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Abstract 

COVID-19 is a pandemic infectious disease caused by the SARS-CoV-2 virus, having reached more than 

210 countries and territories. It produces symptoms such as fever, dry cough, dyspnea, fatigue, 

pneumonia, and radiological manifestations. 

The most common reported RX and CT findings include lung consolidation and ground-glass opacities. 

In this paper, we describe a machine learning-based system (XrayCoviDetector; www.covidetector.net), 

that detects automatically, the probability that a thorax radiological image includes COVID-19 lung 

patterns. 

XrayCoviDetector has an accuracy of 0.93, a sensitivity of 0.96, and a specificity of 0.90. 
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1. Introduction 

COVID-19 (acronym of coronavirus disease 2019), also known as coronavirus disease or coronavirus, is 

an infectious disease caused by the SARS-CoV-2 virus (Wu, 2020; Huang, 2020). It was first detected in 

the city of Wuhan, China in December 2019 (Wu, 2020; Huang, 2020). Having reached more than 210 

countries, areas, and territories (WHO, 2020), the World Health Organization declared it a pandemic on 

March 11, 2020 (WHO, 2020). 

It produces flu-like symptoms including fever, dry cough, dyspnea, myalgia, and fatigue. In severe cases, 

it is characterized by pneumonia, acute respiratory distress syndrome, sepsis, and septic shock (Huang, 

2020). 

COVID-19 has radiological manifestations, even in asymptomatic patients, and in certain cases before a 

positive real-time reverse transcription-polymerase chain reaction (RT-PCR) test. Radiological features 

have already been used to identify high-risk patients early, improving the prognosis (and reducing the 

need for invasive mechanical ventilation) by being able to establish monitoring and early intensive 

management. 

2. Material and Methods 

3805 radiography of normal, pneumonia not COVID-19, and COVID-19 type pneumonia was used. The 

database is made up of three sources: 

# ORIGIN TYPE QUANTITY 

1 RSNA Pneumonia Detection 
Challenge 
(https://www.kaggle.com/c/rsna-
pneumonia-detection-challenge) 

Normal, and non-COVID-19 pneumonia 3014 

2 Clínica las Condes COVID-19+ 573 

3 COVID-19 image data collection 
(https://github.com/ieee8023/covid
-chestxray-dataset) (Maguolo, 
2020) 

COVID-19+ 218 

Table 1: Image databases used to train and validate the AI system. 

To minimize false-positive errors, the images of three databases (Table 1) were reviewed, validated, and 

selected by expert radiologists (obtaining the number of images detailed in Table 1), since not all 

patients show distinguishable patterns on their chest radiographs. It should be noted that the first set 

(item 1 in Table 1) is RSNA images and is validated for a pre-pandemic Kaggle competition (patients 

without COVID). 

 
Being a small data set, two sets were randomly formed. One set was used to train the model and the 

other to validate it (not test set was formed). See Table 2. 
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 Positive Negative Total 

Training 741 2964 3705 

Validation 50 50 100 

Total 791 3014 3805 
Table 2: Quantity of RX images used to train and validate the network model. Positive: COVID-19 images, Negative: normal and 
non-COVID-19 pneumonia images. 

In the training set, we have four times fewer cases of COVID, so different weights are introduced to each 

category to measure the error in the training of the model (in addition to passing the data in large 

batches of 100 images each, such that contain multiple COVID images at each training step). 

To measure the precision of the model (correct results over totals), note that the validation set is 

balanced so that there are equal numbers of positive and negative cases (Table 2). 

 

Preprocessing 

U-Net 

To avoid bias, by date or origin of images, annotations are removed from images using an automatic 

segmentation system. A U-Net-type AI architecture (Ronneberger et al., 2015) was trained to perform 

automatic segmentation of only the lung before performing the classification (Figure 1, 2, 3). The data 

was grayscale normalized before the segmentation. 

 

 

Figure 1: UNet-type AI architecture was used to automatically segment the lung. (A) RX original lung image, (B) segmented lung. 
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Figure 2: Different RX images of segmented lungs using the U-Net-type AI model. 

