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Abstract

This paper considers how to allocate Covid-19 vaccines to different age groups when lim-

ited vaccines are available over time. The disease dynamics is specified by an age-structured

SAPHIRE model whose parameters are estimated by the standard least square method us-

ing the epidemic data from New York City. We derive optimal static allocation policies

with different objectives under different amounts of daily available vaccines, and examine

several dynamic allocation heuristics including old-first policy, infection-first policy, myopic

policy, death-weighted myopic policy, and two-day myopic policy. For static policies, our

numerical study shows that to minimize the total deaths, it is optimal to allocate limited

vaccines to the oldest group first and then the younger group if there are capacities remain-

ing. In contrast, to minimize the total confirmed cases, the optimal static policy allocates

a considerable portion of vaccines to younger groups even if the daily available vaccines are

very limited. The optimal static policies achieve a much smaller number of confirmed cases

and deaths compared to two benchmark policies: a uniform allocation policy that allocates

available vaccines equally to each age group, and a proportional allocation policy that al-

locates available vaccines proportionally to the population of each age group. For dynamic

allocation policies, the myopic policy and the two-day myopic policy have similar perfor-

mance and significantly outperforms the other dynamic heuristics and the static policies in

terms of the confirmed cases and deaths.
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1 Introduction

The pandemic Covid-19 has caused tremendous loss to the global economy since December

2019. To contain this pandemic, over 165 vaccines are being developing, among which 37

vaccines are in human trials (Corum et al. 2020). Most experts believe that a vaccine is likely

to become available by mid-2021, about 12-18 months after Covid-19 first emerged (Gallagher

2020). However, the early Covid-19 vaccine supplies are far from enough for everyone, even for

people at high risk such as healthcare workers (Loftus 2020). In order to have an early access to

Covid-19 vaccines, the US government has made an agreement with Pfizer Inc. and BioNTech

SE to provide 100 million doses of Covid-19 vaccines once proved to work safely (Wack 2020).

An important question is how to allocate the limited vaccines to different groups of people

when it becomes available over time. It is commonly agreed that highest-risk medical, national

security and other essential workers should get the vaccine first (Sun 2020). A challenging

problem is to how to allocate vaccines for the remaining large population.

In this paper, we focus on vaccine allocation policies for ordinary people grouped by ages.

We follow the Centers for Disease Control and Prevention (CDC) to classify people into 5 age

groups: 0-17, 18-44, 45-64, 65-74, 75+. The epidemiological model we use is an age-structured

SAPHIRE model whose single population version is proposed by Hao et al. (2020). See Zhou

et al. (2019) and the reference therein for more on age-structure in epidemic models. Our

model has seven compartments: susceptible compartment, exposed compartment, presymp-

tomatic infectious compartment, unascertained infectious compartment, ascertained infectious

compartment, isolated compartment, and removed compartment. Each compartment is further

divided into five age groups. We use the Covid-19 data from New York city during March 17 to

June 8 to estimate parameters in our model. The parameter estimation method we use is the

standard least squares method, i.e., to minimize the square errors of the prediction made by the

epidemic model. Since the disease dynamics is nonlinear, the accumulated squared error is a

highly nonlinear and nonconvex function of the parameters, which leads to many local optimal

solutions. To get a reasonable optimal solution, we further impose conditions on the mixing

pattern of age groups and solve the optimization problem many times with randomly choosing

initial parameters.

Based on the estimated parameters, we solve the optimal static allocation policies under

different objectives and different amount of daily available vaccines and conduct sensitivity
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analysis. The objectives we consider include total number of confirmed cases, total number

of death cases, and their weighted sum. Our numerical study shows that to minimize the

total deaths, it is optimal to allocate limited vaccines to the oldest group first and then the

younger group if there are capacities remaining. When the daily supplies increase, the older

group still gets the majority of the vaccines while the younger groups gradually get more. The

optimal static policy that minimizes the total confirmed cases follows a similar pattern but

allocates doses to younger groups even if the daily available vaccines are limited. When the

daily supplies increase, the younger groups get the majority of the vaccines. We also compare

these two optimal static polices with two benchmark polices: a uniform allocation policy that

allocates available vaccines equally to each age group, and a proportionally allocation policy that

allocates available vaccines proportionally to the population of each age group. Our numerical

study shows that the optimal static policies have a significant decrease of total confirmed cases

and deaths compared to the two benchmarks.

