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Abstract

The initial phase dynamics of an epidemic without containment measures is commonly well modeled

using exponential growth models. However, in the presence of containment measures, the exponential

model becomes less appropriate. Under the implementation of an isolation measure for detected infectives,

we propose to model epidemic dynamics by fitting a flexible growth model curve to reported positive 5

cases and to infer the overall epidemic dynamics by introducing information on the detection/testing

effort and recovery and death rates. The resulting modeling approach is close to the SIQR (Susceptible-

Infectious-Quarantined-Recovered) model framework. We focused on predicting the peaks (time and size)

in positive cases, actives cases and new infections. We applied the approach to data from the COVID-19

outbreak in Italy. Fits on limited data before the observed peaks illustrate the ability of the flexible 10

growth model to approach the estimates from the whole data.

Key words: Epidemic dynamic; Turner’s generic growth model; Positive cases; Active cases; Lost cases;

COVID-19

1 Introduction

The current COVID-19 pandemic caused by the new coronavirus strain SARS-nCOV2 has emerged 15

from Wuhan, China (Giordano et al., 2020, Velavan and Meyer, 2020). The COVID-19 outbreaks

totalize 21 026 758 cases and 755 786 deaths across the world on August 15, 2020 (WHO, 2020).
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The worldwide social as well as economic ravages by COVID-19 has immediately motivated the use

of mathmatical models for understanding the course of the epidemic and planning effective control

strategies. These include for instance the SIR (Susceptible, Infectious, Recovered), SEIR (Susceptible, 20

Exposed, Infectious, Recovered) and its variants, SIDR (Susceptible- Infectious-Recovered-Dead) and

SIQR (Susceptible-Infectious-Quarantined-Recovered) models (Anastassopoulou et al., 2020, Casella,

2020, Kucharski et al., 2020, Pedersen and Meneghini, 2020). These modeling approaches use mechanistic

models which incorporate key physical laws or mechanisms involved in the dynamics of the population at

risk and the pathogen (Chowell, 2017). A second class of approaches uses empirical phenomenological 25

models which does not require specific knowledge on the physical laws or mechanisms that give rise to

the observed epidemic data (Chowell et al., 2016), and has been considered for instance by Agosto and

Giudici (2020) for understanding both short and long term dynamics of COVID-19.

When facing an epidemic outbreak, public health officials are mostly interested in data driven, mathe-

matically motivated, practical and computationally efficient approaches that can for instance i) generate 30

estimates of key transmission parameters, ii) gain insight to the contribution of different transmission

pathways, iii) assess the impact of control interventions (e.g. social distancing, test + isolation, vaccina-

tion campaigns) and iv) optimize the impact of control strategies, and v) generate short and long-term

forecasts (Chowell, 2017). In regard to the current COVID-19 outbreak (2020), politics and public health

officials are mostly worried about the ability of the disease to induce saturation of the health system, 35

reducing the survival of patients even consulting for reasons different from the epidemic itself. High

interest is thus currently given to accurate forecasting of the epidemic peak time and size, epidemic

size and duration, as well as their sensitivity to control interventions in order to optimize the impact of

control strategies.

An exponential-growth model is usually assumed to characterize the early phase of epidemics. But this 40

assumption can lead to failure to appropriately capture the profile of epidemic growth and give rise to

non realistic epidemic forecasts (Chowell and Viboud, 2016, Spencer and Golinski, 2020). In an ultimate

view to guide control interventions aiming to limit the spread of epidemics, with focus on the COVID-19

pandemic, this work considers a flexible growth curve fitting approach for understanding the dynamics

of epidemics. We use the generic growth model of Turner et al. (1976) to model the course of reported 45

positive cases and a binomial regression to model removals (recoveries and deaths) and then infer the

overall dynamics of the epidemic, in terms of observables (reported cases, active/quarantined cases) and

unobservables (new infections, lost cases), and predict interest quantities such as the peak (time and size)

in reported cases, active cases and new infections. The performance of the approach is assessed through
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an application to daily case reporting data from Italy which has virtually completed a whole COVID-19 50

outbreak wave and thus offers the possibility to compare predicted outputs to real events.

