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Abstract 11 

As SARS-CoV-2 continues to spread around the world while the pandemic lasts, 12 

testing facilities are forced to massively increment their testing capacities to handle 13 

the increasing number of samples. While sample pooling methods have been 14 

proposed or are effectively implemented in some labs, no systematic and large-scale 15 

simulations have been performed using real-life quantitative data from testing 16 

facilities. Here, we use anonymous data from 1632 positive cases to simulate and 17 

compare 1D and 2D pooling strategies. We show that the choice of pooling method 18 

and pool size is an intricate decision with a prevalence-dependent efficiency-19 

sensitivity trade-off. 20 

 21 
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Introduction 25 

Massive screening of the population for SARS-CoV-2 infection is proposed as one of 26 

the key strategies in the global battle against the COVID-19 pandemic. Due to the 27 

immense number of samples that are analyzed during population screening, pooling 28 

of samples seems to be a valid strategy in overcoming shortages in reagents and 29 

increasing testing capacity.  30 

 31 

Several pooling strategies in the frame of SARS-CoV-2 testing have been discussed 32 

in recent preprints. The most discussed method is referred to as one-time pooling1–4. 33 

In this strategy, the samples are pooled, pools are tested and only samples in 34 

positive pools are tested individually. A second popular approach is called sequential 35 

pooling1,5 in which the samples are pooled, pools are tested and positive pools are 36 

split into two equally-sized sub-pools. These sub-pools are tested again and this 37 

process is repeated until the individual sample level is reached. The third method that 38 

has been explored is two-dimensional or 2D pooling6. This method organizes 39 

samples in a 2D matrix and then creates pools along the rows and columns of the 40 

matrix. The pools are tested and negative rows and columns are excluded from the 41 

matrix. Next, all remaining samples are tested individually. Finally, researchers have 42 

explored pooling strategies in which samples are assigned to multiple pools, but 43 

require only one round of testing. Given the composition and test results of the 44 

positive pools, the positive samples can immediately be identified without the need 45 

for further individual testing. P-BEST7 and Tapestry8 are examples of such strategies. 46 

 47 

While attractive, pooling strategies come with inherent limitations. First, pooling 48 

dilutes each individual sample, possibly to such an extent that the viral RNA 49 
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becomes undetectable, resulting in false negative observations9–11.  A second 50 

limitation is that an increase in sample manipulations augments the risk of cross-51 

contamination and sample mix-ups, which can lead to false negatives and false 52 

positives6. Other drawbacks are unique to specific strategies. The P-BEST pooling 53 

protocol is very time consuming, even when using a pipetting robot7. The repeated 54 

pooling method, on the other hand, suffers from a complicated re-pooling scheme1. 55 

 56 

Although the number of preprints and peer-reviewed publications on pooling 57 

strategies for COVID-19 PCR-based testing has increased rapidly throughout the 58 

pandemic, some important insights are still lacking. First of all, the proposed optimal 59 

pooling strategy is often based on a binary classification of samples as either positive 60 

or negative. However, this Boolean approach is not in accordance with the real-world 61 

situation and does not allow for investigating the dilution effect of pooling. Second, 62 

when using a quantitative representation of the viral loads, these values need to 63 

reflect real-life data, as patients present a very wide range of viral loads. This is 64 

reflected in the wide spectrum of Cq values reported by PCR-based tests12. Finally, 65 

as pooling is most effective for population-wide screening (where a very low 66 

prevalence is expected) it is important to determine the performance of strategies 67 

when encountering a low fraction of positive samples.  68 

 69 

Here, we evaluate one-time (or 1D) pooling and two-dimensional (2D) pooling (using 70 

practical microtiter plate format pool sizes) as promising strategies for massive, low-71 

prevalence population screening using real-life RT-qPCR data from 1632 positive 72 

samples. 73 

 74 
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Results 75 

Inverse relationship between efficiency and prevalence 76 

In order to evaluate the efficiency-gain of the adopted pooling strategies, we 77 

calculated the number of tests that are needed to analyze all samples and divided 78 

this number by the total number of samples. We calculated the median, minimum 79 

and maximum prevalence-specific efficiency for each pooling strategy (Figure 1). 80 

