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Abstract 

„Yips‟ is an involuntary movement disorder seen in some professional golfers. The diagnostic challenge in 

yips is to distinguish symptoms of task-specific dystonia from psychological „choking‟.  We evaluated 15 

professional golfers with mild symptomatic yips via anxiety tests, motion-capture and surface 

electromyography during a „putting‟ task. Movement instabilities were analyzed via temporal statistical 

methodologies (one-dimensional statistical parametric mapping). In a subset of golfers, we found significant 

differences in angular velocities of the putter-club rotation and altered synergy neural coefficients during the 

downswing phase. Our results showed that golfers with mild yips require sensitive motion-capture 

evaluations wherein movement instabilities become evident. Particularly the downswing is affected, and the 

ensuing perturbations in phasic muscle activity share dystonic features that are consistently identified as 

abnormal muscle synergy patterns. Despite a strong subjective feeling of yips that golfers complain of, 

movement analysis can reliably exclude those with „choking‟ from those with task-specific dystonias.   

 

 

Introduction 

Some golfers experience an acute involuntary loss of performance in competitive environments. Instinctively, 

it is attributed to competition stress or anxiety that is seen in any high-precision, high-pressure sports. This 

performance deficit is classically known as „choking‟(Beilock & Carr, 2001; Hill et al., 2010), and among 

golfers well-known as „the yips‟. However yips is also suggested to be movement disorder. As a motor 

problem, it is characterized by abnormal involuntary twitching, jerks, spasms or freezing of planned motor 

movement(Torres-Russotto & Perlmutter, 2008). Consequently, many authors regard yips as a task-specific 

dystonia(Charles H. Adler et al., 2011; Clarke et al., 2015; Smith et al., 2003) or an occupational cramp 

resulting from intensive over-use of specific musculature for long periods of time which affects fine motor 

control(Altenmüller, 2003).  

A key challenge in yips is to disentangle features of dystonia from „choking‟(Clarke et al., 2015; Smith et al., 

2003). Like all movement disorders, diagnosing task-specific dystonia is clinical. Neurologists have to „see it 

to diagnose it‟ via physical examination or by video evidence(Logroscino et al., 2003), or risk categorizing 

yips as a psychological „choking‟ phenomenon. To identify dystonic features in yips, it is crucial to observe 

or evoke patterns such as abnormal co-contractions during the task(C. H. Adler et al., 2005) (e.g. in putting 
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or drive shots). Unfortunately dystonic symptoms are rarely observed in golfers until their performance gets 

worse(Sachdev, 1992). When symptoms of yips are mild, the movement variability is often 

inconsistent(Marquardt, 2009) and detection of motor deficits may be difficult to capture videographically. 

Furthermore, dystonic patterns such as mild tremoric representations are dampened due to a two-handed club 

grip, and single handed shots to evoke yips may appear contrived(Charles H. Adler et al., 2018). 

Therefore, our aim in this study was to objectively identify features of task-specific dystonia to rule-out 

„choking‟ in mild yips golfers. The fallout of „choking‟ or dystonia is singular – a measurable kinematic 

outcome with demonstrable performance loss due to an abnormal motor or stress response. We speculate that 

despite the strong psychological subjective priors associated with yips(Hill et al., 2010), precise movement 

analysis would allow us to capture true dystonic features consistently in the form of abnormal stereotyped 

muscle activity. To that end, we designed our study around golfers suffering from putter‟s yips, since putting, 

by virtue of its importance in competitive golf, is one of the most affected stroke in yips(Kim et al., 2004). 

We evaluated „choking‟ characteristics using trait and situational anxiety tests. To address the kinematics of 

putting shots, we used sensitive motion-capture systems to visualize movement characteristics and study their 

putting trajectories. Motion capture provides a direct image of orientation and position of the golf club during 

a putting stroke making it an ideal tool to quantify movement instabilities in golfers(Evans et al., 2008; Evans 

& Tuttle, 2015). Within the framework of dynamic motor control, we applied the concept of muscle 

synergies on surface electromyographic recordings to represent the coordinated activation of muscle groups 

working as a specialized functional unit(d‟Avella et al., 2003). Prior studies have used synergy estimation as 

a tool to evaluate functional abnormalities between healthy and neurological patients(Giszter & Hart, 2013; 