We evaluate several dynamic allocation policies under the setting of constant daily supply

including an old-first policy which allocates daily supplies in a decreasing age order, an infection-

first policy which allocates daily supplies proportionally to the current infection ratio of each

group, a myopic policy which determines today’s allocation by minimizing tomorrow’s total new

infections of all groups, a death-weighted myopic policy, and a two-day myopic policy which

determine the allocation for today and tomorrow by minimizing the total new infections of

the day after tomorrow. Our numerical study shows that the myopic policy and the two-day

myopic policy have similar outcomes and significantly outperforms the other dynamic allocation

heuristics and optimal static policies in terms of both confirmed cases and deaths. The myopic

policy allocates daily available vaccines to the group with the largest marginal effect of a unit

vaccine, which leads to a single group allocation. The two-day myopic policy has a mixing

allocation over groups, but still follows a similar pattern with the myopic policy in that the

group that gets the majority of the daily supply is roughly the same with the group that gets

all under the myopic policy. This suggests the decision maker to take the marginal effect of a

unit vaccine of each group into consideration when making allocation.

The organization of the paper is as follows. In Section 2, we formally introduce the age-

structured SAPHIRE model. Section 3 provides the description of the data set and details of

parameter estimation. Section 4 contains comprehensive numerical experiment of allocation

policies. We conclude the paper in Section 5.
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2 Model

In this section, we present an age-structured SAPHIRE model. In this model, the total pop-

ulation is divided into seven compartments including susceptible compartment, exposed com-

partment, presymptomatic infectious compartment, unascertained infectious compartment, as-

certained infectious compartment, isolated compartment, and removed compartment. Each

compartment is further divided into five age group (labeled 1,...,5 in ascending order): 0-17,

18-44, 45-64, 65-74, 75+. The dynamics of the age-structured SAPHIRE model is given by

the following ODEs (1)-(7). Firgure 1 illustrates the status transition of age group 1 and how

susceptible individuals in age group 1 are infected. We should mention that for simplicity, this

figure does not specify all the transitions.

Figure 1: Disease dynamics for the SAPHIRE model
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dSi
dt

= −a(t)(Si − vi(t))β
∑
j

τji(Ij + α(Pj +Aj))

Nj
− vi(t) (1)

dEi
dt

= a(t)(Si − vi(t))β
∑
j

τji(Ij + α(Pj +Aj))

Nj
− Ei
De

(2)

dPi
dt

=
Ei
De
− Pi
Dp

(3)

dAi
dt

=
(1− ri)Pi

Dp
− Ai
Dr

(4)

dIi
dt

=
riPi
Dp
− Ii
Dr
− Ii
Dq

(5)

dHi

dt
=

Ii
Dq
− Hi

Dh
(6)

dRi
dt

=
Ai + Ii
Dr

+
Hi

Dh
+ vi(t), (7)

where the meaning of the notations in (1)-(7) are listed below.

Si: the number of susceptible individuals in age group i;

Ei: the number of exposed individuals in age group i;

Pi: the number of presymptomatic infectious individuals in age group i;

Ai: the number of unascertained infectious individuals in age group i;

Ii: the number of ascertained infectious individuals in age group i;

Hi: the number of isolated individuals in age group i;

Ri: the number of removed individuals in age group i;

Ni: the population size of age group i;

β: the transmission rate due to the contact between an infectious individual and a susceptible

individual;

τij : the contact rate of an individual in age group i with an individual in age group j;

α: the discount factor of the transmission rate due to the contact between an unascertained

infectious individual and a susceptible individual;

De: the average time from exposed to infectious;

ri: the fraction of ascertainment in age group i;

Dp: the average time from presymptomatic infectious to symptomatic infectious;

Dr: the average time from symptomatic infectious to recovered;

Dq: the average time from ascertained infectious to isolation;

Dh: the average time from isolation to recovered;
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a(t) ∈ [0, 1]: the level of permitted economic activities at time t;

vi(t): the amount of vaccination allocated to age group i at time t.;

The dynamics (1)-(7) is based on the following assumptions. The rate of new infections

follows a mass action law, i.e., the number of new infections is proportional to the number

of susceptible individuals and the number of infectious individuals (commonly assumed in the

epidemiological literature, see Hamer 1906). We assume that the rate of new infections is

discounted by the level of permitted economic activities (see Birge et al. 2020). The transmission

of unascertained infectious is discounted by a factor α (Li et al. 2020). We assume that the

birth rate and the death rate is zero in our model as the data we use ranges around 3 months

and the birth and the death from natural causes can be ignored. We use (τji)i,j to model the

mixing rate of different age groups. See Fumanelli et al. (2012), Liu et al. (2020) for more on

age-specific social contact characterizations.

3 Data Description and Parameter Estimation

In this section, we describe the data set and how we use it to estimate parameters in our model.

