evaluated in diverse 23

sites, such as Mexico, Puerto Rico, Costa Rica, Indonesia, Australia, and 24

Colombia [31–38]. These studies have found that, similar to cholera and malaria, 25

dengue incidence exhibits seasonal cycles and inter-annual variability [39], which are 26

often linked to climatic factors [33,36,40]. 27

Mosquitoes breed in warm and wet regions, which explains the high number of cases 28

of infected people in tropical regions [15]. Temperature impacts both the entomological 29

parameters related to the mosquitoes’ life cycle [41] and the incubation period of DENV 30

in female mosquitoes [42], while precipitation determines the availability of breeding 31

sites. On the other hand, diverse entomological factors of Ae. aegypti development and 32

life cycle have been associated to weather and climate anomalies, in particular air 33

temperature and precipitation, brought about by El Niño/Southern Oscillation (ENSO), 34

the most important modulator of climate variability at interannual timescales 35

worldwide [10,43]. 36

Knowledge about the spatial distribution of dengue is essential to understand virus 37

dynamics and to put in place early warning systems and prevention and control 38

programs [8]. As Colombia has a wide range of climate conditions due to its equatorial 39

location and the presence of the Andes, a study at different spatial scales can help to 40

develop and improve regional and local public health interventions, and focus prevention 41

programs and surveillance measures in DENV-prone areas [27]. Besides, further 42

understanding about the linkages between climate variability and DENV is likely to 43

anticipate the effects of climate change [43], and provide clues to the scenarios of future 44

ENSO events [10]. Although dengue has been studied in Colombia [34,37,44–48], 45

spatiotemporal analyses relating climate and dengue cases have been carried out at local 46

level, and few regional studies have considered the combined effects of climate variables 47

and ENSO [47]. Therefore, the main objective of this paper is to characterize the 48

temporal and spatial distribution of dengue incidence and their association with 49

climatic variables and ENSO at different time and spatial scales in Colombia. In 50

particular we aim to confirm the wave-like traveling pattern of DENV incidence across 51

the different departments of Colombia, as found by Acosta [47]. This will help us to 52

advance our understanding of DENV seasonal endemicity and epidemic outbreaks. This 53

paper also analyzes the relationship between the incidence of DENV and the occurrence 54

of both phases of ENSO: El Niño (warm phase) and La Niña (cold phase), through the 55
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possible climate variables that are affected by these macro-climatic phenomena. 56

The work is distributed as follows. The next section describes the databases and the 57

methods, the third section reviews some important remarks of climate and dengue in 58

Colombia and shows the linkages between local climate, ENSO and dengue at national, 59

regional, departmental, and local levels, fourth section discusses the results obtained 60

and confronts them with the results of other studies, and the last section summarizes 61

the main conclusions found with the analyzes performed. 62

Materials and methods 63

Study site 64

This paper evaluates the spatiotemporal dynamics of dengue incidence and its 65

relationship with climatic variables and ENSO in Colombia. The country is located in 66

northwestern tropical South America (13.4◦N-4.2◦S, 66.8◦W-81.7◦W), and it is divided 67

into 5 major natural regions, namely Caribbean, Andes, Pacific, Orinoco and Amazon, 68

32 departments and 1122 municipalities, and has a population of more than 50 million 69

people, of which about 24 million live in dengue-prone areas [49]. 70

Databases 71

Dengue data corresponds to daily dengue cases reported from 2007 to 2017 by the 72

Public Health Surveillance System (Sistema de Vigilancia en Salud Pública, SIVIGILA, 73

https://www.ins.gov.co/Direcciones/Vigilancia/Paginas/SIVIGILA.aspx) of 74

the National Institute of Health (Instituto Nacional de Salud, INS) of Colombia. 75

Information on each dengue case includes the date and the municipality in which the 76

patient had the medical consultation. Such information contains confirmed and 77

potential cases. The database has information from 1058 municipalities. 78

Climatic variables were provided by the governmental Instituto Colombiano de 79

Hidroloǵıa, Meteoroloǵıa y Estudios Ambientales (IDEAM). This database includes 80

daily maximum temperature (Tmax), minimum temperature (Tmin), precipitation (P ), 81

wind velocity (WV ), and relative humidity (HR). We selected stations with records 82

that match the dengue database (2007-2017). In total, we used information from 1595 83

stations of P , 305 stations of Tmin, and 295 stations of Tmax. As few data are available 84

regarding wind velocity (50 stations) and humidity (14 stations), and almost none 85

completely overlap with the dengue series, we only considered these variables for 86

analyzes at national level. Finally, we use the Oceanic Niño Index (ONI, 87

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ 88

ONI_v5.php) as a variable that represents the dynamics of El Niño/Southern Oscillation 89

(ENSO) phenomenon. This index is based on a three-month running temperature mean 90

of anomalies in the Niño 3.4 region (5◦N-5◦S, 120◦-170◦W). Furthermore, the ENSO 91

Precipitation Index (ESPI; http://eagle1.umd.edu/GPCP_ICDR/espi.htm) is also 92

used to quantify non-linear causalities between ENSO, local climate and dengue 93

incidence at national and regional levels. 94

Methods 95

Data regarding dengue cases and climatic variables are aggregated at monthly scale, 96

avoiding the presence of zeros in rainfall data at daily scale that affect correlation 97

estimates. These data are also standardized through subtraction of the long-term 98

monthly mean and scaling by the long-term monthly standard deviation. 99

Standardization filters out part of the stationary cycles, such as the annual cycle, 100

allowing the visualization of phenomena at interannual timescales. 101
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For estimation purposes, we use linear analysis tools including lagged 102

cross-correlations (Pearson test), and wavelet analysis, and diverse time-delayed 103

nonlinear causal discovery metrics. Cross-correlations (ρ) between dengue cases and 104

ONI, dengue cases and climatic series, and ONI and climatic series are estimated over a 105

range of lags between 0 and 12 months. Lagged cross-correlograms are estimated by 106

aggregating the information at national, regional, departmental and municipal scales. 107

Furthermore, the correlations between raw dengue cases (without standardization) and 108

ONI are performed by splitting the data into quarters (DJF, MAM, JJA, SON). This 109

kind of analysis quantifies the degree of linear association and the time delay between 110

the time-series. 111

We also perform wavelet analysis to study the time-frequency behavior of monthly 112

series of dengue and ONI, and their conjoint dynamics at the national scale. This 113

technique has the advantage to process scale-dependent non-stationary time series, thus 114

allowing the description of the variability of the spectral properties over time. The 115

coupled dynamics between ONI and dengue cases was evaluated using the wavelet 116

coherence and the cross-wavelet transform. These analyses allow identifying time 117

intervals and period bands in which two time-series are related [50,51]. This technique 118

has already been used to analyze the dynamics of dengue in different places [11,25,33]. 119