Gizzi et al., 2011; Lunardini et al., 2015). Typically, muscle synergies function to access the best subset from 

a vast library of motor tasks to accomplish a smooth coordinated movement(d‟Avella et al., 2006). However 

in diseases of the nervous system such as stroke, dystonia or spinal cord injury, these physiological synergies 

are affected(Giszter & Hart, 2013; Gizzi et al., 2011; Lunardini et al., 2017). In functional movement 

disorders like task-specific dystonia, it is suggested that subjects may have fixed and normal synergy 

structures but abnormal neural coefficients that may indicate an inability to access or modulate a well-defined 

motor behavior(Santello & Lang, 2015). 

To summarize, we hypothesized that during putting, within each golfer, the co-contraction balance 

maintained by upper-arm and forearm muscles are altered in yips shots when compared to normal shot 

patterns. This difference would be observable via motion-tracking of the putter club together with muscle 

synergies to reveal features of movement instabilities in high-precision putting shots. These findings would 

allow us to characterize yips golfers with task-specific dystonia thereby ruling out those with choking.   
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Methodology 

General information  

15 professional golfers [14M, 1F, age 52.87 ±12.56 years (Mean, SD), all right handed] volunteered for the 

study and were prospectively enrolled at a single center. All golfers self-reported to have had yips symptoms 

for putting shots. Clinically we considered these symptoms as mild yips which were defined as 

inconsistencies during putting and those that were not strictly confined to problems only in putting(Klämpfl 

et al., 2013; Marquardt, 2009). Inclusion criteria were (i) professionals or high ranked golfers with current or 

past history of the yips, (ii) golfing experience of >15 years, (iii) handicap score of <14 before onset of yips 

and (iv) symptoms of yips severe enough to change grip style or alter training conditions. Exclusion criteria 

were subjects with (i) apparent physical injuries to upper arm or forearm (ii) diagnosed neurological, 

neuromuscular or psychological symptomatology. The research protocol was approved by the local ethics 

committee and written informed consent was obtained from the golfers in accordance to the Helsinki 

Declaration. All golfers were examined by a study neurologist on their arrival to the testing center.   

Anxiety tests and Putting task  

Subjects were asked to complete two separate anxiety questionnaires at the start of the test session; (i) Trait 

Anxiety Inventory in Sports (TAIS) - which provides a comprehensive measure of anxiety in competitive 

sports(Hashimoto et al., 1993); and (ii) Sports Competition Anxiety (SCA) test - an index of situational 

anxiety that analyzes athletes on how they feel before and during a competitive situation(Hamidi & Besharat, 

2010; Martens, 1977). The TAIS test uses a 4-point Likert scale for a set of 25 questions with a minimum 

score of 25 (low anxiety) and a maximum of 100 (high anxiety proneness). The SCA test consists of 15 items, 

10 of which are scored, with a score of less than 17 indicating a low level of anxiety, 17 to 24 an average 

level of anxiety, and more than 24 a high level of anxiety.  

The putting task was performed on an artificial putting surface, in a room equipped with 12 motion tracking 

cameras with the distance from starting position to hole set to 2.2 meters. 40 trials were performed and after 

every shot, the golfers were requested to verbally communicate their impression regarding their performance. 

The golfers were specifically instructed to try and putt all the shots without any explicit critique provided by 

the experimenter. Trials were then sorted and classified as normal-shots and yips-shots based on their 

subjective experience which was irrespective of their success in putting the shots. All trials were videotaped 

and qualitatively assessed for dystonic movements. Supplementary data provides additional details regarding 

evaluation of the putting task.   
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Movement analysis using sEMG and motion capture  

Fig.1 provides the overview of surface electromyography (sEMG) and motion capture sensor evaluation. 

sEMG was recorded using Trigno wireless EMG system (Delsys, Inc. US) using 16 sEMG sensors sampled 

at 2kHz, band-pass filtered between 20 to 480Hz, rectified and low-pass filtered at 10Hz. Signals from biceps, 

triceps, pronator, supinator, flexor digitorum superficialis (FDS), extensor digitorum communis (EDC), 

extensor carpi radialis (ECR) and flexor carpi ulnaris (FCU) from each arm were recorded on LabChart-7 

software (ADInstruments, New South Wales, Australia). A 12 camera OptiTrack Prime 17W system 

(NaturalPoint, Inc, US) was used for motion capture. The system was optimized for recording in small spaces 

with a high resolution of 1.7 Megapixel recorded at a frame rate of 360 frames per second.  