 

U-net architecture is shown in Figure 3. It consists of contraction (encoder network) and expansion path 
(decoder network). 
 
Contraction path 
 
The 256x256x1 input image is passed through two 3x3 convolutional layers. Then, the image is 
downsampled using 2x2 max-pooling layers. This process is repeated until the image has a size of 
16x16x512. 
 
Expansion path 
Then instead of downsampling, the image is sent through a 2x2 deconvolutional layer (up-Conv 2x2; Fig 
3) and concatenated consecutively with a cropped version of the previous feature map, and similarly, 
the feature map is sent through 3x3 convolutional layers. The process is repeated until an image of size 
256x256x2 (Fig x) was got and a 1x1 convolution layer was applied to get a 256x256x1 sized output (1 
class: lung). 
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Figure 3: U-net architecture used to segment the lung from DX images. 

 

Data augmentation 

The data was expanded by applying different transformations randomly. In Table 3, the transformations 

for image segmentation model, and in Table 4 the transformations for classification model are shown. 

TRANSFORMATION RANGE 

Shear 0.05 

Rotation 0.2 

Zoom 0.05 

Width shift 0.05 

Height shift 0.05 

Horizontal flip True 

fill_mode nearest 
Table 3: Keras Augmentation parameters for transformations that will be applied to each radiological image for segmentation 

model (Fig. 3). 
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TRANSFORMATION RANGE 

Shear 0.05 

Rotation 0.2 

Zoom 0.2 

Width shift 0.2 

Height shift 0.2 

Brightness [0.1, 1.9] 

Horizontal flip True 
Table 3: Transformations that will be applied to each radiological image to augment the data set for classification model (Fig. 

5). 

The transformations (Table 3) produce greater variability to the data and help the model to improve 

generalization (so that it responds better with new data and with different distributions, trying to make 

it more robust and reliable). See Figure 4. 

 

 

 

     Figure 4: Example of data augmented by applying different transformations (Table 3). 
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Classification model 

Given that the data sets used are relatively small, it was decided to use transfer learning from a pre-

trained classic VGG-16 model (a convolutional neural network that is 16 layers deep; Fig 5) in the first 

convolutional layers with fixed weights obtained on ImageNet images (http://www.image-net.org/). 

ImageNet set contains 120 categories of images of all kinds, not from the medical area, so in the first 

fixed convolutional layers, the model contains the filters for the relevant characteristics typical of any 

image (for example, edge detection). 

For the unfrozen layers of the model, it is necessary to change the last dense layers to be of two 

categories. The unfreeze layers are trained for a slightly different problem. This time a problem from the 

medical area is used, with chest radiographs for the detection of pneumonia with over twelve thousand 

images from a Kaggle competition (with images very similar to the final problem to be solved, but where 

there are more images. RSNA Pneumonia Detection Challenge; https://www.kaggle.com/c/rsna-

pneumonia-detection-challenge). Also, since COVID can cause a type of pneumonia, the problems are 

similar and help the development of the system. 

Finally, you train on the final problem. During training, some neurons are randomly removed (given the 

lack of data, to avoid overfitting the training set and poor generalization). 

 

 

Figure 5: VGG16 architecture used to predict COVID19 using chest radiography previously segmented. 

 

Implementation 

Using Amazon Web Services (AWS; https://aws.amazon.com) XrayCoviDetector was implemented. A 

website, and the complete neural network. Using Amazon EC2 (https://aws.amazon.com/es/ec2/), 

Amazon S3 (https://aws.amazon.com/es/s3/) for the storage and web site, Amazon SageMaker 

(https://aws.amazon.com/es/sagemaker/) and Amazon TensorFlow 

(https://aws.amazon.com/es/tensorflow/) to create and implement the neural networks used in this 

project. 
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3. Results 

A website was created: www.covidetector.net (XrayCoviDetector; Fig 6). 

 

 

Figure 6: Home page of XrayCoviDetector. 
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Figure 7: (A) Login web page, and (B) User registration webpage. 

 

To login to XrayCoviDetector, the user must input his email and password (Fig 7A), and register a new 

user the complete name, email, password, and must click the checkbox to know and accept the 

conditions of use (Fig 7B). 