We implemented the continuous wavelet transform (CWT) based on Torrence and 120

Compo [50] and the Cross Wavelet Analysis (CWA) based on Maraun and Kurths [52], 121

using the waipy toolkit developed in Python, which was implemented by Mabel Calim 122

Costa and available at https://github.com/mabelcalim/waipy. 123

Furthermore, we use diverse time-lagged causal inference methods aimed at 124

discovering and quantifying the causal interdependencies between time series of weather 125

variables, ENSO indices and dengue incidence at national and regional scales. To this 126

end, we employ the PCMCI method which allows to identify common drivers and links 127

among high dimensional time-lagged variables, by combining a PC Markovian 128

condition-selection step, named after its creators Peter and Clark [53,54] and the 129

Momentary Conditional Independence (MCI) test. PCMCI has been applied recently to 130

a large suite of biogeophysical phenomena [55–60]. The PCMCI method uses diverse 131

statistical tests to infer non-linear causalities including linear partial correlations 132

(ParCorr) and three types of nonlinear independence tests: GPDC, CMI, and 133

PCMCIplus. GPDC is based on Gaussian process regressions and a distance correlation 134

test on the residuals, suitable for a large class of nonlinear dependencies with additive 135

noise. CMI is a nonparametric test based on a k-nearest neighbor estimator of 136

conditional mutual information that can accommodate almost any type of 137

dependency [58–60]. PCMCIplus can identify the full, lagged and contemporaneous 138

causal graph (up to the Markov equivalence class for contemporaneous causality) under 139

the standard assumptions of Causal Sufficiency, and the Markov condition (J. Runge, 140

pers. comm.). For implementation purposes, we use the Tigramite 4.2 python package, 141

which allows to reconstruct graphical models (conditional independence graphs) from 142

discrete or continuously-valued time series based on the PCMCI method and create 143

high-quality plots of the results [58]. The module is available at 144

https://github.com/jakobrunge/tigramite/. 145

Dengue and climate 146

Climate can impact dengue dynamics via changes in pathogens, hosts, and 147

transmission [61]. Temperature and precipitation are variables widely associated with 148

dengue infection [24,41], being the peak incidence during the first (second) half of the 149

year in the southern (northern) hemisphere in association with elevated temperature 150

and precipitation [62,63]. High temperatures accelerate the metabolic rate of a vector, 151
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increasing biting rates of female mosquitoes and their longevity [28,64,65]. This may 152

result in increases in population size and enhanced egg production. Temperature also 153

influences the geographical range of vector survival [66] and humidity state. High 154

humidity enhances adult mosquito survival, but although low humidity decreases the 155

survival rate of arthropod vectors because of dehydration, and it also may cause an 156

increase in the mosquito blood-feeding rate [67]. Precipitation provides breeding 157

places [13,68], but the impacts depend on its interaction with evaporation [67], soil type, 158

topography and the proximity of water bodies. Besides, heavy or prolonged rainfall 159

events may disrupt vector breeding sites, and indeed, kill the mosquitoes directly [66]. 160

Both the seasonality and interannual variability of dengue cases have shown 161

connections with climate, existing considerable evidence of the role of El Niño-Southern 162

Oscillation (ENSO) on endemic infections [39,69,70]. ENSO is a macroclimatic 163

phenomenon resulting from strong non-linear ocean-atmosphere feedbacks over the 164

tropical Pacific, with an average frequency of 3-5 years, and constitutes the main 165

modulator of climate variability at interannual timescales worldwide, with particular 166

strong impacts in northern South America [71–73]. ENSO has two extremes phases 167

known as El Niño (warm phase) and La Niña (cold phase), which take a huge toll in 168

terms of human lives, socio-economic costs and environmental impacts worldwide. El 169

Niño (La Niña) occurs with an average frequency of 3-4 (6-8) years and is associated 170

with warmer (colder) sea surface temperature in the eastern and central equatorial 171

Pacific Ocean [73]. 172

Relationships between climate variables and factors affecting DENV transmission are 173

complex, non-linear, and non-stationary [11,20,31,33,67]. Climate variables may impact 174

the mosquito’s populations in different ways depending on local conditions since the 175

fundamental processes of heat and water exchange are determined by the microclimate 176

states [74]. Furthermore, ENSO’s impacts vary markedly, affected by the ENSO 177

diversity and the modes of variability within and outside the tropical Pacific [73]. 178

Climate of Colombia 179

Colombia’s climate varies remarkably in time and space owing to its equatorial location 180

and the temperature and rainfall gradients associated with the Andes topography. The 181

temporal distribution of rainfall highly depends on the meridional oscillation of the 182

Inter-Tropical Convergence Zone (ITCZ), the dynamics of three low-level jets: Chocó, 183

Caribbean and Orinoco [75–78], changes in topography (0 to 6,000 m), the 184

ocean-atmosphere dynamics of the Pacific, Atlantic and Caribbean Sea, the Amazon 185

and Orinoco River basins, and strong land surface-atmosphere feedbacks [79,80]. Mean 186

annual temperature and rainfall depends on altitude, and geographic location. Mean 187

annual rainfall ranges from 50 mm in deserts to 10,000-13,000 mm over the Pacific coast 188

in one of the rainiest spots on Earth [81]. Besides, uni-modal and bi-modal annual 189

cycles of precipitation vary throughout the different regions [22]. A bi-modal annual 190

cycle is witnessed over the Andes of Colombia with wetter seasons in April-May and 191

September-November and drier seasons during December-March and June-August. A 192

uni-modal annual cycle predominates in other regions, with maximum and minimum 193

rainfall rates depending on position of the ITCZ, and the aforementioned low-level jets 194

and land-surface feedbacks. On the other hand, Colombia exhibits a strong interannual 195

climatic variability associated with ENSO, showing prolonged dry (wet) periods and 196

above (below) normal temperatures during El Niño (La Niña) [76, 80,82–89]. 197

Fig 1 shows the maximum cross-correlations (ρmax) between ONI and precipitation, 198

ONI and maximum temperature, and ONI and minimum temperature and the 199

associated lags. In general, the observed maximum correlation between ONI and 200

precipitation in Colombia is negative (ρmax ≈-0.6, p ≤0.05), given that negative 201

anomalies of precipitation (drier periods) occur during El Niño (higher ONI values). 202
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Fig 1. Cross-correlations between ONI and climate variables on the
regional scale. Maximum cross-correlation (p ≤0.05) and lag between ONI and
precipitation (a,b), maximum temperature (c,d), and minimum temperature (e,f).