 

Fig.1 

 

Fig.1 legend: (A) Graphical representation of wireless sEMG electrodes used along with the sensors on the putter club 

for motion capture system, (B) The club coordinate system consisted of three orthogonal unit vectors    ,     ,and     

for X, Y and  Z axis respectively which were calculated using acryl plates attached to shaft and putter-head. (C) (top) 

Snapshot of putting swing for an individual participant. Time „0‟ = time of ball impact. (bottom) The club coordinate 

system were defined as     – the unit vector in the direction of forward swing (Y axis),     - the unit vector parallel to 

the club shaft (X axis) and     - the vector perpendicular to     and     (Z axis). The angular velocity of putter head 

(red curve - Z axis) was used since this was the most sensitive parameter to record twitches, jerks or freezing of 

movements. 
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For each putting trial, motion tracking and sEMG data were epoched for 2 seconds (-1 second to +1 second 

with 0 being the time of ball impact). This epoch included a time window immediately prior to start of 

backswing, backswing, downswing till ball impact and follow-through phases. The club coordinate system 

was defined to monitor the angular velocities of the club during the putting stroke. Calculations of angular 

velocities are described in supplementary data. The „putter downswing‟ is a fast movement occurring at a 

critical time point between backswing (governed by anti-gravity muscles) and follow-through (by muscles 

defining posture stability necessary to end the swing phase). Since the downswing phase in the golfers 

depended on the putter head direction and speed, we focused  our analysis on the phasic component of the 

putter swing(d‟Avella et al., 2006). Given that a constant tone was involved to maintain the stability of the 

putting movement, the phasic component was extracted by subtracting the tonic component represented as a 

linear ramp between 400ms before movement onset (backswing) and 400ms after follow-through 

phase(d‟Avella et al., 2006).  

For muscle synergy analysis, trials were downsampled from 2 kHz to 500 Hz and synergies were extracted 

for the downswing phase from each arm separately. Phasic sEMG data described above, for every trial, was 

factorized using non-negative matrix factorization (NNMF) into a synergy matrix of weights (W), a neural 

recruitment coefficient (C) represented mathematically as:  

Mm×n = Wm×k .Ck×n + Em×n 

where M is a m×n matrix of sEMG data (with m = number of muscles and n = number of  samples), W is a 

m×k matrix containing the muscle synergies used to reduce m muscles into k dimensional space, and C is a 

k×n matrix  containing the k patterns used to control full set of m muscles temporally defined by n. k denotes 

the number of synergies and E the residuals. Intuitively, for a particular muscle activation pattern M, W 

specifies the relative contributions of the muscles involved in the synergy and C is the coefficient that 

changes over time and across conditions. To avoid the local minima, the algorithm was iterated 1000 times 

and the final synergy vectors were normalised by their maximum values(Lee & Seung, 1999). The 

methodology for calculation, validation of synergies and their reconstructions were performed as described in 

previous studies(Safavynia & Ting, 2012; Torres-Oviedo et al., 2006). The NNMF algorithm received each 

trial data as input and synergies were calculated trial by trial without fixing the synergy number. The least 

synergy number to adequately reconstruct the sEMG data were quantified by 2 parameters – the centered 

Pearson‟s correlation coefficient (R
2
) calculated for every muscle from the trial dataset with respect to the 

reconstructed synergies and the variance accounted for (VAF) which is used to obtain a goodness of fit 

between the actual and reconstructed EMG from the synergies. To obtain consistent features from the data, 
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such of those synergies which crossed a threshold of mean value R
2
 (EMGreconstructed R

2
)
 
of 80%, a VAF of 

90% and a VAF of muscles of 80% were considered sufficient to represent the input EMG dataset. In order 

to match the resulting synergies, we sorted the trial based synergies based on their degree of alignment 

represented by their Pearson‟s correlation coefficients and matched them versus every pair. As a first step, 

synergies from a trial (any) within the group (normal or yips) were sorted according to their power 

contribution to the filtered sEMG data. sEMG power was computed as the Root Mean Squares (RMS) of the 

sEMG signals recorded. In the second step, the synergies from the rest of the trials were ordered with respect 

to the correlation of their weights obtained from the previous step.  