The epidemic data we use is disclosed from the NYC Department of Health and Mental Hygiene

(NYC Health 2020), which covers the epidemic trajectory of the New York City, including daily

confirmed cases and death cases, etc. Reported cases are divided by 5 age groups, 0-17, 18-

44,45-64, 65-74, and 75+ respectively. The age group population information is drawn from a

2017 census (Baruch College 2017). Some summary statistics of different age groups is provided

in Table 1. The table includes the total number of confirmed cases and deaths in NYC from

March 17 to June 8. It also covers the proportion of population that belongs to the group,

where the total population in NYC (Manhattan area) is around 1.58 million.

age total cases total deaths population ratio population

0-17 6590 0 0.228 360240

18-44 74828 678 0.384 606720

45-64 77460 4019 0.245 387100

65-74 25307 4309 0.080 126400

75+ 24607 8583 0.064 101120

Table 1: Age groups

A brief timeline of the epidemic progression and the city’s response is outlined as the follows
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(Wikipedia contributors 2020). On March 1, the first case of COVID-19 was confirmed in New

York State. On March 3, the first recorded person-to-person spread cases was confirmed. The

epidemic then went through an exponential growth, with number of confirmed cases of 17,800

by March 25. On the other hand, on March 14, all New York public libraries were shut down.

On March 17, facilities including theaters, concert venues, and nightclubs are closed. And on

March 22, a stay at home order was put into effect where the majority of businesses are paused.

As the situation started to turn better in May and June, the city resumed operations according

to a four-phase reopening plan, which began on June 8, and on July 20, the final phase is being

executed.

We use the epidemic data of New York City, from March 17 to June 8, a total of 84 days, to

estimate our model parameters. The reasons for this selection can be summarized as the follows.

First, New York City is the first major US city struck by the epidemic, and it went through both

the increasing phase and declining phase of the epidemic, which provides us rich data about

different stages of the epidemic. Second, the time period of our study is approximately during

the execution of the stay-at-home order, where the level of social and economical activity stays

roughly constant. This simplifies the model as we do not need to incorporate different level of

economic activity in the model, which is not our focus in this paper. Also, since lock down is

a common action taken when facing COVID-19, the estimated model parameters and insights

drawn from the model can be more useful in places out of New York City at different times.

Third, since we are focusing on the disease spread between different age groups rather than

geographical regions, the New York city is relatively the best fit because it has high population

density in a rather small area, compared to places like Florida or Texas. But we may expect that

the transition parameters can be quite different at different locations, due to factors including

local age structure, level of urbanization, etc.

The way we estimate the parameters is described as follows. Some parameters related to the

Covid-19 disease are set according to Hao et al. (2020): Dr = 2.9, Dh = 30, De = 2.9, Dp =

2.3, Dq = 6, β = 1.4 and α = 0.55. Although these parameters are estimated from the

epidemic data of Wuhan, we would expect disease-specific parameters to be similar in NYC.

See Birge et al. (2020) for the same treatment of using disease-specific parameters from Wuhan

for epidemic models of NYC. But we caution that these parameters can be quite different

at different locations. The parameters remain to be estimated are the contact rate matrix

(τij)1≤i,j≤5 among age groups and the ascertainment rate r1, ..., r5 for the five age groups.
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Given a set of all the parameters of the model and the initial number of individuals in each

age group and compartment pair, we are able to compute the number of individuals in each age

group and compartment pair in all future dates including the daily number of confirmed cases

and death cases of each age group. Our objective function (a function of the parameters) is the

accumulated squared error of the daily number of confirmed cases predicted by the model to the

actual data. We optimize the objective function with python’s built-in minimization function

(SLSQP algorithm). In fact, since the ODEs that define our model are non convex, there exist

many local optimal solutions to the objective function. A detailed procedure of how we deal

with the local optimal solutions can be found in Appendix 6. The parameter estimation results

are in Table 2 and Table 3.

τ 0-17 18-44 45-64 65-74 75+

0-17 0.0657 0.0255 0.0000 0.0000 0.0000
18-44 0.0151 0.0551 0.0053 0.0053 0.0053
45-64 0.0000 0.0084 0.0832 0.0131 0.0130
65-74 0.0000 0.0256 0.0400 0.0397 0.0397
75+ 0.0000 0.0320 0.0496 0.0496 0.0878

Table 2: Estimation of contact rates among age groups

0-17 18-44 45-64 65-74 75+

r 0.014 0.105 0.142 0.142 0.183

Table 3: Estimation of ascertainment rates

This set of parameters provides a fairly good prediction given the initial states. The root

mean squared error (RMSE) for confirmed cases and deaths in NYC are 1183 and 83, respec-

tively. The plot for the predicted confirmed cases and death against actual data are shown in

Figure 2 and Figure 3 respectively. From the figure we can see that our prediction fits pretty

well with the actual data, both in confirmed cases and deaths. Figure 4 represents the predicted

daily confirmed cases from each age group. From this figure, we can see that the peak of each

age group arrives approximately at the same time, which happened in reality. The relative ratio

between each groups agrees with the data with an error less than 5%.