Also, correlations between ONI and temperatures are positive (ρmax ≈0.75 for Tmax and 203

ρmax ≈0.65 for Tmin), denoting the increase in both temperatures during El Niño. But 204

there is variability among regions. Maximum linear correlations between ONI and P are 205

simultaneous (lag 0) in all regions, except in the Amazon, which occurs at 2-months lag. 206

Between ONI and Tmax, maximum correlation occur at 1-month lag for the Amazon, 207

Orinoco, and Caribbean regions, and at 2-months lag for the Andes and Pacific regions, 208

and between ONI and Tmin, at 1-month lag for the Caribbean, 3-months for the Pacific 209

and Amazon, 4-months for the Andes, and 5-months for the Orinoco region. 210

The effects of ENSO are more noticeable in the Andes, Pacific, and Caribbean 211

regions (see Fig 1a and Fig 1c). This is due to: (1) the weakening of the westerly 212

low-level Chocó Jet [72,75,81,85,90,91]; (2) the reduction of the 700 hPa equatorial 213

easterly jet (over South America and the eastern equatorial Pacific); (3) the anomalous 214

Hadley cell circulation that sets in during El Niño over tropical South America; (4) 215

changes in the flow of atmospheric moisture into the continent; (5) changes in 216

atmospheric pressures resulting in the displacement of the convection centers within the 217

ITCZ to the west and south; (6) feedbacks between precipitation and surface 218

convergence in tropical South America [72,92]; and (8) land-atmosphere interactions 219

due to the regional coupling between soil moisture, precipitation, and 220

vegetation [22,80,83,84,93]. The physical mechanisms explaining the climatic anomalies 221
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Fig 2. Time-series of dengue cases in Colombia. Monthly time-series of DENV
cases.

related to ENSO in Colombia have been studied by [83–86,90,94–99], among others. In 222

the Pacific region the maximum correlation between ONI and precipitation is ≈0.65, 223

while in the Amazon and Orinoco regions, correlations are not statistically significant. 224

These results are in agreement with those found by Salas et al. [100]. 225

The largest correlation between ONI and precipitation at national scale is 226

simultaneous (lag 0) (see S1 Fig). Both temperatures exhibit a positive correlations 227

with ONI in most of the country, with the exception of the Amazon region for Tmax, 228

and higher correlations in the Caribbean region. Correlations between ONI and both 229

temperatures get maximum values at varying lags throughout the country. The Pacific 230

and Caribbean regions show higher correlations for Tmax at lag 0, while the Andes and 231

Orinoco regions exhibit largest correlations at 1 to 3-month lags. 232

Dengue in Colombia 233

Colombia has ecological, climatic, and entomological conditions that make suitable the 234

survival of Ae. aegypti in the humid and hot low-lands (90%) of the 235

territory [47,101,102]. Dengue infection rates show an increasing trend in the last 236

decades [103–106]. The maximum altitude at which the Ae. aegypti is found has 237

increased from 1,800 to 2,200 m a.s.l. between 2010 and 2013 [104,106], which can be 238

attributed to climate change and deforestation [67,68,107,108]. The largest epidemic 239

outbreak occurred during 2010 (see Fig 2), with around 150,000 cases, 9000 severe 240

dengue, and 220 deaths [49,104], followed by 2013 and 2016. The departments with 241

more cases historically have been Antioquia (Andean and Caribbean regions) and Valle 242

del Cauca (Andean and Pacific regions) [104,106,109]. 243

Fig 3 shows the wavelet and Fourier spectra of ONI and DENV cases in Colombia. 244

The largest portion of the variance of both variables are explained by 32-month 245

periodicities, being stronger from 2009 to 2013, followed by a period of about 62 246

months, although it lies outside (in both cases) the significant cone of influence 247

(non-hatched). Such periods evidence the strong association between dengue cases at 248

ENSO frequencies. This association is studied throughout this paper. Besides, this 249

figure also shows a large power around an 18-month period between 2009 and 2011 250

years. This time interval coincides with the largest number of dengue cases in Colombia 251

that occurred during El Niño 2009-10 and the transition to La Niña 2010-11. 252

Linkages Between Local Climate, ENSO and Dengue 253

For our purposes, monthly dengue cases data and climate variables data are aggregated 254

at national, regional, departmental, and municipal scales. At national scale, we use 255

three methods to quantify the association between dengue cases, climate variables, and 256
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Fig 3. Wavelet analysis of ONI and DENV cases in Colombia. Wavelet power
spectrum, global power spectrum and Fourier spectrum of ONI (a,b) and DENV cases
(c,d).
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Fig 4. Time-series and cross-correlation of ONI and dengue cases in
Colombia. Time-series (a) and cross-correlation (b) of ONI and dengue cases. Dashed
lines in (a) indicate the threshold that determines the occurrence of El Niño (0.5) and
La Niña (-0.5) according to NOAA, and in (b) the 95% confidence interval.

ENSO: lagged cross-correlations, cross-wavelet transforms, and the four variants of the 257

nonlinear PCMCI causality (ParrCorr, CMI, GPDC, and PCMCIplus). Also, at 258

national scale we estimate causality measures to quantify the nonlinear dependencies 259

among dengue, ESPI, minimum and maximum temperatures, and precipitation. At 260

smaller political scales, we only estimate cross-correlation due to the few data available. 261

At national and regional scales, we also analyze the association between dengue cases 262

and ONI at seasonal timescales. 263

National scale 264

Fig 4a shows the time-series of standardized monthly cases of dengue (left y-axis) and 265

ONI (right y-axis) between 2007 and 2017. The red (blue) dashed line indicates the 266

threshold of 0.5 (-0.5) ◦C, which are used to denote both phases of ENSO, as per the 267

National Oceanic and Atmospheric Administration of USA (NOAA). The red (blue) 268

polygons denote the occurrence of El Niño (La Niña), taking also into account the 269

persistence of the ONI values above or below the threshold for more than 5 months. 270

Fig 4a shows that an increase (decrease) of the ONI index (representing the warming of 271

sea surface temperatures in the tropical Pacific) is followed by an increase (decrease) in 272

the number of dengue cases in Colombia, especially after the 2009-10 El Niño event. Of 273

note is that the magnitude of the dengue peaks are not necessarily proportional to the 274

magnitude of ENSO events given the multifactorial nature of dengue incidence that 275

include socioeconomic conditions and the responsiveness of public health interventions 276

to prevent and control the disease. The time-lagged cross-correlations shown in Fig 4b 277

quantify the linear association between dengue cases and ONI, showing high positive 278

correlations for lags between 2 and 7 months, and also suggest that El Niño (La Niña) 279

events are associated with an increase (decrease) of dengue cases in Colombia with a 2 280

to 6-months lag. 281

In spite of the previously shown high cross-correlations between ONI and dengue in 282

Colombia, they are lower than those found by Acosta and co-authors [47] for the period 283

spanning from 2005 to 2013. With the aim to understand this difference, we calculate 284

the dynamic correlations between the ONI and dengue cases for lags from 0 to 5 months. 285