2 Methods

We consider a growth curve approach for modeling the course of an epidemic along time. We follow

Chowell et al. (2020), Chowell (2017), Spencer and Golinski (2020) who among others used growth models

for forecasting epidemic dynamics. 55

2.1 Structural model for epidemic incidence

Let Ct denote the size of the detected infected population at time t, i.e. the cumulative number of

infected, identified and isolated individuals. We assume for convenience that Ct is continuous and denote

Ċt its first derivative with respect to t. Also let It be the true size of infectives at t, related to Ct

through 60

Ċt = δtIt (1)

where δt ∈ (0, 1] is the detection rate which is closely related to the testing effort (number of tests,

tracing of contact persons of identified cases and targeting exposed people) and is assumed at least twice

differentiable with respect to t. We ressort to the generic growth model of Turner et al. (1976) for the

identified positive cases:

Ct = K(1 + ut)
−1/ν (2)

with ut = [1 + νωρ(t− τ)]
−1/ρ

. In (2), K > 0 is the ultimate epidemic size (detected), ω > 0 is the 65

“intrinsic” growth constant, ν and ρ are powers (ν > 0 and −1 < ρ < ν−1) characterizing respectively

the rates of change with respect to the initial size C0 = δ0I0 (number of cases detected at time t = 0)

and the ultimate size K, and τ is a constant of integration, determined by the initial conditions of the

epidemic and implicitly the detection rate δ0 through C0 = K
[
1 + (1− νωρτ)

−1/ρ
]−1/ν

for ρ 6= 0 and

C0 = K (1 + eνωτ )
−1/ν

for ρ = 0. The growth model (2) is quite flexible to handle various shapes of 70

epidemic dynamics. Indeed, if K →∞ and νρ→ 0, (2) specializes to the exponential growth model

Ct = eω(t−τ) (3)

where ω is the exponential growth rate. Apart from (3), other special or limiting cases of (2) include the

hyper-Gompertz (ν → 0 while ων1+ρ is constant) and the Gompertz (ν → 0, ρ→ 0 while ων is constant),

3
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the Bertalanffy-Richards (ρ→ 0), the hyper-logistic (ν = 1) and the logistic (ν = 1 and ρ→ 0) growth

models (Turner et al., 1976). From (2), the observed epidemic incidence Ċt is given by 75

Ċt = Kωu1+ρt (1 + ut)
− ν+1

ν . (4)

In order to ensure the restriction −1 < ρ < ν−1, we set ρ = ρ0
ν+1
ν − 1 with ρ0 ∈ (0, 1) free of ν.

2.2 Active cases and outcomes

The number At of detected and active cases along an epidemic outbreak is of high interest for public

health officials. Indeed, At must be kept under the carrying capacity of the health system to avoid

overload and disrupture. The derivative Ȧt of the detected and active cases satisfies 80

Ȧt = Ċt −Rt (5)

where Rt = αtAt denotes the number of removed and permanently immune (mortality and recovery) at

time t, and αt is the unit time removal probability, i.e. the odds for having an outcome (recovery or death),

averaged over the active cases. Equation (5) fits in the SIQR (Susceptible, Infectious, Quarantined,

Recovered) model framework (Hethcote et al., 2002) with the detected actives cases referred to as

“quarantined” and the strong assumption that αt is constant along the epidemic outbreak (see the third 85

equation in system (6) in Hethcote et al. (2002)). The removal probability can more generally be given

the logistic form αt = eηt

1+eηt with ηt = X>t β + κt where Xt = (Xt1, Xt2, · · · , Xtq)
> is a vector of q

covariates (known constants) and β is the q vector of associated effects, and κ determines the change in

the log-odds ratio for having an outcome per unit time. These changes in αt can be due to an improve in

the health care system during the epidemic outbreak (increase in recovery ratio) or a deterioration of the 90

health care system for infected individuals (increase in mortality ratio due to the outbreak). The general

solution of the differential equation (5) turns to have the form

At =



[
A0 +

∫ t
0
Ċse

αssds
]

e−αtt if κ = 0

[
A0

(
1 + eX

>
t β
)1/κ

+
∫ t
0
Ċs (1 + eηs)

1/κ
ds

]
(1 + eηt)

−1/κ
if κ 6= 0

(6)

where A0 is the number of active cases at time t = 0. Indeed, when κ = 0, taking the first derivative of

(6) yields Ȧt = Ċte
αtte−αtt +

[
A0 +

∫ t
0
Ċse

αssds
]

(−αt) e−αtt = Ċt − αtAt which is the equation (5). For

t = 0, the integral in (6) vanishes, resulting as expected in At = A0 since e−αtt = 1. When κ 6= 0, the 95

first derivative of (6) is Ȧt = Ċt (1 + eηt)
1/κ

(1 + eηt)
−1/κ

+At

(
1
−κ

)
(κeηt) (1 + eηt)

−1
= Ċt − eηt

1+eηtAt

which reduces to Ȧt = Ċt − αtAt in accordance with (5). Here, for t = 0, eηt = eX
>
t β so that At = A0.
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There are no general closed form solutions for the integrals in (6), unless Ċt and αt are purposely chosen

as functions of time to simplify the integral. At can however be obtained in practice from (6) using a

numerical integration routine such as the function integrate in R freeware (R Core Team, 2019) or the 100

function integral of Matlab (MATLAB, 2016). To nevertheless circumvent this issue during estimation

under the generic growth model (2), we discretized the active cases At by assuming a binomial removal

process Rt conditional on the detected unit time new cases Yt as

Rt|At−1, Yt ∼ BIN(At−1 + Yt, αt) (7)

At = At−1 + Yt −Rt (8)

where BIN(n, α) denotes a binomial distribution with n trials and success probability α and Yt is a non

negative process with expectation λt = Ċt. Clearly, the bivariate process {At, Rt} defined by (8-7) is not 105

stationary. However, since Yt ≥ 0 and Ċt → 0 as t→∞, we have Yt → 0 in distribution as t→∞, and

if the removal probability αt does not approach zero as t→∞, then At → 0 as t→∞.