Some insights can be drawn from the estimated parameters. First, from the scales of τ we

can see that the contact rates are quite heterogeneous. The highest frequency of contact is

within the 45-64 group and the 75+ group, which we argue could be because the 45-64 aged

people are still carrying out some economical activities during lock down that are necessary to

keep the city running, while for younger people, there are more proportion of office workers who
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Figure 2: Predicted confirmed cases and actual data

Figure 3: Predicted death cases and actual data

Figure 4: Predicted confirmed cases in each age group
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could possibly work remotely and have smaller frequency of contact with others. For the older

group, the 65-74 aged may have a larger proportion of living alone, while the 75+ group may

live in nursing homes and contact more often with others. Second, the ascertainment rate for

different age groups also varies significantly, with a overall ascertainment rate of around 11%.

For the kids, it is actually very small, which partially agrees with the recent news (see, e.g.,

CBS News 2020) that many children are tested positive on the virus, and would be otherwise

not found infected if not tested. This raises concern that children may also be impacted by the

virus. For other groups, it generally follows the order of age, where the older, the more likely

to be ascertained. This observation is also consistent with our knowledge of the coronavirus,

that it is more dangerous to older people.

4 Vaccine Allocation Policy

In this section, we evaluate several vaccine allocation policies using our age-structured SAPHIRE

model and the parameters estimated. For simplicity, we assume that the effect of one dose of

vaccine moves one susceptible individual to the removed compartment. We also assume that a

test is performed prior to vaccination, so we don’t give vaccine to infected but unascertained

people.

4.1 Static Allocation

We consider static allocation polices, i.e., the amount of vaccines allocated for each group does

not change over time. We assume that if all the susceptible individuals in a group are vaccinated

and there are doses allocated to this group in the future, then the vaccines cannot be transferred

to other groups and are wasted. In the following, we derive optimal static allocation policies

with respect to different objectives (total confirmed cases, the total deaths, and their weighted

summation) under different daily available doses.

We first consider minimizing the total number of deaths across all groups. We assume the

daily number of available doses take values from 2,500 to 15,000. The total population of our

interest is around 1.58 million, so if we give 15,000 doses of vaccine per day for 84 days, we

should be able to cover around 80% of the total population. In this case, the vaccine allocation

is shown in Table 4. From this table, we can see that when the daily available vaccines are

very limited (e.g., 2500 doses), the optimal static allocation policy only focuses on the 75+ age

10
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group since they are the most vulnerable to the virus and the most likely to endure serious

consequences. As the available vaccines increase, the policy allocates some doses for younger

groups as well. Although these groups are more resistant to severe disease outcomes, providing

vaccination to them can help protect the most vulnerable group as well, as they have a large

contact rate with the oldest group. Meanwhile, for people aged between 0-44, the policy suggests

not to provide vaccination even if the daily available doses increase to 15000. This is because

the fatality rate among these groups are extremely low, and their contact level with the most

vulnerable groups are relatively small, so in order to achieve the minimum deaths, we prefer

not to give vaccination to them.

doses 0-17 18-44 45-64 65-74 75+

2500 0 0 0 0 2500
5000 0 0 0 1184 3816
7500 0 0 0 2507 4993
10000 0 0 620 3322 6057
12500 0 0 2041 3779 6680
15000 0 0 3506 4102 7392

Table 4: Daily vaccine allocation for minimizing deaths

We also look at the allocation amount of each age group scaled by their population. Table

5 shows the daily number of vaccine per 10,000 people, allocated to each age group. From this

table we can observe that even though the absolute number of vaccines per capita is increased,

the scale of increase for younger groups are not that significant as indicated by the previous

table. The oldest group still has the largest vaccines per capita when the daily supply of vaccines

increases.

doses 0-17 18-44 45-64 65-74 75+

2500 0 0 0 0 246
5000 0 0 0 93 376
7500 0 0 0 198 492
10000 0 0 16 262 597
12500 0 0 53 298 658
15000 0 0 90 323 728

Table 5: Daily vaccine allocation for minimizing deaths, per 10,000 people

Figure 5 shows the estimated number of deaths as a function of total available doses. The

horizontal axis represents the daily available doses, the vertical axis represents the minimal

deaths by implementing the optimal static allocation policy. We can see from this figure that

the decrease of deaths becomes less significant when the daily available vaccines becomes large.
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Figure 5: Estimated number of deaths vs. available doses

We now consider the optimal static policy by minimizing the total confirmed cases from all

age groups. Table 6 shows the optimal vaccine allocation to each age group for different daily

available doses. We observe from this table that the pattern is similar but Table 4 allocates

more to older groups. Besides, the optimal static policy allocates vaccines to younger groups

even when the supply is limited. This illustrates that when supply is limited, allocates all the

available vaccines to the oldest group has a smaller marginal effect.