These cross-correlations are estimated by aggregating the data from both series, one 286

month at a time, after December 2009, that is: 287

ρONIi,DENVi
= ρONI0:t0+ti

,DENV0:t0+ti
(1)

where t0 is the December of 2009 and ti the time at i. 288

Fig 5 shows the dynamic cross-correlations, each line representing a time lag between 289

0 (darker blue) and 5 (lighter blue) months, indicating that the latter years of the study 290

period exhibit lower correlations (from around 2015), and 2010 exhibits the highest ones. 291
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Note that 2010 is the year with more cases in Colombia during the study period. Since 292

2011, correlations at lag 0 show small changes, while at 3 to 5-month lags (higher 293

correlations), correlations decreased markedly in recent years. This explains the 294

differences found between the results of Acosta et al. [47] and Fig 4b. 295

Fig 6 shows the cross-wavelet transform between ONI and dengue cases in Colombia, 296

using a Morlet mother wavelet. The arrows indicate the relative phase relationship 297

between the two variables, with in-phase pointing right and out-phase pointing left. The 298

greatest power is observed at approximately 64 months period (≈ 5 years) for the entire 299

record length. Both phenomena show an almost completely in-phase behavior until 300

around 2011, and it goes losing this as time goes on, although this period is out of the 301

statistically significant (non-hatched) cone of influence. Also, there is a high power near 302

32 months (≈ 2.5 years), although the variables are not fully in-phase. Both periods of 303

32 and 64 months are associated with the occurrence of the extreme phases of ENSO. 304

Fig 7 shows lagged seasonal (DJF, MAM, JJA, and SON) cross-correlations between 305

ONI and raw series of dengue cases in Colombia. Here we use raw rather than 306
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Fig 7. Seasonal lagged cross-correlation between ONI and dengue cases.
During DJF (a), MAM (b), JJA (c), and SON (d). Dashed lines indicate the 95%
confidence interval.

standardized data to investigate seasonal differences of ENSO and climatic variables on 307

dengue incidence. Purple bars correspond to correlations between ONI and dengue cases 308

during the same season. To describe the results, we use brackets with two positions, 309

where the first position indicates the quarter of ONI and the second the quarter of 310

DENV cases. Higher cross-correlation appear for (DJF,DJF) and (SON,DJF), and lower 311

for (MAM,DJF). SON is the season of ONI that results in higher correlations, and DJF 312

is the season of dengue cases that seems to be more affected by ENSO 313

(see [79, 84])(except for ONI in MAM). Remarkably, the only negative cross-correlation 314

occurs in (JJA,JJA), but it does not exceed the confidence interval of statistical 315

significance. 316

As mentioned before, ENSO does not affect directly the dynamics of dengue 317

dynamics, but modify weather and climate variables that are directly related to dengue 318

transmission. To identify which variables affected by ENSO influence dengue in 319

Colombia, we performed cross-correlation analysis between the number of DENV cases 320

and precipitation, maximum and minimum temperature, wind velocity, and relative 321

humidity. Table 1 shows the maximum cross-correlations between climate variables and 322

dengue cases and the peak lag associated with them. Unlike other sites 323

(e.g., [8, 27, 110,111]), precipitation is negatively correlated with the number of dengue 324

cases in Colombia. Maximum temperature is highly and positively correlated with 325

dengue cases as expected, and wind speed is positively related as it can help the spread 326

of mosquitoes. Finally, relative humidity is negatively correlated to DENV cases (even if 327

correlations do not exceed the CI), suggesting that the water stress effect is important 328

in Colombia. Confronting these results with those in Fig 4, it is possible to suspect that 329

the key variable in the relationship between ENSO and dengue cases is temperature, as 330

noted in other sites (e.g., [22, 27, 67,112–114]). 331

Table 1. Maximum correlations and lags between climatic variables and dengue cases on the national scale.

Variable Max. ρ lag [month]

P -0.532 6
Tmax 0.551 5
Tmin 0.300* 3
WV 0.468 4
HR -0.415* 6
*This value does not exceed the confidence interval.

Now we focus on results about non-linear causality metrics based on PCMCI. We 332

use α=0.01 and tmax = 9 months. Figs 8 and 9 show the results of the causal inference 333

methods taking into consideration the maximum and minimum temperature, 334

respectively. ParCorr indicates positive causality between ESPI and DENV cases (for 335

lags between 1 and 9 months), while the PCMCIplus method indicates negative 336
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Fig 8. Non-linear causalities between DENV cases, ESPI, P , and Tmax in
Colombia. Non-linear causalities given by ParCorr (a), and PCMCIplus (b) for
standardized data.
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Colombia. Non-linear causalities given by ParCorr (a), and PCMCIplus (b) for
standardized data.

causality. Positive causalities point out that increases in SST over the Pacific Ocean are 337

non-linearly associated to increases in the number of dengue cases. The PCMIplus 338

method shows an indirect relationship between ESPI and DENV cases when Tmax is 339

taken into account and no relations when Tmin does. Both methods show a negative 340

relationship between ESPI and P , for lags between 1 and 3 months. 341

Results from the ParCorr test indicate positive relations between ESPI and Tmax for 342

lags of 1 and 6 months and 1 month, respectively. PCMCIplus shows no association but 343

indicates that ENSO modifies precipitation and this, in turn, changes temperature (for 344

lags between 4 and 7 months). The ParrCorr method also indicates that the effects of 345

ENSO has on Tmin, if they occur, are brought about by precipitation. The non-linear 346

causalities between P and both temperatures (Tmax and Tmin) are negatives for the 347

ParrCorr method (for Tmax the causality is indirect, and for Tmin it occurs for a lag of 348

2 months). PCMCIplus shows a positive causality of P with Tmax and a negative with 349

Tmin (for lags of 2 and 4 months for Tmax and of 2 months for Tmin). The PCMCIplus 350

method shows an indirect causality with T . Negative and positive relationships are 351

physically possible, negative ones are the result of higher evapotranspiration (ET ) rates 352

given the increase in solar radiation and more water in the soil. High ET rates mean 353

more energy converted into latent heat, decreasing the flux of sensible heat. This can 354

lead a loop since when ET increases, local rainfall increases, and the same happens with 355

soil moisture (s). In turn, high values of s (in combination with the states of other 356

variables such as available radiation, relative humidity, CO2, etc.) result in high values 357

of ET . On the other hand, positive causalities can occur because, after a decrease of T , 358

ET can also decrease due to a decrease in water vapor deficit, thus decreasing local 359
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precipitation, and then ET [115]. 360

ParCorr shows negative non-linear causalities between T and P (for lags of 3 and 6 361

months for Tmax and 6 and 7 months for Tmin), and PCMCIplus indicates a positive 362

relation of Tmax and P for a lag of 7 months and a negative indirect relationship. 363