2.3 Peak of detected cases

The epidemic peak is an important event in the disease dynamic and can be estimated for a better

management of the epidemic. For an epidemic described by the exponential growth model (3) (K →∞ or 110

νρ→ 0) does not peak. Otherwise, the peak in the detected number of infected individuals corresponds

to the maximum of the incidence rate Ċt. This maximum is then attained when C̈t = ∂Ċt
∂t = 0. We have

from (4)

C̈t = νωuρt

[
ν + 1

ν

ut
1 + ut

− (1 + ρ)

]
Ċt. (9)

Solving C̈t = 0 for t using (9) yields the peak time tp = τ +
{[

1−νρ
ν(1+ρ)

]ρ
− 1
}
/(νωρ) which reads,

tp = τ +
1

ω [ρ0 − (1− ρ0)ν]

[(
ρ0

1− ρ0

)1−ρ0(ν+1)/ν

− 1

]
(10)

on replacing ρ = ρ0
ν+1
ν − 1. Inserting tp in (1) and denoting up = ν 1+ρ

1−ρν gives the peak 115

Ċp = Kωu1+ρp

(
ν + 1

1− ρν

)− ν+1
ν

. (11)

At the peak in detected cases, the cumulative number of detected cases is Cp = K(1 + up)
−1/ν .
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2.4 Overall epidemic dynamics

An important interest in modeling the epidemic incidence is the derivation of quantities related to the

overall dynamics of the epidemic, in both detected and undetected cases.

2.4.1 Total cases: detected and losts 120

Let us denote St the cumulative number of cases from the epidemic outbreak to t, and let Ṡt be the first

derivative of St. We also introduce Λt, the cumulative number of lost cases (with first derivative Λ̇t), i.e.

people who were infected, undetected, and removed from infectives (mortality and recovery).

The size of the lost cases is determined by the unit time removal rate πt ∈ (0, 1) from undetected infectives

(πt is an average over all infectives, i.e. irrespective of the time since infection onset). The lost rate 125

πt which is assumed at least twice differentiable with respect to t, depends on various factors like the

disease related mortality, the average infection duration, the natural proportion of asymptomatics within

infectives, and the existence and the use of medicines that may reduce symptoms (induced asymptomatics).

It is worthwhile noticing that πt can be estimated from the removal rate αt in the detected cases (see

section 2.2), taking into account various factors that may induce difference between the two rates. For 130

instance, since the undetected cases include asymptomatics, desease related mortality may be lower and

recovery rate higher in undetected as compared to detected cases. However, efficiency of the health

care system in treating identified and isolated cases can reduce mortality thereby reducing αt, but also

improve recovery thereby increasing αt.

With the above notations, the lost cases count Λt satisfies the differential equation, 135

Λ̇t = πt(1− δt)It (12)

whereas the cumulative number of cases St is given on setting υt = (1− πt)(1− δt) by

St = Ct + Λt + υtIt. (13)

The factor υt represents at time t the proportion of infectives who will potentially continue to spread

the epidemic after adequate contacts (i.e. contacts sufficient for transmission) with susceptibles. In other

words, the number of undetected currently infectives is (1− πt)(δ−1t − 1)Ċt. From (1), the infectives It

and its first derivative with respect to time İt are given for t ≥ 0 by 140

It = δ−1t Ċt (14)

İt = δ−1t

[
C̈t − δ̇tδ−1t Ċt

]
(15)

where δ̇t is the first derivative of the detection rate δt with respect to t. Straightforward algebraic
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operations then give the number of new cases and the cumulative number of cases as

Ṡt =
[
πtδ
−1
t + (1− πt)

(
1−

(
δ−1t − 1

)
δ−1t δ̇t

)
+ υ̇tδ

−1
t

]
Ċt + (1− πt)

(
δ−1t − 1

)
C̈t (16)

St = Ct + Λt + (1− πt)
(
δ−1t − 1

)
Ċt (17)

where υ̇t = − (1− πt) δ̇t − (1− δt) π̇t with π̇t the first derivative of the lost rate πt, and the cumulative

losts Λt is given for t ≥ 0 by

Λt = S0 +

∫ t

0

πs(δ
−1
s − 1)Ċsds (18)

with S0 the cumulative number of all cases until the first detection date t = 0. The total size of the 145

epidemic is S∞ = C∞ + Λ∞ since Ċt → 0 as t→∞. Under the Turner’s growth model, S∞ = K + Λ∞.