First, we observe an inverse relationship between efficiency and prevalence over the 81 

evaluated prevalence range from 0.01% to 10% for all pooling strategies. Second, 82 

there is no single most efficient strategy, because this depends on the prevalence 83 

(notice crossings in Figure 1). Until a prevalence of 0.36%, 1x24 is the most efficient 84 

strategy, from 0.40% to 2.51% 16x24 becomes the most efficient, from 2.82% to 85 

4.47% the most efficient strategy is 12x24 and from 5.01% to 10% 8x12 is the most 86 

efficient strategy. However, at high prevalence all strategies show similar efficiency 87 

gain. Third, strategies employing a larger pool size display a higher efficiency when 88 

the prevalence is low, but as the prevalence increases, there is a tipping point for 89 

each strategy at which its smaller pool size variant becomes more efficient. At very 90 

low prevalence, the efficiency of a 1 x n pool size becomes n and that of a m x n pool 91 

strategy becomes (m x n) / (m + n). As a general trend, 2D pooling methods are less 92 

sensitive to changes in prevalence in comparison with 1D pooling methods. We 93 

conclude that the most efficient pool size very much depends on the prevalence, but 94 

2D pooling methods generally are most efficient when prevalence is higher than 95 

0.4%.  96 

 97 

Sensitivity decreases with lower prevalence 98 
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The true performance of a pooling strategy cannot be evaluated by efficiency only. 99 

Since the number of false negatives due to pooling is one of the main possible 100 

drawbacks of sample pooling, it is necessary to take this into account when choosing 101 

the optimal strategy. In this regard, we calculated the average sensitivity of the 102 

different simulated settings (Figure 2, Supplemental Figure 3), which ranges from 103 

0.636 to 0.968. For all of the pooling strategies—and irrespective of pool size—we 104 

primarily see that sensitivity increases with increasing prevalence. There is a non-105 

linear relationship between sensitivity and prevalence. Furthermore, since prevalence 106 

is linked with efficiency and as a result indirectly linked with sensitivity, we note that 107 

an increase in efficiency comes with a decrease in sensitivity. We also observe that 108 

at a prevalence lower than 1%, there is an increased variation in sensitivity for 109 

different simulation cohorts. Thus, the increased efficiency at low prevalence comes 110 

with a low and pool size-dependent problematically variable sensitivity. 111 

 112 

Sensitivity loss in function of viral load 113 

With the intention of determining the influence of the viral load and, as a proxy, Cq 114 

value of the positive sample on the sensitivity associated with the pooling strategies, 115 

we calculated the probabilities of a true-positive for each non-pooled original Cq 116 

value (Supplemental Figure 2). We investigated how the sensitivity changes when 117 

higher Cq values are progressively being included in the cohort, starting with 118 

samples with highest viral load (lowest Cq value) (Figure 3, Supplemental Figure 4). 119 

In the first place, we note that the Cq value at which sensitivity loss starts to occur 120 

only depends on the 1D pool size or largest dimension of the 2D pool; i.e. Cq value 121 

of 35 for 1x4, 34 for 1x8, 33.4 for 1x12 and 8x12, 33 for 1x16 and 12x16 and 32.4 for 122 

1x24 and 16x24. These Cq values are (as expected) identical to 123 
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37 �  log��	
��
�� ���	 ���
�. Additionally, when Cq values larger than these cut-off 124 

values are systematically included, the sensitivity drops exponentially. The rate at 125 

which this reduction happens, decreases when prevalence increases. Finally, when 126 

the prevalence is 10%, larger pool sizes result in a smaller reduction in sensitivity, 127 

but for all other visualized prevalence values the sensitivity decreases with larger 128 

pool size. Altogether, the extent to which low viral load samples contribute to the drop 129 

in sensitivity depends on pool size and pooling strategy, although the sensitivity 130 

decrease is most problematic when prevalence is low.  131 

 132 

Discussion 133 

Sample pooling strategies form an incredible asset in an attempt to increase 134 

throughput in times when massive testing for COVID-19 would be needed. A plethora 135 

of pooling strategies have been suggested, some more performant or practical than 136 

others. 1D and 2D pooling methods were selected in this simulation study because 137 

they are simple and quick to perform, have straightforward pipetting schemes and do 138 