doses 0-17 18-44 45-64 65-74 75+

2500 0 0 384 619 1498
5000 0 0 1880 1037 2083
7500 0 695 2892 1435 2479
10000 0 1758 3616 1641 2986
12500 0 2838 4344 1936 3383
15000 0 3909 5143 2177 3771

Table 6: Daily vaccine allocation for minimizing confirmed cases

Again, an allocation per capita and the effect of total doses on total confirmed cases are

provided in Table 7 and Figure 6 respectively. We can see that to better prevent the virus

from spread in the population, the oldest group is given less vaccine compared to the previous

allocation policy, while other groups are given more to decrease the spread within them. The

effect of available doses on the total number of confirmed cases are almost linear, meaning that

the incremental doses has an equal margin. This indicates that in order to prevent spread of

the virus, it is better to provide as many doses of vaccine as possible, as the increased doses

always have a nearly constant marginal effect.
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doses 0-17 18-44 45-64 65-74 75+

2500 0 0 10 49 148
5000 0 0 48 82 205
7500 0 11 74 113 244
10000 0 29 93 129 294
12500 0 47 112 153 333
15000 0 64 132 172 372

Table 7: Daily vaccine allocation for minimizing confirmed cases, per 10,000 people

Figure 6: Estimated number of confirmed cases vs. available doses
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The decision maker may not simply want to minimize the total number of confirmed cases

or the total deaths. Instead, it is more likely to set an objective which combines these two

measures. So, here we consider an objective which is defined as:

weight of death× deaths+ confirmed cases

In this case, we fix the total number of daily available doses to be 10,000. Then we increase

the weight of death from 1 to 40 to see how the policy is changed. Table 8 shows the optimal

allocation under different weight of deaths. We can observe that when death gets more and

more weighted, the policy converges slowly to the allocation which minimize only death and

allocate more and more vaccine to the old people. We can see that as we increase the weight of

death in our objective, the predicted confirmed cases increase almost linearly, but the decrease

of total death becomes very flat quickly. So when making allocation decisions, the policy maker

should properly balance the two objectives, and sometimes the over emphasise of deaths will

significantly increase the total confirmed cases, which is not desired as we aim to eventually

stop the virus from spreading.

death weight 0-17 18-44 45-64 65-74 75+ total confirmed total death

1 0 1445 3382 1786 3386 89339 5619
5 0 0 3407 2451 4142 90993 4915
10 0 0 2757 2687 4555 92027 4756
15 0 0 2277 2719 5004 93196 4659
20 0 0 2111 2884 5006 93523 4641
25 0 0 1947 2893 5159 94019 4620
30 0 0 1711 2907 5383 94779 4592
35 0 0 1586 2914 5500 95198 4579
40 0 0 1495 3004 5501 95431 4573

Table 8: Daily vaccine allocation for minimizing combined objective and the outcomes

To illustrate the performance of our static policy, we also run two heuristic policies as

benchmarks. In the benchmark test, we set the daily available doses to be 10,000 as the results

would not change qualitatively if the amount of daily available doses is different. The first

benchmark is a uniform allocation policy which gives 2,000 doses for each group per day. Note

that the two oldest groups actually have less population, so this benchmark is indeed in favor of

the older groups. The total number of confirmed cases under this policy is 95,171, while the total

deaths is 7051, which is far inferior than what achieved by the previous policies. The optimal

static policy for death minimization has an estimated 98,678 confirmed cases but only 4,541
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deaths. The one for confirmed cases minimization achieves 89,183 confirmed cases and 5,942

deaths. Another benchmark is a policy that allocates vaccines to each age group proportionally

to its population. This policy has an estimated confirmed case of 100,215 and 9,432 deaths,

which is even worse.

In the following, we relax the assumption that the amount of daily available vaccines does

not change over time. It is likely that the supply is increasing at the beginning and after some

time periods does not change to much. To model this, we assume the amount of daily available

vaccines Ct has the following form:

Ct =


γt, t ≤ C/γ

C, t > C/γ.

In the simulation study, we set C = 10, 000 and γ take value between 100 and 600. We consider

static policies that allocate a constant percentage of available doses each day to each age group.

Under different values of γ, the allocation to minimize death cases is shown in Table 9, while

the allocation to minimize confirmed cases is in Table 10. We can observe from Table 9 that

when the supply is limited at the beginning, i.e., γ is small, the majority of supplies is allocated

to the oldest group. When the supply at the beginning increase, more vaccines are allocated to

the group 64-74, but no vaccine is allocated to 0-64 aged individuals. This is almost consistent

with the pattern of the optimal static policy when the daily supply is constant. When the

objective is minimizing confirmed cases, we observe from Table 10 that groups 18-44 and 45-64

get more percentages of the supply, and their shares does not change too much when γ varies.