Let us assume a constant detection rate δt = δ closely related to detection effort but also to the average

duration from infection to recovery or death of non-isolated cases. Assuming in addition a constant lost

rate (πt = π), we have δ̇t = π̇t = υ̇t = 0, and the new cases Ṡt and its accumulation St as well as the lost

cases Λt simplify to 150

Ṡt =
[
1 + π

(
δ−1 − 1

)]
Ċt + (1− π)

(
δ−1 − 1

)
C̈t (19)

St = S0 +
[
1 + π

(
δ−1 − 1

)]
Ct + (1− π)

(
δ−1 − 1

)
Ċt (20)

Λt = S0 + π(δ−1 − 1)Ct. (21)

The total epidemic size is here S∞ = S0 +
[
1 + π

(
δ−1 − 1

)]
K.

2.4.2 Epidemic peak

At the time tp of the peak of reported cases (C̈t = 0) under constant detection and lost rates, the new

infectives is Ṡp =
[
1 + π

(
δ−1 − 1

)]
Ċp with Ċp given in (11). This however corresponds to the peak in

the overall new cases Ṡt only under the unrealistic assumption δ = 1. The peak of new infections occurs 155

when the second derivative S̈t of St with respect to t vanishes (S̈t = 0). We have from (16)

S̈t =
[
πtδ
−1
t + (1− πt)

(
1−

(
δ−1t − 1

)
δ−1t δ̇t

)
+ υ̇tδ

−1
t

]
C̈t + (1− πt)

(
δ−1t − 1

) ...
C t + Ψt (22)

where
...
C t (the third derivative of Ct with respect to t) and Ψt are given by

...
C t = ν2ω2u2ρt

[
(ν + 1)(2ν + νρ+ 1)

ν2

(
ut

1 + ut

)2

− 3(ν + 1)(ρ+ 1)

ν

ut
1 + ut

+ (1 + ρ)(2ρ+ 1)

]
Ċt (23)

Ψt =
{
π̇t

[
δ−1t

(
1 +

(
δ−1t − 1

)
δ̇t

)
− 1
]

+ (1− πt) δ−1t
[
ϋt −

(
δ−1t − 1

)
δ̈t

]
+ δ−2t δ̇t

[
(1− πt)

[
π̇t(1− δt) + δ̇t(2δ

−1
t − πt)

]
− πt

]}
Ċt−

[
π̇t
(
δ−1t − 1

)
+ (1− πt) δ−2t δ̇t

]
C̈t (24)

7
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with π̈t and δ̈t the second derivatives of respectively πt and δt with respect to t. The peak time and

value depend on the particular forms of δt and πt as functions of time. We here restrict attention to the

simple situation with constant positive detection and lost rates (δt = δ with δ ∈ (0, 1) and πt = π with 160

π ∈ (0, 1)) where δ̇t = π̇t = Ψt = 0 and (22) reduces to

S̈t =
[
1 + π

(
δ−1 − 1

)]
C̈t + (1− π)

(
δ−1 − 1

) ...
C t. (25)

It appears that the peak of new infections occurs before the time tp of the peak in detected cases. Indeed,

at t = tp, we have C̈t = 0, (1− π)
(
δ−1 − 1

)
> 0 and

...
C t < 0 so that S̈t < 0, i.e. Ṡt is already in its

descending phase. The expression (25) indicates that at the time tP of the peak of new infections, C̈t is

equal to C̈P = −ζ
...
CP where ζ = (1−π)(1−δ)

π+δ(1−π) and
...
CP is given by (23) with t = tP . The lower ζ, the lower 165

|C̈P |, and the lower the difference tp − tP (delay of the observed peak). Differentiating ζ with respect to

δ gives ∂ζ
∂δ = − 1−π

[π+δ(1−π)]2 < 0, hence the higher δ, the lower the delay between the observed peak time

and the time of the peak in new infections. Using (9) and (23), and setting zt = ut
1+ut

, S̈t becomes

S̈t = νωuρt δ
−1
{
νω (1− π) (1− δ)

1 + νωρ(t− τ)

[
(ν + 1)(2ν + νρ+ 1)

ν2
z2t −

3(ν + 1)(ρ+ 1)

ν
zt + (1 + ρ)(2ρ+ 1)

]
+ [δ + π (1− δ)]

[
ν + 1

ν
zt − (1 + ρ)

]}
Ċt (26)

which does not have a closed form root. The root tP can however be obtained using root finding

numerical routines such as the R function uniroot or the Matlab function fzero. Afterwards, the peak Ṡp 170

size (the maximum number of new infections) is obtained using (19).