Statistical analysis  

Descriptive and correlational statistics for relevant demographic variables were performed.  We identified the 

total number of yips trials and then a random number of normal-shot trials were matched to keep the number 

same under all response conditions. To evaluate the motion tracking differences between normal and yips 

shots, a 2-tailed paired t-test using 1-dimensional Statistical Parametric Mapping (SPM) was used. The 

procedure involved calculating a t-statistic threshold (t*) and the temporal smoothness at each time point 

using the residuals on the time-series data(Pataky et al., 2013). For each subject, thresholds were calculated 

based on the number of matched trials which differed for each participant making the SPM t-test ideal for 

subject-level analysis. Alpha value of 0.05 was set, and if the SPM t-trajectory crossed the threshold any time 

point in the time series data, the values were deemed significant (Fig.2A, Comparison)(Robinson et al., 2014). 

The advantage of this method is that the results are reproducible and avoids dependence on standard 

deviations to make interpretations where sEMG often show variability due to multiple trials. For the resulting 

synergy weights, paired t-tests with Bonferroni correction were applied, and for the temporal neural 

coefficients a 2-tailed paired SPM t-test was used (Fig.2B, Comparison). For both tests, statistical 

significance was set to p<0.05. All offline analyses were done using Matlab 2017b. SPM analyses were 

performed using open-source spm1d code available at www.spm1d.org.   

Data sharing statement: Data that support the findings of this study are available from the corresponding 

author upon reasonable request. Custom scripts will be available before publication and deposited in a 

community repository. 
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Fig.2 

 

Fig.2 legend: Graphical representation of preprocessing procedures and statistical methods used in the study.  

(A) Analysis of angular velocity of club: For each subject, trials were sorted to perform comparisons using one 

dimensional statistical parametric mapping (1D-SPM). For normal hits and yips shots, the mean value of angular 

velocity curves, trial-by-trial, from backswing to impact and follow-through were mostly similar (overlapping mean 

SD curves) except for certain time segments during downswing (shown by solid black line in mean SD curve).  This 

represents the time where the values for yips shot were higher than for normal hits crossing a critical threshold (t*) in 

paired SPM t-test. The probability of finding such significant time segments by random sampling is given by their 

respective p values < 0.05 for individual subject thus rejecting the null hypothesis.  

(B) Muscle synergy analysis: sEMG (surface electromyography) trials were first preprocessed to obtain phasic 

downswing component (preprocessing steps shown here is for a single muscle).  After trial sorting, for each arm 

comprising of 8 muscles each, synergy analysis was performed using NNMF (non-negative matrix factorization) 

algorithm to obtain synergy weights (W) and neural coefficients (C) for normal and yips-shots respectively. Statistical 

comparisons were performed between normal and yips shots when reconstructions were > 80%, shown here for 3 

synergies as W1, W2 and W3 for weights and C1, C2 and C3 for coefficients respectively. Legend: biceps (B), triceps 

(T), pronator (P), supinator (S), flexor digitorum superficialis (FDS), extensor digitorum communis (EDC), extensor 

carpi radialis (ECR) and flexor carpi ulnaris (FCU). 
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Results 

Demographic details: 

Demographic details are described in Table 1. Participants in our study had long golfing experience [35 years, 

(26.2, 40.7) (Median, 1
st
 quartile, 3

rd
 quartile)], with considerable duration of yips symptoms [10 years (4.25, 

23.2)]. Linear regression showed moderate significant correlation between playing experience and onset of 

yips symptoms (N=15, R
2
=0.33, p=0.024). Pearson‟s correlation coefficient for anxiety tests (TAIS score vs. 

SCA test) was statistically significant (N=15, R=0.73, p=0.002). None of the golfers showed video-graphic 

evidence of freezing, twitching or jerks of the upper arm or forearm during the task.  