This illustrates that when the steady supply C is moderately limited (i.e., 10000 in our case),

the optimal static policy allocates more to younger groups regardless the beginning limited

supplies.

γ 0-17 18-44 45-64 65-74 75+ death confirmed

100 0.00% 0.00% 0.00% 6.17% 93.83% 10101 131321
200 0.00% 0.00% 0.00% 17.42% 82.58% 8997 125761
300 0.00% 0.00% 0.00% 19.31% 80.69% 8173 121689
400 0.00% 0.00% 0.00% 26.39% 73.61% 7536 117932
500 0.00% 0.00% 0.00% 28.93% 71.07% 7039 115186
600 0.00% 0.00% 0.00% 29.61% 70.39% 6648 113128

Table 9: Percentage allocation of minimizing deaths

We mention that under the the assumption that superfluous vaccines allocated to a group
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γ 0-17 18-44 45-64 65-74 75+ death confirmed

100 0.00% 31.53% 27.50% 15.36% 25.62% 10946 129580
200 0.00% 37.00% 29.80% 12.42% 20.79% 10390 121859
300 0.00% 36.21% 32.63% 12.07% 19.11% 9876 115438
400 0.00% 31.87% 33.50% 13.56% 21.12% 9238 110503
500 0.00% 28.74% 34.49% 13.95% 22.87% 8712 106860
600 0.00% 27.24% 35.58% 15.24% 21.99% 8402 104181

Table 10: Percentage allocation of minimizing total confirmed cases

is wasted, the optimal static policy will cause a huge waste even when the supply is limited.

For example, when the daily supply is a constant 2500, the total vaccines allocated to group

75+ is 84 × 2500 = 210000, which is more than twice of its population 101120. This suggests

considering dynamic allocation policies which are examined in the next section.

4.2 Dynamic Allocation

We consider dynamic allocation policies in this section. Since our age-structured SAPHIRE

model has 35 age-compartment pairs and the population in each pair may range to several

thousands (some ranges to hundreds of thousands, e.g., susceptible compartment), it is chal-

lenging to compute the optimal dynamic allocation using dynamic programming. One may want

to use approximate dynamic programming to obtain good heuristics. However, as illustrated

in Long et al. (2018) with a space-structured epidemic model for the 2014 Ebola outbreak,

the heuristic obtained from approximate dynamic programming performs worse than simple

heuristics such as myopic policy (to be discussed below for our model). Hence, we only provide

evaluations of several dynamic allocation heuristics.

• (Old-First Policy) This policy allocates available daily vaccines to age group 5 first. If

there are any remaining vaccines, it allocates to age group 4, and so on.

• (Infection-First Policy) This policy allocates available daily vaccines proportionally to

the infection ratio of each group (i.e., Ai+Ei+Pi+Ii
Ni

).

• (Myopic Policy) In each time t, the myopic policy determines the amount of vaccines vi

allocated to age group i by minimizing the total new infections of all groups in time t+ 1,
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i.e.,

min

5∑
i=1

(Si − vi)β
5∑
j=1

τji(Ij + α(Pj +Aj))

Nj

s.t.
5∑
i=1

vi ≤ Ct,

0 ≤ vi ≤ Si, i = 1, ..., 5.

Since this is a linear program with a capacity constraint and a box constraint, the myopic

policy will first allocate vaccines to the group with the largest coefficient. If the number of

susceptible individuals in this group is less than Ct, then the myopic policy allocates the

remaining doses to the group with the second largest coefficient, and so on. The coefficient

of vi in the objective can be regarded as the marginal effect of a unit vaccine allocated to

group i.

• (Death-Weighted Myopic Policy) In each time t, the death-weighted myopic policy

determines the amount of vaccines vi allocated to age group i by minimizing the total

weighted infections of all groups in time t+ 1, i.e.,

min
5∑
i=1

wi(Si − vi)β
5∑
j=1

τji(Ij + α(Pj +Aj))

Nj

s.t.

5∑
i=1

vi ≤ Ct,

0 ≤ vi ≤ Si, i = 1, ..., 5,

where wi is the death rate of group i.

• (Two-Day Myopic Policy) In each time t, this policy determines vi(t), vi(t + 1), i =
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1, ..., 5 to minimize the new infections of all groups in time t+ 2, i.e.,

min

5∑
i=1

(Ei(t+ 2)− Ei(t) +
Ei(t+ 1)

De
)

s.t. (1)− (7),

5∑
i=1

vi(t) ≤ Ct,

5∑
i=1

vi(t+ 1) ≤ Ct+1,

0 ≤ vi(t) ≤ Si(t),

0 ≤ vi(t+ 1) ≤ Si(t+ 1), i = 1, ..., 5.