2.5 Statistical models and inference

Let us consider a record of new confirmed infected cases Y1, Y2, · · · , Yn, active cases A0, A1, · · · , An−1,

removed cases R1, R2, · · · , Rn (available from (8) as Rt = Yt −At +At−1) and the associated vectors of

covariates X1,X2, · · · ,Xn at n time points. The parameters K, ω, ν, ρ0, τ , and κ can be estimated using 175

maximum likelihood (ML) by assigning to each Yt an appropriate statistical distribution with expectation

λt = Ċt and a dispersion parameter σ > 0, and probability density function (pdf) or probability mass

function (pmf) f(Yt|θ) where θ = (K,ω, ν, ρ0, τ, κ,β
>, σ)>. We subsequently consider inference under

log-normal and negative binomial distributions.

2.5.1 Log-normal model 180

Epidemic incidence case data are generally fitted through non linear least squares applied at logarithmic

scale (Chowell and Viboud, 2016, Chowell et al., 2007, Viboud et al., 2016). To deal with zero incidence
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cases, the logarithmic transform is usually applied on the shifted cases Yt + 1. Mimicking this procedure

in a likelihood inference framework, we consider a log-normal distribution assumption for the shifted

incidence cases, i.e. Yt + 1 ∼ LN(λt + 1, σ). The pdf of Yt, adapted from Limpert et al. (2001), reads 185

f(Yt|θ) =
1

σ(Yt + 1)
√

2π
exp

{
−1

2

(
log(Yt + 1)− log(λt + 1)

σ
+
σ

2

)2
}

(27)

so that Yt has expectation E[Yt] = λt and variance V ar[Yt] = (λt + 1)
2
(

eσ
2 − 1

)
.

2.5.2 Negative binomial model

Since incidence cases are counts, Yt can be assumed to follow the negative binomial distribution, i.e.

Yt ∼ NB(λt, σ) with pmf

f(Yt|θ) =
Γ(Yt + 1/σ)

Γ(Yt + 1)Γ(1/σ)

(
σλt

σλt + 1

)1/σ (
1

σλt + 1

)Yt
. (28)

The incidence case Yt then has expectation E[Yt] = λt and variance V ar[Yt] = λt(1 + σλt). 190

2.5.3 Likelihood inference

Based on the information {Yt, Rt} for t = 1, 2, · · · , n, the conditional log-likelihood of the parameter θ

given A0 is

`(θ) =

n∑
t=1

[log f(Yt|θ) + log fB(Rt|θ)] (29)

where fB(Rt|θ) =
(
At−1+Nt

Rt

)
αRtt (1−αt)At−1+Nt−Rt is the binomial probability mass function for Rt. The

function `(·) can be maximized to obtain the maximum likelihood estimate θ̂ of θ using an optimization 195

routine such as the function optim in R or the function fminsearch of Matlab. Let H(θ) the hessian

matrix of `(θ) and define the covariance Σ (θ) = − [H (θ)]
−1

. The large sample distribution (i.e. for

n→∞) of the maximum likelihood estimator is multivariate normal with mean θ̂ and covariance matrix

Σ̂ = Σ
(
θ̂
)

.

2.6 Application to reported COVID-19 new cases in Italy 200

2.6.1 The data

In order to test the reliability of the Turner’s growth model in predicting the dynamics of an epidemic,

we use data from one of the countries which has completed a whole COVID-19 outbreak wave. The daily

case reporting data in Italy has been obtained from https://github.com/CSSEGISandData/COVID-19/

tree/master/csse_covid_19_data/csse_covid_19_time_series. We use only the confirmed data 205
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(2020-02-20 to 2020-07-11) available on 2020-07-28, discarding the latest data subject to possible reporting

delay, as indicated by the Istituto Superiore di Sanità (ISS) at https://www.epicentro.iss.it/en/

coronavirus/sars-cov-2-dashboard.

2.6.2 Data analysis

All analyses were performed in R (R Core Team, 2019). We have fitted the Turner’s growth model curve 210

to the whole italian data. Both the log-normal and the negative binomial distributions were used and the

fit with the lowest root mean square error (RMSE) computed for the daily new positive cases was selected

as the best. We next derived peak statistics (time and size) for daily new reported cases and actives

cases. We also inferred the daily new infections from assuming constant detection and lost rates and

estimated its peak (time and size). The detection (δ = 0.033/day) and the lost rates (π = 0.1/day) for 215

Italy were obtained from Pedersen and Meneghini (2020). These rates follows from assuming an average

time of duration from infection to recovery or death of non-isolated cases of ten days (hence π = 0.1/day)

and that during this detection window, 1/3 of infectives are tested positives (hence δ = 0.033/day).