Table 1 

Golfers ID Age  

Golfing 

experience 

(years) 

Symptom 

duration 

(years) 

Response during experiment for yips shots 

classification 

Anxiety tests 

TAIS 

score 

SCA  

test 

Subject 01 53 35 5 "Arm freezes, doesn‟t appear to move smoothly" 44 22 

Subject 02 48 30 4 
"Tensed, bit stressed, club movement feels 

slightly sticky" 
50 20 

Subject 03 54 36 10 
"Club feels like it rotates to the same side, like a 

twitch" 
42 19 

Subject 04 37 18 3 
"Stressed, arm feels cramped, gripped too tight, 

movement not smooth" 
45 27 

Subject 05 73 40 5 "Feeling of ball not being hit where I want it to" 34 18 

Subject 06 45 30 10 
"Movement not smooth, getting stressed when 

focused for too long" 
66 27 

Subject 07 84 45 25 
"Shots are too strong, too fast sometimes, grip 

and arm feels tight" 
52 25 

Subject 08 53 41 28 “Slightly cramped in arm during backswing” 49 14 

Subject 09 47 23 4 
“Arms feel cramped, tightened, stressed when 

focused for long.” 
37 20 

Subject 10 59 36 31 
“Shots feel shifted involuntary, arm feels 

cramped and tensed, shots too strong” 
27 11 

Subject 11 38 25 2 “Shots not smooth, downswing feels stuck” 51 22 

Subject 12 41 31 15 “Shots too strong, arms feels rigid and tensed” 56 24 

Subject 13 59 42 8 
“Arm appears to freeze, shots appear shifted, 

tension in arms during downswing” 
61 25 

Subject 14 48 24 18 
“Downswing not smooth, twitches during 

downswing in both hands” 
60 25 

Subject 15 54 48 28 
“Shots too strong, grip intentionally strong, 

forearm tightened” 
54 22 

 

Table 1 legend: TAIS score - Trait Anxiety Inventory in Sports score, SCA test - Sports Competition Anxiety test 
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Motion tracking results:  

For the putting task, shots were classified as Normal-shots (Ns) and Yips-shots (Ys) according to their 

subjective responses as described in Table 1. About 25% of the shots were Ys (10.0 ±3.99) out of 40 trials. 

Quantitatively all participants showed some degree of overlap in swing trajectories (Mean, SD curves) 

between Ns and Ys, suggesting that high precision shots requiring fine control do not deviate much from the 

mean (Fig.3). During the swing phase, SPM paired t-test showed specific time segments of t-curves which 

crossed the critical threshold value at p < 0.05 - in 9 out of 15 golfers as shown in Table 2. This time window 

of significant change in angular velocity of the putter club between Ns and Ys was characteristically 

observed in the downswing phase. However the downswing time in itself remained similar between Ns and 

Ys within the subjects [Ns = 315.26 ms ±54.5, Ys = 315.87 ms ±55.9, paired t-test - t(14) = -0.49, p = 0.631] 

(Supplementary Table-1).  

 

Fig. 3 
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Fig. 3 legend: Mean and SD curves for angular velocity of the putter club in 3 example subjects - Subject 01 (number 

of matched trials, N=8), Subject 02 (N=7) and Subject 04 (N=13). Blue trace = Normal shots, Red trace = Yips shots. 

Sections of backswing, downswing and follow-through are shown in Subject 01 in grey dotted line with the black 

dotted line representing time of ball impact. For normal hits and yips shots, the mean value of angular velocity curves 

from backswing to impact and follow-through were mostly similar throughout except for certain time segments during 

downswing (shown by horizontal solid black line).  This represents the time where the values for yips shot were higher 

than for normal hits crossing a critical threshold (t*) in 2-tailed paired SPM t-test. 

 

Synergy analysis results:  

Averaged sEMG between Ns and Ys failed to show any significant difference using mean and SD plots for 

each subject (Supplementary Fig.2) to evaluate for stereotyped burst patterns. Based on the changes observed 

in angular velocity, we pre-selected only the downswing time for muscle synergy analysis. Synergy 

constructions for short time periods have the advantage of revealing minor perturbations in the movement 

that affect stability(Wojtara et al., 2014). Muscle synergies calculated iteratively for the downswing phase 

was represented by 3 synergies for each arm with reconstruction scores of approx. 80% and above. 

Reconstruction scores are shown in Supplementary Table-2.  