Non-linear causalities between precipitation and DENV cases are negative for all 364

methods for lags between 3 and 6 months. Both negative and positive causalities are 365

found worldwide as discussed in Section Discussion. 366

All methods show positive causalities between Tmax and DENV cases for lags 367

between 1 and 7 months. This association has been identified in many sites, however, it 368

is not direct and depends on the temperatures range. Furthermore, ParCorr indicates 369

positive causalities between Tmin and DENV cases for lags between 2 and 3 months, but 370

the PCMCIplus method shows no causality, suggesting that minimum temperature only 371

affects through precipitation, with which it has a positive indirect association. 372

Note that, as expected, all results obtained with the non-linear methods do not show 373

any causality between local climatic variables on ESPI, DENV cases on ESPI, and 374

DENV cases on the climatic variables. 375

Regional scale 376

Fig 10 shows regional maps of maximum correlations, ρmax, and corresponding lags 377

between ONI and dengue cases. Only the Pacific and Andes regions exhibit very high 378

statistically significant cross-correlations. The highest cross-correlations appear in the 379

Pacific region, showing values around 0.7 and the lowest ones in the Caribbean region 380

with values close to 0.2. Higher correlations in the Orinoco region are negative, but as 381

mentioned before, they do not exceed the CI. The highest correlation in the Pacific 382

region occurs at 4-month lag, while at 6-months lag in the Andes region, which 383

indicates a delay in the effects of ENSO in the latter region respect to the former one. 384

Here, it is possible to observe the strong influence of the Pacific and Andes regions on 385

the overall effect of ENSO in dengue cases at national scale since correlations continue 386

to be positive and very high (ρ ≈0.55), and the associated lag is the same as that of the 387

Pacific region, i.e., 4 months. The maximum correlation value at the national level is 388

lower than that of the Pacific region due to the lower cross-correlations in the Caribbean, 389

Orinoco and Amazon regions. However, these latter regions do not get to remove the 390

relevance of ENSO’s effect on dengue dynamics on the aggregated national scale. 391

Fig 11 shows non-linear causality results for all regions. As we noted in the previous 392

analyzes, the nationally-aggregated behavior is mainly affected the situation in the 393

Pacific and Andes regions, especially the first one. Precipitation is affected by ENSO in 394

the Andes and Pacific regions according to the ParCorr and PCMCIplus methods, and 395

in the Orinoco and Caribbean regions according to the ParCorr method. The effects in 396

the Andes, Caribbean, and Pacific are at 1-month lag, while in Orinoco at 7 and 397

5-months lags. The higher cross-MCI occurs in the Andes region. 398

ENSO modifies maximum temperature in the Amazon, Caribbean and Orinoco 399

regions with both methods (in the Orinoco region the relationship is indirect), and in 400

the Andes and Pacific it only appears with the ParCorr method. These associations are 401

for lags between 1 and 8 months, with highest values in the Caribbean and Andes 402

regions. Precipitation and maximum temperature are related in all regions but only in 403

the Caribbean and Pacific regions show two-directional relationships with the 404

PCMCIplus method. 405

Precipitation shows a direct causality on the number of DENV cases in all regions 406

with the ParCorr method, and in the Andes, Caribbean and Orinoco regions with the 407

PCMCIplus method. In these two latter regions, precipitation can affect DENV cases 408

through changes in temperature. On the other hand, Tmax only directly affects dengue 409

cases in the Caribbean region for a lag of 3 months with the ParCorr method. Dengue 410
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Fig 10. Cross-correlations between ONI and DENV cases at the regional
scale. Maximum cross-correlation (a) and associated lag (b) between ONI and DENV
cases.

cases in the Pacific and Amazon regions are only indirectly affected by Tmax. If in the 411

other regions, there is any effect of Tmax, it must be through the precipitation, as in 412

Amazon and Orinoquia with the ParCorr method. 413

Fig 12 shows lagged seasonal cross-correlations maps, indicating that the effects of 414

ENSO vary in space and time. Higher cross-correlations between (ONI, Dengue) occur 415

during (DJF, DJF), (DJF, MAM), (MAM, MAM), (JJA, DJF), (JJA, MAM), (SON, 416

DJF), (SON, MAM), and (SON,JJA), especially in the Pacific and Andes regions. 417

The association of ENSO with dengue cases during some seasons is remarkably 418

strong in the Amazon region, such as in (DJF, DJF), (DJF, MAM), (JJA, DJF), (SON, 419

DJF), and (SON, MAM). Correlations in the Caribbean and Orinoco regions continue 420

to be very low, except in Orinoco during (MAM, DJF), on the order of -0.44, but in no 421

case they exceed the CI. Results at the national scale only show negative correlations 422

for (JJA, JJA) (see Fig 7). This season continues to exhibit the most notable negative 423

correlations at the regional scale, although only the correlation of the Andes exceeds the 424

CI. Orinoco, Amazon, and Caribbean also show negative correlations in other quarterly 425

combinations, e.g. (DEF, JJA) and (DJF, SON), but none of them exceed the CI. The 426

only quarterly combination in which the Andes shows negative correlations (-0.5) is 427

(JJA, JJA), indicating again the strong influence of this region at the national scale. 428

Also, the lowest correlations at the national scale appear in (MAM, DJF) as in the 429

Andes region. 430

Table 2 shows results of maximum correlations, ρmaxs, between climatic variables 431

and dengue cases and the corresponding lag at regional scales. The linear association 432

between dengue cases and precipitation is negative in the Andes and Pacific regions, like 433

the national scale. On the other hand, maximum temperature shows high and positive 434

correlations with dengue in the Andes and Pacific regions, especially in the latter, and 435

minimum temperature in the Pacific region. Although the correlation values do not 436
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Fig 12. Regional seasonal cross-correlation maps between ONI and DENV
cases.
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exceed the confidence interval in the Orinoco region, the negative correlations between 437

DENV cases and Tmin can explain the negative association between ONI and DENV in 438

this region. Similarly, the negative associations between P and DENV and the positive 439

associations between temperature and DENV would explain the high positive 440

correlations between ONI and DENV in Andes and Pacific regions. The mechanistic 441

processes involved in these associations are discussed in Section Discussion. 442

Table 2. Maximum cross-correlations and lags between climatic variables and dengue cases for the different
regions.

Region P Tmax Tmin

Max. ρ Lag Max. ρ Lag Max. ρ Lag

Amazon 0.210* 0 0.207* 5 0.330* 1
Andes -0.511 6 0.422 6 -0.193* 12
Caribbean -0.295* 4 0.289* 4 0.306* 0
Orinoco -0.160* 5 -0.196* 12 -0.404* 12
Pacific -0.505 5 0.624 1 0.473 1
*This value does not exceed the confidence interval.