In order to assess the ability of the model to predict the peak of the new positive cases in countries which

has not yet reached the peak, we retrospectively fitted the model to the italian data before the observed 220

peak (day 29 after the first case notification), using data of the first two weeks, and then data of the

first three weeks. For these analyses with limited data, we fitted the full Turner’s growth model to the

positives cases, but also its special cases, namely the hyper-Gompertz (ν → 0 while ων1+ρ is constant),

the Gompertz (ν → 0, ρ→ 0 while ων is constant), the Bertalanffy-Richards (ρ→ 0), the hyper-logistic

(ν = 1) and the logistic (ν = 1 and ρ→ 0) models using the log-normal distribution for the daily counts. 225

We then computed the Akaike’s Information Criterion (AIC) defined as AIC = −2̂̀+ 2Np with ̂̀ the

maximized log-likelihood and Np the number of parameters in a fitted model. We finally retained and

presented the best fit (lowest AIC value).

3 Results

3.1 Modeling the whole italian data 230

Table 1 shows parameter estimates using the whole italian COVID-19 daily case reporting data from

2020-02-20 to 2020-07-11, with standard errors and 95% confidence intervals. It appears that the log-

normal distribution based fit recorded the lowest RMSE and is thus retained for subsequent analyses.

The confidence bounds for the parameter ρ (ρ̂ = 0.32 with CI(ρ) = [0.29, 0.35]) indicate that neither
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the logistic growth model (ρ → 0 and ν = 1) nor the Bertalanffy-Richards growth model (ρ → 0) are 235

appropriate for this dataset. It can be observed that ν is not significantly different from 1 (ν̂ = 0.85 with

CI(ν) = [0.70, 1.05]), hence the hyper-logistic model (ν = 1) is compatible with the data. The fitted

equation is for t ≥ 0

Ĉt =
253124.1{

1 + [1 + 0.0242 (t− 39.3877)]
−3.1659

}1.1691 (30)

with a coefficient of determination of R2 = 99.97%. The curves fitted to the new positive cases and

the cumulative number of positive cases are shown on figure 1 (A-B). It can be observed on figure 240

1 (A) that the peak of new positive cases occurred 29 days after the first case notification whereas

the maximum likelihood estimate of the theoretical peak time is five days later as shown in table 2

(t̂p = 34.10, CI(tp) = [31.94, 36.41] days). The theoretical peak size is on average 5298 new positive cases

( ̂̇Cp = 5298.96, CI(Ċp) = [4609.72, 6091.25] new cases) against a maximum of 6248 observed new positive

cases. 245

Table 1. Estimate, standard error (SE) and 95% confidence interval (CI95%) of Turner’s growth model
parameters fitted to the italian COVID-19 daily case reporting data from 2020-02-20 to 2020-07-11,
using the log-normal distribution (RMSE = 514.24, R2 = 99.97%) and the negative binomial distribution
(RMSE = 530.93, R2 = 99.93%)

Model Log-normal fit Negative binomial fit

parameter Estimate SE CI95% Estimate SE CI95%

K 253124.1 12623.0 [242620.4, 243285.2] 242952.6 169.6 [242951.2, 242954.0]
ω 0.0896 0.0113 [0.0700, 0.1146] 0.0902 0.0098 [0.0729, 0.1117]
ν 0.8553 0.0906 [0.6951, 1.0526] 0.8300 0.0771 [0.6918, 0.9959]
ρ 0.3159 0.0142 [0.2892, 0.3451] 0.3231 0.0124 [0.2996, 0.3484]
τ 39.3877 2.5181 [34.7491, 44.6456] 39.3457 2.2393 [35.1927, 43.9888]
β -4.0229 0.0060 [-4.0348, -4.0111] -4.0229 0.0060 [-4.0348, -4.0111]
κ 0.0076 0.0001 [0.0075, 0.0078] 0.0076 0.0001 [0.0075, 0.0078]
σ 0.4332 0.0257 [0.3857, 0.4867] 0.1466 0.0175 [0.1160, 0.1853]

Notes: β and κ define the daily removal rate from detected cases as αt = eβ+κt

1+eβ+κt
; σ is the log-normal/negative

binomial distribution scale parameter (see pdf (27) and pmf (28)).

From the estimate of the parameter β given in table 1 (β̂ = −4.02 with CI(β) = [−4.03,−4.01]), it

comes that the daily removal rate (recoveries and deaths) averaged α̂0 = 1.8% in the very early phase of

the epidemic (t ≈ 0 day). Then, from the estimate of κ (κ̂ = 0.0076 with CI(κ) = [0.0075, 0.0076]), it

appears that the removal rate increased with time, i.e. the probability for an active case to recover or die

during a one day period increased on average by 5.5% over a week. Figure 1 (C) displays the actives 250

cases and the corresponding fitted curve using the removal probability along with the fitted equation

(30). The actives cases is predicted to peak on day 56 (t̂a = 55.71 days, CI(ta) = [53.87, 57.62] days) to
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Fig 1. Log-normal fit of Turne’s generic growth curve to the italian COVID-19 daily case reporting data
from 2020-02-20 to 2020-07-11 (A), cumul of positive cases (B), active (quarantined) cases (C) and
estimated (average) daily new infections based on a detection rate of δ = 0.033/day and a lost rate
(recovery or death) of non detected cases of π = 0.1/day (D)

111070 actives (Âa = 111069.88 cases, CI(Aa) = [98580.39, 125141.70] cases) whereas the observed peak

amounted 114683 cases and occurred 58 days after the first case notification.