The patterns of 3 spatial synergies (W1, W2 and W3) extracted from each arm showed broad similarities 

between Ns and Ys for the downswing task (Supplementary Fig. 3). For the left arm, W1 showed a 

synchronized burst with an extension component mainly involving the supinator, EDC and ECR. W2 had 

flexors active with strong activations in pronators, FDS and FCU. W3 showed a non-specific activation in all 

muscle groups. In contrast, the right arm synergies showed an opposite spatial structure. W1 was mostly 

observed having a flexor component with biceps, pronators, FDS and FCU showing strong activations. W2 

showed higher activations in Sup, FDS and ECR compared to other muscles. Finally W3 had both higher 

pronator and supinator activation. Subject-wise comparison of paired t-test showed no significant changes in 

W‟s between Ns and Ys.  

For evaluation of neural coefficients (C), SPM paired t-tests showed significant differences in 11 of the 15 

golfers (Table 2). The change in neural coefficients with respect to synergy weight is shown as an example in 

2 golfers in Fig. 4. Since the downswing phase is a fast movement action, we construe this change in C‟s to 

have affected the entire downswing time of interest (and not a specific time segment within the downswing 

phase).  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2020. ; https://doi.org/10.1101/2020.08.19.20178475doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.19.20178475
http://creativecommons.org/licenses/by/4.0/


12 
 

Fig.4 

 

Fig.4 legend: Example shows synergy decomposition for 2 golfers, Subject 01 (number of matched trials 

N=8) and Subject 02 (N=7). Three synergies for each arm were calculated. Mean muscle activation weights 

(W) are shown as W1, W2 and W3 in (shades of) blue for normal hits and in (shades of) red for yips shots. 

Similarly mean neural coefficients (C) are shown as C1, C2 and C3 for the 3 synergies respectively. Muscle 

groups shown are biceps (B), triceps (T), pronator (P), supinator (S), flexor digitorum superficialis (FDS), extensor 

digitorum communis (EDC), flexor carpi ulnaris (FCU) and extensor carpi radialis (ECR). While synergy weights were 

mostly similar subject-wise (paired t-test with Bonferroni correction), neural coefficients showed significant difference 

for Subject 01 between normal and yips shots (SPM 2-tailed paired t-test). No such changes were observed for Subject 

02.   

 

Compiling the findings on movement analysis, we observed that Subject 02, 03, 06, 07 and 15 did not show 

any overt differences between normal and yips shots on motion capture or on muscle synergy analysis.  The 

remaining golfers showed significant differences in either motion capture or muscle synergy analysis or 

frequently in both (Table 2).    
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Table 2 

Golfer ID 

Total 

yips 

trials 

Angular velocity    Muscle synergy 

(SPM paired t-test)  (Neural coefficients (C) - SPM paired t-test) 

t* 

value 
p value 

Affected 

time (pre-

impact) 

 
Affected 

arm 
dF 

Synergy 

number 
t* value p value 

Subject 01 8 6.75 0.033 170 ms  Left 1, 7 2 3.71 0.012 

Subject 02 7 N.S N.S N.S  N.S N.S N.S N.S N.S 

Subject 03 8 5.67 0.013 160 ms  N.S N.S N.S N.S N.S 

Subject 04 13 4.33 0.048 80 ms  Right 1, 12 1 3.34 0.009 

Subject 05 8 6.27 0.046 265 ms  Left 1, 7 2 4.18 0.046 

Subject 06 8 N.S N.S N.S  Left 1, 7 2 3.90 0.041 

Subject 07 7 N.S N.S N.S  N.S N.S N.S N.S N.S 

Subject 08 10 5.13 0.024 175 ms  Left 1, 9 2 3.38 0.019 

Subject 09 9 6.71 0.044 10 ms  Left 1, 7 2 3.81 0.036 

Subject 10 22 N.S N.S N.S  Right 1, 17 2 2.94 0.034 

Subject 11 8 5.84 0.024 210 ms  Right 1, 7 1 4.02 0.000 

Subject 12 8 N.S N.S N.S  Right 1, 7 1 3.79 0.000 

Subject 13 9 5.74 0.022 15 ms  Right 1, 8 1 3.77 0.001 

Subject 14 11 4.89 0.010 190 ms  Left 1, 10 2 3.37 0.026 

Subject 15 15 N.S N.S N.S  N.S N.S N.S N.S N.S 

 

Table 2 legend: SPM – 1-dimension Statistical Parametric Mapping, dF = Degrees of freedom, t* value – threshold set 

for alpha = 0.05, N.S – Not significant, ms = milliseconds. 
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Discussion 