To upload a case, the age, sex, and a PNG or JPG chest image of the patient must be selected (Figure 8). 

Then press the “ENVIAR” button. 
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Figure 8: Web page to upload a case. Age, sex, and PNG or JPG chest image files must be selected to upload by pressing the 
"ENVIAR" button. 

Later, the user will receive an email from cis@clinicalascondes.cl with the result of the analysis of RX 

images of the patient. Two possible sentences appear in the received email: “se detectan posibles 

patrones de COVID-19” (“possible COVID-19 patterns were detected”) or “no se detectaron patrones de 

COVID-19” (“COVID-19 patterns not detected”). See Figure 9 and Figure 10. 

 

 

Figure 9: (A) COVID-19 DX image of male 75 years old patient (Parenchymal opacities with alveolar appearance and bilateral 
ground-glass opacity, mainly in the middle third, to a greater extent to the right), (B) e-mail received with the analysis of the 
COVID-19 case (sentence “possible COVID-19 patterns was detected”). 
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Figure 10: (A) Lung DX image of a healthy 51 years old female patient, (B) e-mail received with the analysis of healthy patient 
("COVID-19 patterns not detected "). 

 

The results of the validation set, even distorting the images, are shown in a confusion matrix (Table 4). 
 
 

  Actual 

  True False 

 Total Validation 

Population 50 50 

Predicted 
True 48 5 

False 2 45 

Table 4: Confusion matrix for the validation set. 

 
Accuracy: Refers to how close to the actual value the measured value is. High accuracy means that there 
is a small difference between the predicted result of XrayCoviDetector and the actual positive (RX lung 
with COVID-19 pneumonia) (Griffiths, 2009); 
 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
; TP = True positive, TN = True negative, FP = False positive, FN = False negative 

 
Sensitivity (True Positive Rate): measures the proportion of actual positives (RX lung with COVID-19 
pneumonia) that are correctly identified as such by XrayCoviDetector (Griffiths, 2009): 
 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
Specificity (True Negative Rate): measures the proportion of actual negatives (RX lung without COVID-19 
pneumonia) that are correctly identified as such by XrayCoviDetector (Griffiths, 2009): 
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𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 
 
Using data of Table 4, the accuracy is equal to 0.93, sensitivity = 0.96, and specificity = 0.90. 
 
To verify that the system does not have any kind of bias related to the origin of the data, the system was 
tested using 66 CLC origin only images, obtaining an accuracy of 0.92. 
 
 
4. Discussion 

In this paper, a COVID-19 lung pattern automatic detection system using RX images was described. 

XrayCoviDetector is a worldwide accessible web system from a computer or a mobile device, easy to use 

that send the results through email in a couple of seconds. 

To train and validate the system, images from different origin databases, and probably different 

technical characteristics have been used (Table 1). With these data, a high accuracy (0.93) was obtained. 

To assess whether the accuracy is maintained, XrayCoviDetector was measured using CLC acquired 

images, obtaining an accuracy of 0.92. Being able to conclude that the trained neural network is robust, 

and the results will not depend significantly on the characteristics of the images or the X-ray equipment 

used. 

XrayCoviDetector is a fast and fully automatic chest X-Ray analysis web system that detects COVID-19 

pneumonia patterns. Pieces of X-Ray equipment are common in medical centers and hospitals 

worldwide, but PCR (the gold-standard COVID-19 diagnosis exam) is not as common. Therefore, X-Ray 

can be considered as a complementary support exam, and XrayCoviDetector supports the non-existence 

of a COVID-19 expert radiologist in the medical center. 

XrayCoviDetector may be less effective in detecting lung disease patterns in early stages than in more 
advanced stages. This is because there are fewer images of the early stages in the training set than in 
more advanced stages. 
 
It is important to note that many of the COVID-19 images used for this system correspond to the same 
patient on different days (so some of the images look similar but highlighting that they do not they are 
identical). To reduce this problem, they are randomly sorted and passed in separate groups during 
training (in addition to random distortion on augmentation). 
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