Departmental scale 443

Similar analysis at the department scale allow us to conclude that the association 444

between ONI and DENV cases in each region is determined by a few departments, as 445

shown in Fig 13. Antioquia (Andes and Caribbean regions) exhibits higher correlations, 446

followed by Valle del Cauca (Pacific and Andes regions). As mentioned above, these are 447

the departments with the highest number of cases historically. The departments with 448

higher correlations are located, in general, over the Andes regions (low-lands and 449

piedmonts). Fig 13b shows the lags associated with highest correlations in each 450

department, pointing higher lags for departments with negative but not statistically 451

significant correlations. Departments located near the Pacific Ocean (western zone) 452

exhibit smaller time lags, as on the regional scale. 453

Fig 14 shows the maximum correlations estimated between climatic variables and 454

DENV cases at departmental scale. The highest correlations with precipitation and 455

maximum temperature appear in Antioquia and Valle del Cauca (as ρmax of ONI and 456

DENV cases), followed by Caldas, Tolima, and Quindio. P and dengue cases exhibit 457

negative correlations in almost all the departments of Colombia, while in the rest do not 458

exceed the CI. Tmax and dengue cases are positively correlated in all the departments 459

showing a statistically significant result, except in Putumayo (Amazon region). Tmin 460

shows the highest correlations at Tolima (Andes region), and negative correlations at 461

Cundinamarca (Andes region) and Putumayo. These latter departments show positive 462

correlations between ONI and DENV cases, which suggests that in Cundinamarca, 463

ENSO-driven variations in temperature do not influence the dynamics of dengue but 464

changes in the precipitation. In Putumayo, dengue cases are not significantly correlated 465

with precipitation, and maximum and minimum temperatures show negative 466

correlations, indicating that a decrease in temperature could lead to an increase in 467

dengue cases. However, ENSO has a slight effect in this zone (see Fig 1). 468

Municipal scale 469

One step down in the spatial scale, in most cases it is was not possible to estimate 470

cross-correlograms due to lack of long enough data. Here, we select the two largest cities 471

with the highest number of cases both in the analyzed period and historically, i.e., 472

Medelĺın (Antioquia department, Andes and Caribbean regions) and Cali (Valle del 473
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a) b)

Fig 13. Cross-correlation between ONI and dengue cases at the
departmental scale. (a) Maximum cross-correlation and (b) associated lag between
ONI and DENV cases.
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Fig 14. Cross-correlation between dengue cases and climate variables at
the departmental scale. Maximum cross-correlations between DENV cases and
precipitation (a), maximum temperature (b), and minimum temperature (c).
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Fig 15. Time-series and cross-correlogram between ONI and dengue cases
at the local scale. Time-series and cross-correlogram of ONI and dengue cases of
Medelĺın (a,b), and Cali (c,d). Dashed lines in (a) and (c) indicate the occurrence of El
Niño and La Niña, and in (b) and (d) indicate the 95 % confidence interval.

Cauca department, Pacific and Andes regions). Fig 15 shows the time series of the 474

standardized number of dengue cases and ONI and their cross-correlograms. Both cities 475

show a significant increase in the number of cases after the 2009-10 and 2015-16 El Niño 476

events. Besides, Cali exhibited an increase in dengue after the warming of the Pacific 477

Ocean during 2011-2012, although it was not classified by NOAA as an El Niño event. 478

Cross-correlograms show very high values, particularly in Medelĺın (ρmax ≈0.8). When 479

comparing the lags associated with higher correlations in both cities, it is possible to 480

observe similar delays as in the the regional and departmental scales. The effects of 481

ENSO in Cali start much earlier (indeed they can be simultaneous) while in Medelĺın 482

they occur after 3-4 months, with the highest correlations at 7-months lag. 483

Table 3 shows the cross-correlation at lag 0 between the three climatic variables and 484

the number of DENV cases. In Medelĺın, no correlation exceeds the confidence interval, 485

but the signs remain the same as for department of Antioquia. In Cali, the correlation 486

with precipitation does not exceed the CI either, but the association with minimum and 487

maximum temperatures seems to play an important role, especially with the former one. 488

Table 3. Cross-correlation between climatic variables and dengue cases in Medelĺın and Cali at lag 0.

Variable Medelĺın Cali

P -0.1* -0.26*
Tmax 0.26* 0.54
Tmin 0.36* 0.57
*This value does not exceed the confidence interval.

Discussion 489

Our results confirm the strong relationship between ENSO and the incidence of 490

arboviruses like dengue in many parts of the world [11,22,43,47,70,72]. Analyzes 491

carried out in this study provide further evidences about the important association 492

between ENSO, local climate and dengue dynamics in Colombia at a wide range of 493
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spatial and political scales, unlike the non-statistically significant relationship found 494

by [116] and in agreement with other previous studies [22, 37,47]. El Niño (La Niña) 495

events are associated with the increase (decrease) in dengue cases in the country. 496

Detailed analysis at finer spatial and temporal resolutions allowed us to identify 497

regional, departmental and municipal differences, as well as within the year (see Figs 4b, 498

8, 9, 10a, 11, and 13a). Furthermore, we have identified that the association is not 499

stationary, pointing to a reduction in dengue cases in Colombia since 2015 (see Fig 5), 500

as in the case of the study by Cazelles et al. [11] in Thailand. 501

The highest (and positive) cross-correlations between ONI and DENV cases appear 502

in the Pacific and Andes regions, while negative in the Orinoco region although below 503

the CI (see Fig 10a). Note that as the Ae. Aegypti is tipically an urban mosquito [117] 504

and the majority of Colombia’s population is concentrated in the Pacific, Andes, and 505

Caribbean regions, most of cases belong to these regions. High cross-correlations in the 506

Andes region are explained by the dynamics at the departments of Antioquia, Caldas, 507

Risaralda, Tolima, and Cundinamarca. In the Andes region, all departments show 508

varying albeit positive cross-correlations. The Pacific region exhibits the highest 509

cross-correlations, mainly explained by the situation in the department of Valle del 510

Cauca. Similar results were observed in the Orinoco, Caribbean and Amazon regions 511

(see Fig 13a). 512

Regarding results between ENSO and dengue cases at regional scales, the Pacific 513

region has shorter lags associated with higher correlations than the Andes region (see 514

Fig 10b), confirming the traveling wave found by Acosta [47], although spanning a 515

broader geographical setting. This traveling wave is not so clear in the non-linear 516

causality methods since several relationships are indirect and have no lag associated. 517

The ParCorr method indicates that when the maximum temperature is taken into 518

account, the effects of ENSO have a longer delay in the Andes than in the Pacific region 519

(see Fig 11). The presence of such delayed effect of ENSO on the occurrence of dengue 520

at departmental level can be used as a pro-time to take preventive measures before 521

potential outbreaks. In Orinoquia the correlation between ENSO and DENV cases is 522

negative correlations (El Niño (La Niña) is related to less (more) cases of dengue) and 523

associated with the highest lag (12 months), but it is not statistically significant 524