Our study is the first comprehensive report on mild yips golfers where sensitive movement-related 

measurements were utilized to reveal features of a movement disorder. Specifically we found that in mild 

yips (i) golfers experience reasonable amounts of stress that may contribute to a state of underperformance 

overlapping with their movement instabilities; (ii) for putting shots, whereas motion-tracking readily captures 

fine motor changes in movement trajectories, features of co-contraction imbalance on sEMG recordings may 

not be particularly evident; (iii) finally, the downswing is particularly affected, and the ensuing perturbations 

in muscle activity share dystonic features that are consistently identified as abnormal muscle synergy 

patterns.. 

Stress and competitive sports 

Models that explain sports related anxiety conceptualize that the cognitive self-evaluation and stress response 

if left unchecked, result in increased muscle tension, loss of focus and a range of other physiological 

behavioral changes(Ford et al., 2017). As a consequence, depending on the individual‟s own threshold of 

sense of anxiety, the performance-anxiety loop can either streamline their quality of shots or can potentially 

debilitate the task(Apter, 1984). The golfers in our study were not of anxious type as revealed by TAIS 

scores but experienced a certain degree of competition stress as seen from SCA test.  Though we believe this 

to be normal stress responses during gameplay, the subjective feedbacks given during the experiment suggest 

otherwise (Table-1). Qualitatively, there appeared to be less disagreement among our golfers that anxiety was 

perhaps not the only factor contributing to their performance deficit.  Prior studies have also reported similar 

observations that higher muscle activations and grip force can impact stroke play kinematics irrespective of 

levels of situation induced anxiety(Charles H. Adler et al., 2011; Smith et al., 2000; Stinear et al., 2006).  

Downswing putting accuracy in yips  

Professional golfers frequently spend considerable time in perfecting the putting stroke(Alexander & Kern, 

2005). To perform a smooth shot, expert golfers recommend that the start of downswing phase of the club to 

be dictated by gravity, then eventually adjusting the hand torque at ball impact. Of significance is the angular 

velocity of the putter club-head and the hand torque model which advocates minimizing the hand torque from 

the start of downswing to allow a less variable velocity at ball impact, making the putting shots more 

consistent and accurate(Hume et al., 2005). As an outcome measure of motion patterns, we chose the putter-

club angular velocity during the entire swing and found that it was largely inconsistent during the downswing 

phase for yips-shots. This result reflects the temporal difference between normal and yips-shots and hence 

indicates the change in the uniformity or regularity of the shots. We therefore interpret that the 
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inconsistencies seen for yips-shots is a miscommunication in the co-contracting forearm muscles during such 

„fine adjustments‟ that may have prevented an ideal trajectory anticipated by the golfers. 

Utility of muscle synergies  

Our initial screening of sEMG differences in multiple muscle pairs between normal and yips-shots was 

mostly inconclusive (Supplementary Fig.2). Adler et. al. reported that abnormal co-contraction patterns were 

observed in wrist flexors and extensors in the downswing phase in yips affected golfers(C. H. Adler et al., 

2005). Co-contractions are essential to maintain the joint position balance and in high-precision shots like 

putting, any discrepancy that results in an erratic trajectory may not necessarily imply muscle 

dysfunction(Gribble et al., 2003). Therefore in low-force tasks like putting, due to the trial by trial sEMG 

variability, we abstained from over-reporting the effect of co-contractions as manifestations of yips in our 

participants. 

This leads us to the next point in using synergy analysis to identify features of focal dystonia. In maintaining 

biomechanically constrained joint balance, we used muscle synergies to identify patterns of muscle activity 

that achieve multi-joint coordination. We observed that the muscles of the elbow-wrist joint required 3 

synergies to provide the necessary balance, direction and speed to perform the putting stroke. The apparently 

high number of synergies for a putting stroke documented here is a response for a low force isometric task 

which necessitates precise movement control(Santello et al., 2013). 

The spatial synergy weights (W) represent the muscle activations during a specific time of interest, here, the 

entire course of the downswing. In maintaining downswing balance, we observed that the variability in W‟s 

was generally seen to be constrained to similar spatial patterns for normal and yips-shots. This appears to be 

an expected outcome since expert golfers minimize movement at the wrists by locking them in position, 

control positional parameters by spatially scaling downswing times and orient club head to avoid change in 

trajectories(Coello et al., 2000). Furthermore, the extracted W‟s illustrate functional groupings and due to 

their anatomical proximity or effect of crosstalk, we speculate that this may have contributed to the similarity 

in spatial synergies.  