In the numerical study, we set the daily supply Ct to be a constant 10,000. For the two-day

myopic policy, as we mentioned in Section 3, the disease dynamics (1)-(7) is nonlinear. Hence,

its optimization problem is a nonconvex problem, which potentially has local optimal solutions.

To obtain a good local optimal solution, we solve the optimization problem 100 times at the

beginning of every two days and pick the one that gives the minimal objective value. The

outcomes of the above heuristics are listed in Table 11. Here, we do not put the outcome of the

confirmed death

0-17 18-44 45-64 65-74 75+ total 0-17 18-44 45-64 65-74 75+ total
old-first 3638 42787 35937 5709 1898 89969 0 359 1792 954 676 3781
myopic 2119 35435 21487 6985 887 66913 0 295 1069 1134 334 2832
infection-first 2285 31254 29341 5576 4315 72770 0 263 1450 923 1482 4118
two-day myopic 2121 35382 21735 6696 883 66818 0 295 1081 1090 332 2798

Table 11: Outcomes of different dynamic heuristics

death-weighted myopic policy as it yields the same allocation with the old-first policy in this

numerical study. Table 11 shows that the two-day myopic policy performs the best in terms of

both the total confirmed cases and the total deaths. The myopic policy has a similar outcome.

The old-first policy has the largest total confirmed cases and the infection-first policy has the

largest total death cases. This is because the old-first policy postpones younger groups that have

the most infections, and the infection-first policy only consider the infection ratio Ai+Ei+Pi+Ii
Ni

.

Although the old-first policy itself seems to be beneficial to decrease death cases, it actually

causes more deaths compared to the myopic policy the and two-day myopic policy which do not
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explicitly minimize deaths in their optimization problems. This illustrates that the decreasing

of confirmed cases leads to fewer deaths as well and a good allocation can decrease both deaths

and confirmed cases.

In the following ,we compare the allocation of different dynamic policies. Since the old-first

and the myopic policy only allocate the daily supply to one group (except when the remaining

susceptible individuals of the group cannot consume all the supply), we can visualize them as

in Figure 7. In the figure, the different color blocks represent time periods of the allocation

to different groups, and the vertical axis represents the time. The first row corresponds to the

old-first policy, and the second row corresponds to the myopic policy. We do not specify the

mixing of allocations on the boundary of different color blocks. The coefficients of vi for different

age groups under the myopic policy is shown in Figure 8. Note that even the group 75+ has

the largest coefficient from day 10 (starts to allocate to group 65-74) to 35, the vaccines will

not be given to group 75+ after day 10 as all its susceptible individuals are vaccinated. The

allocation of the two-day myopic policy is shown in Figure 9.

We can observe that the execution of the myopic policy follows a similar pattern as the

old-first policy at the beginning in that they both start from the oldest age group and gradually

move to younger groups. There are some differences between these two policies that explain

superiority of the myopic policy. First, the myopic policy spends less time in the 65-74 and

45-64 age group. We can observe that the myopic policy do have slightly more confirmed and

deaths for the 65-74 group. Although the myopic policy spends less time in these groups, it

moves to other groups (0-17, 18-44) with larger vaccine marginal effect (see Figure 8), and helps

controlling the disease transmission in all groups. Second, the old-first policy still allocates

vaccines to group 45-64 after day 34 even though the vaccine marginal effect of this group is

smaller than group 0-17, while the myopic policy skips the 18-44 age group at day 34 and goes

directly to the 0-17 age group. At the end of the horizon, the myopic policy fluctuates among the

groups 65-74, 18-44 and 45-64 as their vaccine marginal effects are nearly the same and a small

periods of allocation will change the vaccine marginal effect. At this stage, the allocation is

insensitive to different groups and a change of the myopic policy will not hurt the performance.

The two-day myopic policy has a mixing allocation as shown in Figure 9. The majority

of the supply is first given to the group 75+ and moves to the group 65-74 roughly on day

10. Around day 15 the majority of the supply is given to 45-64 and then moves to the group

0-17 around day 34. Then the policy gives most of the vaccines to the group 18-44 after day
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52. Comparing with the allocation of the myopic policy (Figure 7), the two-day myopic policy

roughly follows the pattern of the myopic policy but has more mixing on the exchange time

boundary and the end of the horizon, which may be the reason for its slightly better outcomes.

5 Conclusion

This paper considers vaccine allocation policies of Covid-19 to different age groups under limited

supply. We use an age-structured SAPHIRE model and estimate relevant parameters with the

epidemic data from NYC. Base on this model and the estimated parameters, we evaluate the

performance of the optimal static policies under different daily vaccine supply and different

objectives, and those for several dynamic allocation heuristics. Our numerical study shows

that generally the optimal static policy allocates most of the vaccines to older groups when the

objective is minimizing deaths, and if the objective is minimizing confirmed cases, then younger

groups will get more. This suggests the decision maker to balance very carefully between

different objectives which leads to a policy performs much better than ad-hoc allocation policies.