(ρ =-0.27). 525

Additionally, our results at seasonal timescales evidence that the highest 526

cross-correlations between ONI and DENV cases appear during (DJF, DJF) and (DJF, 527

SON) and the lowest at (MAM, DJF). The highest (lowest) simultaneous correlation 528

occurs when ONI shows the steepest positive (negative) gradient, i.e., DJF (JJA), going 529

from values of around -0.22 (≈0.03) to ≈0.0 (≈-00.5) (see S2 Fig). The higher 530

correlation occurs during the quarters with the lowest values of both ONI and DENV 531

cases, and the lower correlation during quarters with high values of ONI and low values 532

of DENV cases. Besides, in the latter case, there is a 9-month lag, which may indicate 533

that the effect of SST anomalies in the tropical Pacific in MAM has already been lost in 534

DJF. The national annual cycles of cases of dengue and ONI (see S2 Fig) are in phase 535

throughout most of the year. There are some differences in SON as DENV cases 536

increase slightly in October while, the ONI decreases. Hyper-endemic years (2010, 2013, 537

and 2016) have more pronounced annual cycles, in association with the annual cycle of 538

the ONI. 539

Results at the national scale are consistent with those at regional scales (see Figs 7 540

and 12). Again, it is worth noticing the strong influence of the Andes and Pacific 541

regions at the national scale, since the combination of seasons showing higher 542

cross-correlations in these regions dominate the aggregated behavior. The above is also 543

suggested by the results obtained with the non-linear causality metrics, especially the 544

influence of the Pacific region at national scale (see Fig 11). 545
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The association between El Niño occurrence and outbreaks of DENV cases can be 546

explained in terms of an increase in temperatures (minimum and maximum) and a 547

decrease in rainfall, which may favor the ecological, biological, and entomological 548

components related to this disease [22]. Other variables such as wind velocity and 549

relative humidity may play an important role in dengue dynamics, but the available 550

data is not enough to perform analyzes below the national scale. Wind velocity shows a 551

positive correlation with dengue cases, while relative humidity is negatively correlated, 552

but it does no exceed the CI (see Table 1). 553

Precipitation is negatively correlated with dengue cases in most of the country, 554

except in the Amazon region (although it does not exceed the CI), and in the 555

departments of Chocó, Caquetá, Amazonas, and Putumayo (see Tables 1 and 2, and 556

Fig 14). Linear correlations between P and DENV cases result at national and regional 557

scales are in agreement with those found with the non-linear causality methods (see 558

Figs 8 and 11), which may indicate that these correlations imply causation. These 559

relationships would be expected to be positive because precipitation provides favorable 560

habitats for the aquatic stages of the mosquito development, influencing the life cycle 561

and distribution of the mosquito [67]. If so, the amount of mosquitoes and dengue cases 562

should increase (decrease) during La Niña as in Hawaii [110]. In some places, 563

precipitation is only important when breeding sites are not handmade [27] or in wetter 564

areas, where rainfall is not a limiting-transmission factor [13,20,79]. However, in 565

Colombia, the decrease in rainfall brought about by El Niño is mostly associated with 566

increases in the number of dengue cases, so decreased rainfall can lead to the formation 567

of stagnant ponds [22,72]. A similar result was found by Poveda et al. [79] for malaria 568

in Colombia and Juliano et al. [118] for dengue in Florida, USA. 569

Maximum temperature is positively correlated at the national level and in all regions 570

but Orinoco (although below the CI). At the departmental scale, this is only true over 571

the Andes mountains and in Vichada (Orinoco), Guaviare (Amazon), and Guaińıa 572

(Amazon) (see Tables 1 and 2, and Fig 14). Results from the non-linear causality 573

metrics demonstrate that the associations shown by the cross-correlations not always 574

indicate causality. The PCMCIplus method does not indicate any direct causality 575

between Tmax and DENV cases in the regions, but only at the national scale. The 576

ParCorr method indicates a direct relation only in the Caribbean region, and indirect in 577

the Amazon and Pacific (see Figs 8 and 11). The above suggests that in most sites 578

there is no direct effect of maximum temperature, but it causes changes in other 579

variables (such as precipitation, relative humidity, wind velocity, etc.), which in turn 580

affect the dynamics of dengue. 581

Minimum temperature is also positively correlated with dengue cases nationally and 582

in the Amazon, Caribbean, and Pacific regions. However, at the departmental scale, 583

there are no clear spatial patterns. Temperature may be a key component in DENV 584

dynamics due to its numerous interactions with other environmental and climatic 585

factors [67,72,113,114]. High temperatures result in larger virus replication rates, less 586

time of mosquito incubation and gonotrophic cycles, more frequent biting rates, and 587

greater survival at all stages within the observed temperature values [18, 22, 67, 112, 114]. 588

This means more time available for the mosquito reproduction and transmission of the 589

virus [72], and a greater basic reproductive number [114] ,R0, defined as the expected 590

number of cases directly generated by one case in a population where all individuals are 591

susceptible to infection. 592

Focks et al. [114] concluded that under tropical conditions, temperature does not 593

affect adult mosquito abundance, but the quantity of water-holding containers and the 594

amount of available food for larval survival. However, extremely high temperatures can 595

contribute to the reduction of oviposition sites by evaporation [27], lifespan reduction, 596

and the inability of mosquitoes to feed and fly [18,21]. These facts can help to explain 597
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the low correlations found in the Caribbean region since temperatures are always high 598

owing to low altitude, which are even higher during the El Niño (see Figs 1b,c). On the 599

other hand, when temperature is very low (below 18◦C according to [113]), the 600

oviposition abruptly diminishes. This implies that the effect of temperature on dengue 601

dynamics is non-linear and depends on local conditions. Furthermore, not only the 602

average or instantaneous temperature values can influence this phenomenon, but also 603

their variability and fluctuations, which have not been considered in this study, as it 604

occurs in other sites [40,111]. 605

Almeida et al. [13] and Dibo et al. [19] suggest that air humidity is one of the most 606

significant climatic variables in determining Ae. Aegypti abundance. In general, 607

positive correlations are expected between relative humidity and dengue cases, i.e., that 608

low values of relative humidity result in fewer dengue cases, given that the mosquito 609

survival and egg development decline [67], and mosquitoes use their available cellular 610

resources for their maintenance and not the virus [18]. At the same time, low humidity 611

can place mosquitoes under stress, impeding them from fighting off a viral infection [18]. 612