Neural coefficients (C) are believed to represent neural commands from specific synergies that influences the 

W‟s modulating it over time(Safavynia & Ting, 2012). The observed differences in C‟s in a subset of golfers 

signify an altered phasic muscle synergy activity in yips-shots than in normal conditions. These were 

uniquely defined for each golfer suggesting an individual-specific relationship in muscle activations from 

higher centers. Muscle activations which occur in a multi-dimension space, require a coordinative input in 

the form of neural information to exclude and select appropriate motor patterns to harmonize movement. 
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This harmony is achieved by spinal pre-motor neurons which dynamically adjust activations from inhibitory 

and excitatory pre-motor neurons in conjunction with higher centers like sensorimotor cortex, basal ganglia 

and cerebellum(Giszter & Hart, 2013; Overduin et al., 2015; Takei et al., 2017). With long years of practice 

and repeated use, these pre-motor neurons evolve to reduce variability and strengthen access to a specific 

synergy necessary for motor control(Bizzi & Cheung, 2013). Yips-shots are an extreme example of this 

creation of „specific synergy‟ due to a highly sensitive pool of pre-motor neurons eventually leading to 

abnormal sensory integration(Alnajjar et al., 2015), impaired cortico-motor information processing or 

maladaptive plasticity(Santello & Lang, 2014). In actively adjusting putting trajectory, these golfers were 

unable to maintain their co-contraction stability due to an abnormal synergy representation. The 

manifestations seen here of yips-shots are therefore an amplification of altered dynamic phasic activity that 

dystonia are a part of.   

Limitations 

There are some limitations to this study. Each golfer plays with a certain degree of uniqueness and this subtle 

but diverse behavior in motion capture and sEMG led us to focus on a case-by-case basis. Testing in 

laboratory environments never brings out the same level of anxiety experienced by players as „sinking the 

putt‟ in the green. Our goal was not to create a high-stress environment for the golfer but rather identify 

features of muscle and kinematic imbalance under any possible yips-like condition. We were careful to 

interpret our findings on muscle synergies which were based on changes in unidirectional downswing 

movement. Detailed modeling using joint kinematics along with truncal muscle synergy estimation for 

putting shots could be beneficial to address in the future. Furthermore, it would be advantageous if a 

standardized anxiety test was specifically tailored to yips since it the first-line assessment for any yips 

affected athlete. 

In our formulation, we focused on identifying features of dystonia via movement analysis though other 

crucial variables may also be at play. Using demographic variables such as golfing experience, duration of 

yips symptoms, practice rounds per year, along with results from anxiety scores, motion-capture and synergy 

analysis, we categorized the participant groups into 2 types, using an unsupervised cluster analysis algorithm 

(Fig. 5 and Supplementary Table-3). The basis for this classification system comes from a frequently 

documented „continuum‟ model suggested by Smith et.al. with Type-1 (dystonia) and Type-2 (choking) 

yips(Smith et al., 2003). Non-movement associated variables could help classify the golfers better, although 

our focus rested mainly on motion-capture and muscle synergies to identify the problem. Future studies will 

need a systematic evaluation of these effects.  
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Fig. 5 

 

Fig. 5 legend: (A) Classification of yips golfers shown using two-dimensional scatterplot. The variable k for number of 

clusters was set to k = 2 to cluster the input data into Type-1 dystonia and Type-2 choking, suggested by Smith et. al. 

(Smith et al., 2003). The best total sum of distance was 5 for these two clusters. 

 

Conclusions 

Diagnosis of yips is fraught with difficulties mainly due to limited research, scant literature and incongruity 

within the target populations. Still, we were able to highlight and unravel abnormal kinematics and synergy 

patterns that influence motor behavior among golfers irrespective of their subjective feeling of yips. Future 

work will need to address the link between spinal and central causes of yips, their mechanisms and how 

interventions could rehabilitate these golfers using behavioral therapy, swing dynamics or „normalize‟ the 

faulty synergies leading to an improvement in their performance. 
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