The dynamic allocation heuristics in general perform better than the static ones. This is not

surprising since we allow different allocation each day. Among the dynamic policies, the best

are myopic policies and two-day myopic policies, and they performs much better than the other

heuristics.

Our paper though has the following limitations. One is on the assumption placed on static

policies, i.e., once the people in one group have all been vaccinated, the doses allocated to that

group cannot be transferred to other groups and are wasted. This is not the case in reality, and

it would be interesting to see how the static policy performs when the transfer of vaccines to

other groups is allowed. Alternatively, a more complicated policy, for instance, piecewise static

policies can be used to reduce the waste of vaccines under this assumption. Another limitation is

that we do not solve the optimal dynamic policy. This is due to the curse of dimensionality and

the nonlinearity of the disease dynamics. Finally, although our numerical study only uses data

from NYC, we believe the insights of allocation policies draw from it could provide reference to

decision makers on the allocation of the upcoming Covid-19 vaccines.
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Figure 7: Allocation for old-first policy and myopic policy
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Figure 8: Coefficients of vi for different age groups under myopic policy

Figure 9: Daily allocation under the two-day myopic policy
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6 Appendix: Details of Parameter Estimation

In this appendix, we provide details of the parameter estimation method.

The input to our SAPHIRE model is simply the parameters and the observed initial condi-

tions. Then the model can compute the daily number of each groups from previous days’ data

with the ODEs defined in Section 2. The initial condition comes from the observation on Mar

17, 2020. We set the initial susceptible population to be the total population, compute the

initial number of ascertained people from each group by the total infected number times the

overall ratio of different age groups, and set the initial removed population to be 0. Note that

the number of some disease group is not observable, for example, the unascertained infected

people. However, we argue that as early as Mar 17, there is not too much people in this group,

so a slight error in this number will not cause a huge difference in our estimation. With our final

set of parameters, if we multiply or divide the initial number in these unobserved compartments

by 2, the change in our estimated total number of infected cases would be around 1.5%. To

further deal with this, we set the first ten days in our model to be the burn-in period, and we

will only take predictions of our model from Mar 27 to June 8.

As we have mentioned before, to estimate the parameters, our loss function to be minimized

is the squared error of the prediction of confirmed cases and deaths in each groups. Formally, let

x(t) be the state vector at time t satisfying ODEs dx(t)
dt = ft(x(t), θ) and xo(t) be the observable

state subvector. Let y(t) be the observable data in time t. The loss function is written in (8).

This is a common measure used in the literature, see, for example, Cantó et al. (2017). Due to

the highly non-convex nature of the ODEs that define the epidemic dynamics, the loss function

possess a great number of local optimal solutions, many of which have similar level of mean

squared error in the prediction. These local optimal solutions can be obtained from applying

optimization algorithm to the loss function from different starting points.

min
θ∈Θ

T∑
t=0

||y(t)− xo(t)||2 (8)

s.t.
dx(t)

dt
= ft(x(t), θ), x(0) = x, (9)

A critical part of our estimation is to select the local optimal solution that best characterizes

the nature of transmission of the virus. When selecting among the multiple estimation of contact
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matrix τ between age groups, and the ascertainment rate r of different age groups, we consider

the following constraints on the estimation.

First, the contact between age groups should be balanced and bi-directional. In other words,

when two person makes contact, it is possible to transfer virus from the first person to the second

person, or the reverse. In terms of contact between age groups, the following equation must

hold for all elements in τ

τij × population in group i = τji × population in group j

Second, there are some studies in finding the contact rate between people using socioe-

conomic data, for example, Fumanelli et al. (2012) uses the data of school, workplace and

community to estimate the contact rate between age groups in the UK. Refer to Figure 2 of the

paper for a heatmap of the estimated contact level between age groups. Though as a metropoli-

tan area, people in New York City during the lock down period may not have exactly the same

contact level as shown in this paper, but some insights should be similar. For example, the

diagonal elements of the matrix τ should be the largest in a row, and the more off-diagonal an

elements is in a row, the smaller it is. Formally, we incorporate the following constraint, with

a small tolerance.

τi1 ≤ τi2 ≤ · · · ≤ τii ≥ · · · ≥ τi5

Third, as data have shown, the hospitalization rate and fatality rate of the older group is

significantly higher than the younger group, we expect the ascertainment rate r for the groups

follow the same fashion. In this sense, we incorporate the constraint that the ascertainment

rate should be increasing in age. Formally,

r1 ≤ r2 ≤ r3 ≤ r4 ≤ r5.

Based on the above criteria, we find the local minimum solution that satisfy the above

constraints, that yields the smallest objective value. The results are shown in the main text.
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