Besides, dehydration may cause an increase in blood feeding (biting rates), as female 613

mosquitoes seek to ensure their reproduction [119]. Atmospheric humidity also 614

influences evapotranspiration rates [114] and, as mentioned before, it may or may not 615

favor the creation of breeding sites. Although humidity data is limited and the 616

estimated correlations with dengue cases are not statistically significant, the value 617

surpasses -0.41 (see Table 1). This suggests that the increase in blood feeding due to 618

dehydration plays an important role in Colombia. Strong winds can extend the 619

mosquito’s flight distance, but it can also reduce the biting frequency [61]. In Colombia, 620

the first mechanism seems to have a greater influence, since dengue cases show a 621

statistically significant and positive correlation with wind velocity (see Table 1). 622

Notably, temperature, relative humidity, wind speed, and precipitation are not 623

independent variables, with multiple nonlinear feedbacks among them. 624

Dengue transmission is a multi-factorial phenomenon [37], however, the impact of 625

macroclimatic and local variables is evident in most of Colombia and many other 626

regions in the world, as reported by WHO and the IPCC. Advances in understanding 627

causality between climate, weather and dengue incidence can lead to an appropriate 628

approach, both in time and in space, to design and implement preventive measures 629

against potential dengue outbreaks and early warning systems based on ENSO and local 630

climate variables. Also, our results contribute to understand and anticipate the possible 631

consequences of climate change on this type of diseases. 632

We note that even if we considered the ”natural regions” of Colombia to study the 633

possible association between dengue cases, ENSO and climate variables, these regions 634

were defined based on many variables, such as relief, climate, vegetation and soil type, 635

that may not be determinant in the studied phenomenon. Besides, other relevant 636

variables are not taken into account, such as urbanization, levels of immunity to the 637

four serotypes of dengue related to past exposures, and age distribution. A more 638

in-depth analysis should be made defining regions by grouping sites according to the 639

most relevant variables in dengue dynamics, considering socioeconomic factors and the 640

presence of other types of mosquitoes that compete with Ae. Aegypti. 641

Conclusions 642

The relationship between climate, weather, human behavior, and arbovirus diseases is 643

complex, making it difficult to identify the causal mechanisms. The determination of 644

macro and microclimatic variables that influence dengue outbreaks and the temporal 645

lags of their effects are extremely useful for the construction and implementation of 646

early warning systems and preventive and control measures. Therefore, our results 647
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contribute to the development of climate-based surveillance, prevention and control 648

programs for dengue fever in endemic areas of Colombia, shedding light on 649

decision-makers about the adequate timing to implement prevention and control 650

measures and to anticipate the effects of climate variability and climate change. 651

The spatial and temporal distribution of dengue fever cases in Colombia are 652

associated with macroclimatic and local conditions. El Niño (La Niña) phenomenon is 653

related to the intensification (weakening) of dengue cases at the national level and in 654

most regions. Our results suggest that this association is mainly explained by 655

ENSO-driven increase in temperature and decrease in rainfall. However, these 656

associations are not simultaneous, and the temporal delay varies regionally. 657

The influence of ENSO and different climatic variables affected by this phenomenon 658

vary in space and time, and is not stationary, so it is not easy to extrapolate results 659

from one site to another. The association between dengue cases and ENSO varies when 660

data are disaggregated by seasons. The Amazon region does not show a significant 661

association when the complete data series is analyzed, although it appears at seasonal 662

timescales, with high positive correlations in some of them. The opposite occurs in the 663

Andes region, where the analysis of the complete time series indicates very high positive 664

cross-correlations, which are reduced at seasonal timescales. 665

On the other hand, there are specific sites that control the relationship between 666

dengue dynamics and ENSO at larger geographical/political spatial scales, e.g., what 667

happens in the Pacific and Andes regions determine the relationship in Colombia, and 668

the behavior of Antioquia and Valle del Cauca determine those of the Andes and Pacific 669

regions, respectively. 670

The main difference between the linear (Pearson) and non-linear methods used in 671

this work is that the former shows a strong cross-correlation between maximum 672

temperature and the number of dengue cases (at the national level ρ =0.55, in the 673

Andes region ρ =0.42, and in the Pacific region ρ =0.624), while the PCMCIplus 674

method does not indicate a direct causality between these two variables (only an 675

indirect causality in the Pacific region). This suggests that, if there is any effect of Tmax 676

on the dengue dynamics on a national and regional scale, this is through other variables 677

such as rainfall, relative humidity, and wind velocity. On the other hand, although the 678

dynamic cross-correlogram (see 5) shows the time in which the association between 679

ENSO and dengue cases starts to decrease, it does not quantify the degree of 680

relationship for each period and time of the time-series, as does the wavelet transform. 681

Cross-correlation and wavelet analyses elude the real causalities involved in the 682

climate-ENSO-dengue phenomenon, but the PCMCI method pursues this objective, 683

confirming the effect of ENSO on precipitation and temperature, and their consequent 684

effect on the number of dengue cases. However, none of these methods indicates the 685

mechanisms underlying the association and relationships, so further studies are required 686

to develop explanatory models and mechanistic analysis. Moreover, other macro-climate 687

phenomena affecting the hydroclimatology of Colombia, such as the North Atlantic 688

Oscillation, the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation, the 689

Madden-Julian Oscillation, among others [72], may alter the dengue dynamics, as well 690

as socioeconomic factors and previous government interventions. 691

Supporting information 692

S1 Fig Time-series and cross-correlations of ONI and climate variables in 693

Colombia. Time-series (left panel) and cross-correlations (right panel) between ONI 694

and P (a-b), Tmax (c-d), Tmin (e-f), WV (g-h), and HR (i-j) . 695
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S2 Fig Monthly-annual cycles of ONI and dengue cases at the national 696

and regional scales. Purple and gray solid lines indicate the annual-cycle of the ONI 697

and dengue cases between 2007 and 2017, respectively. Blue dots denote the monthly 698

number of cases in the hyperendemic years (shown in the legend), and the gray dots the 699

number of cases in the other years. 700
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Meteoroloǵıa y Estudios Ambientales - IDEAM, and the Instituto Nacional de Salud de 704

Colombia - INS, by the availability of the climatic and dengue data, respectively. The 705

work of G. Poveda was supported by Universidad Nacional de Colombia at Medellin, 706

Colombia, as a contribution to the project ”Detección temprana de transmisión de 707
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Santiago de Cali, Departamento Valle del Cauca, Colombia”, which was originally 709

funded by COLCIENCIAS and currently by the Minister of Science, Technology and 710

Innovation of Colombia. The work of E. Muñoz, M.P Arbeláez, and I.D. Vélez was 711
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49. Padilla JC, Rojas-Álvarez DP, Sáenz-Gómez R. Dengue en Colombia. 874
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Bogotá D.C., Colombia: Instituto Nacional de Salud; 2010. 1053

105. INS. Informe final del evento dengue, año 2012. Bogotá D.C., Colombia: 1054
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