The daily new infections inferred from assuming a constant detection rate (δ = 0.033/day) and a constant 255

lost rate (π = 0.1/day) is depicted on figure 1 (D). The peak in new infections likely occurred about 28

days (t̂P = 27.52 days, CI(tP ) = [25.62, 29.56] days) after the first case notification, and averaged 22748

new infections (̂̇SP = 22748.38, CI(ṠP ) = [19726.30, 26233.44] new infections) (table 2). The ratio of the

number of infectives to the number of active cases decreased from 44.70 at the first notification day to

11.41 one week later (averaging 22.95, CI = [22.01, 23.93] over this period) and to 2.99 at peak time, 22 260

days later.

3.2 Restrospective fits

The AICs of the retrospective fits of Tuners’s growth model and its special cases to the italian COVID-19

data of the first two weeks and the first three weeks are presented in table 3. It can be observed that
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Table 2. Estimate, standard error (SE) and 95% confidence interval of peak statistics using the italian
COVID-19 daily case reporting data from 2020-02-20 to 2020-07-11

Quantity Peak statistic Estimate SE CI95% Observed

Detected Time (day) 34.10 1.14 [31.94, 36.41] 29
New positive cases 5298.96 376.73 [4609.72, 6091.25] 6248

Actives Time (day) 55.71 0.96 [53.87, 57.62] 58
(isolated) Active cases 111069.88 6759.93 [98580.39, 125141.70] 114683

New infections Time (day) 27.52 1.02 [25.62, 29.56] -
New infections 22748.38 1351.44 [19726.30, 26233.44] -

Notes: - = not available

the best fits correspond to the hyper-logistic growth model for both data of the first two weeks (AIC = 265

483.03) and data of the first three weeks (AIC = 863.58). Although parsimony indicates the hyper-logistic

model fits as the best, the differences ∆AIC in AIC with respect to the full Turner’s growth model fit are

mild (|∆AIC | < 2).

Table 3. AIC of Turner’s growth model (2) fitted to the italian COVID-19 daily case reporting data of
the first two weeks and the first three weeks from 2020-02-20, with a log-normal distribution for the
positive cases

Dataset Growth model Restrictions NFGMP AIC ∆AIC

Full Turner - 5 484.49 0
Bertalanffy-Richards ρ→ 0 4 504.45 19.97
Hyper-logistic ν = 1 4 483.03 -1.46

Data of the first Logistic ν = 1 and ρ→ 0 3 530.22 45.73
two weeks Hyper-Gompertz ν → 0 and ων1+ρ is constant 3 542.92 58.43

Gompertz ν → 0, ρ→ 0 and ων is constant 2 499.50 15.02

Full Turner - 5 864.21 0
Bertalanffy-Richards ρ→ 0 4 901.78 37.57
Hyper-logistic ν = 1 4 863.58 -0.63

Data of the first Logistic ν = 1 and ρ→ 0 3 945.16 80.95
three weeks Hyper-Gompertz ν → 0 and ων1+ρ is constant 3 966.71 102.49

Gompertz ν → 0, ρ→ 0 and ων is constant 2 896.52 32.30

Notes: - = not applicable; NFGMP = Number of free growth parameters; ∆AIC = difference between AICs of a
special growth model fit and the AIC of the full Turner’s growth model fit

Table 4 shows the estimate of the hyper-logistic growth model parameters for the two shorted datasets.

It appears that the estimates of the intrinsic growth parameter ω increases slightly with data availability 270

from ω̂ = 0.05 (CIω = [0.04, 0.07]) using the data of the first two weeks, to ω̂ = 0.07 (CIω = [0.06, 0.08])

using the data of the first three weeks and to ω̂ = 0.09 (CIω = [0.07, 0.11]) using the whole dataset from

Italy.

The estimates of the peak time and size from the two shorted datasets are shown in table 4. It can be

observed that the forecast of the peak time from the data of the first two weeks is day 44 (t̂p = 43.38, 275
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Table 4. Estimate, standard error (SE) and 95% confidence interval of peak statistics using the italian
COVID-19 daily case reporting data from 2020-02-20 to 2020-07-11

Model First two weeks data First three weeks data

parameter Estimate SE CI95% Estimate SE CI95%

K 260124.1 930.9 [258305.9, 261955.1] 260122.6 633.1 [258884.8, 261366.3]
ω 0.0518 0.0066 [0.0404, 0.0665] 0.0661 0.0050 [0.0569, 0.0768]
ρ 0.3401 0.0183 [0.3061, .3779] 0.3075 0.0121 [0.2846, 0.3322]
τ 55.5287 4.3775 [47.5790, 64.8068] 47.7007 2.0405 [43.8645, 51.8724]
β -4.7679 0.2379 [-5.2341, -4.3017] -3.4678 0.1013 [-3.6663, -3.2693]
κ 0.1144 0.0196 [0.0761, 0.1528] -0.0100 0.0058 [-0.0214, 0.0013]
σ 0.2081 0.0393 [0.1437, 0.3014] 0.2165 0.0334 [0.1600, 0.2930]

Notes: β and κ define the daily removal rate from detected cases as αt = eβ+κt

1+eβ+κt
; σ is the log-normal

distribution scale parameter (see pdf (27))

CI(tp) = [39.04, 48.22] days) which overestimates the observed peak time (day 29). The estimate from the

data of the first three weeks reduces the delay, with t̂p = 38.97 (CI(tp) = [36.80, 41.27]) days. The forecast

of the peak size from the data of the first two weeks is 3794 ( ̂̇Cp = 3793.60, CI(tp) = [3032.63, 4745.53])

new positive cases, which underestimates the observed peak (6248 new positive cases). The forecast from

the data of the first three weeks also underestimates the peak but is less biased, with ̂̇Cp = 4733.35 280

(CI(tp) = [4136.58, 5416.22]) new positive cases.

Table 5. Estimate, standard error (SE) and 95% confidence interval (CI95%) of the parameters of the
hyper-logistic growth model fitted using the log-normal distribution to the italian COVID-19 daily case
reporting data of the first two weeks (RMSE = 92.16, R2 = 99.68%) and the first three weeks (RMSE =
224.41, R2 = 99.87%) from 2020-02-20

Peak Data of the first two weeks Data of the first three weeks

statistic Estimate SE CI95% Estimate SE CI95%

Time (day) 43.38 2.34 [39.04, 48.22] 38.97 1.14 [36.80, 41.27]
New positive cases 3793.60 433.34 [3032.63, 4745.53] 4733.35 325.46 [4136.58, 5416.22]

4 Summary and perspectives

This work proposes the use of a flexible growth model for modeling case reporting data from an epidemic

outbreak with containment measures including at least isolation of individuals tested positive. The generic

growth model of Turner et al. (1976) offers a flexible framework with the possibility to recover many 285

special growth models such as the common exponential and the logistic growth models, the hyper-logistic,

the hyper-Gompertz, the Gompertz and the Bertalanffy-Richards growth models. Since the special

models are all nested within the generic model framework, the most appropriate model can be identified
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using information criteria such as the Akaike’s An Information Criterion (AIC), but a likelihood ratio test

(Wilks, 1938) can also be conducted for models with different number of free parameters. When additional 290

information can be obtained on the ability to detect infective individuals (number of tests, tracing of

contact persons), the proposed framework allows to include this information so as to infer on the dynamics

of the epidemic beyond the identified (positive) cases, without ressorting to mechanistic/compartmental

models.

From our application to the COVID-19 outbreak data in Italy, the hyper-logistic model is the most 295

appropriate model for the dataset. It appears that the modeling approach can predict the dynamics of

an epidemic using data from first few days of an outbreak, at least in this example. Indeed, the predicted

peak time (and size) for the positives cases (using only the first two/three weeks data) overestimates (and

underestimates) the observed peak time (and size). However, the biases can be attributed for instance to

the increase in the testing effort and isolation (and the subsequent decrease in the growth rate) in Italy 300

where only about 3762 tests/day were performed in the first three weeks from 2020-02-20, and about

21248 tests/day were performed in the next three weeks. Our estimate of the ratio of the number of

infectives to the number of active cases averaged 22.95 in the first week of the outbreak, in the range

[5, 25] obtained by Pedersen and Meneghini (2020) using the SIQR model. Our proposal thus offers a

valid alternative to mechanistic models, for instance the picewise exponential growth used by Pedersen 305

and Meneghini (2020) withing the SIQR model framework on the italian early outbreak data.

In a very limited data situation, we suggest a further reduction of the number of model parameters

to be estimated. Indeed, since the parameter τ in the growth model (2) is a constant of integration

determined by the initial conditions of the epidemic, it can be expressed in terms of other parameters

and the number of cases C0 detected at time t = 0 as τ = 1
νωρ

{
1−

[(
K
C0

)ν
− 1
]−ρ}

for ρ 6= 0 and 310

τ = log ((K/C0)
ν − 1) /(νω) for ρ = 0. Consideration of a procedure where τ is not estimated as a

free parameter may lead to parsimony, with inference conditional on the number of individuals tested

positive at time t = 0. Inference on the effective reproduction number and the sensitivity of the epidemic

dynamics to containment measures under the generic growth model framework is considered for a future

work. 315
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