not require re-accessing the same sample more than twice. Pool sizes were selected 139 

to be easily compatible with 96-well plates. Using a large real-life dataset of 1632 140 

positive samples enabled us to simulate relevant settings and provide more accurate 141 

outcomes in comparison with real wet-lab tests, which are rather limited in the 142 

number of positive samples and may not cover the whole range of viral loads. 143 

Because the original Cq distribution depends on the origin of the sample (hospital, 144 

care center, …) and the stage of pandemic, our observations do as well. Firstly, our 145 

results confirm the widely accepted idea that sample pooling methods show a higher 146 

efficiency when prevalence is low1–6,13 and that, for 1D and 2D pooling methods, as 147 

prevalence increases, a threshold is reached after which smaller pool sizes become 148 
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more efficient1,6. However, appraising the performance of a pooling method 149 

exclusively by its efficiency would ignore one of the major drawbacks of pooling: loss 150 

of sensitivity due to dilution of the target. This issue becomes most pertinent when 151 

the viral load is low9–11,13,14. Our results confirm that all tested pooling methods suffer 152 

from false negatives, to a variable degree (Figure 2). This loss in sensitivity across all 153 

prevalence conditions generally precludes use of pooling for diagnostic testing of 154 

COVID-19 samples according to the U.S. Food and Drug Administration (FDA), 155 

whereby only 1x16 and 1x24 strategies under high prevalence (≥10%) conditions 156 

meet the minimal 95% sensitivity requirement15. When prevalence is high, the loss in 157 

sensitivity for large pools is partly compensated by the fact that low viral load 158 

samples can be ‘rescued’ by high viral load samples when present in the same pool. 159 

(Figure 3). Intuitively, 2D pooling methods are especially vulnerable for false 160 

negatives, as a high Cq sample would have to be ‘rescued’ in the corresponding row 161 

and column pools, which is confirmed by our results. The influential role of 162 

prevalence on efficiency as well as sensitivity presents an import challenge, 163 

considering that, in order to make an informed decision on the preferential pooling 164 

strategy, the prevalence has to be known. By nature, we cannot know the exact 165 

prevalence before testing our samples, and as a result, the prevalence has to be 166 

estimated. In general, we show that it is of extreme importance that an optimal 167 

equilibrium between efficiency and sensitivity is achieved when deciding on the 168 

pooling strategy and corresponding pool size. 169 

 170 

Materials and Methods 171 

Patient samples 172 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 17, 2020. ; https://doi.org/10.1101/2020.07.17.20152702doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20152702
http://creativecommons.org/licenses/by-nc/4.0/


Nasopharyngeal swabs were taken by a healthcare professional as a diagnostic test 173 

for SARS-CoV-2, as part of the Belgian national testing platform. The individuals 174 

were tested at nursing homes or in triage centers, between April 9th and June 7th. To 175 

mimic low prevalence viral loads as much as possible, only batches of 94 patient 176 

samples with fewer than 10 positives were included in this study. After additional 177 

filtering as described in a further paragraph, this resulted in 113 928 patients in total, 178 

of which 1632 positives (1.43%) with corrected Cq values ranging from 9.85 to 36.94 179 

(median of 28.78) (Supplemental Figure 1). 180 

 181 

SARS-CoV-2 RT-qPCR test 182 

RNA extraction was performed using the Total RNA Purification Kit (Norgen Biotek 183 

#24300) according to the manufacturer’s instructions using 200 µl transport medium, 184 

200 µl lysis buffer and 200 µl ethanol, with processing using a centrifuge (5810R with 185 

rotor A-4-81, both from Eppendorf). RNA was eluted from the plates using 50 µl 186 

elution buffer (nuclease-free water), resulting in approximately 45 µl eluate. RNA 187 

extractions were simultaneously performed for 94 patient samples and 2 negative 188 

controls (nuclease-free water). After addition of the lysis buffer, 4 µl of a proprietary 189 

700 nucleotides spike-in control RNA (40 000 copies) and carrier RNA (200 ng of 190 

yeast tRNA (Roche #10109517001) was added to all 96 wells from the plate). To the 191 

eluate of one of the negative control wells, 7500 RNA copies of positive control RNA 192 

(Synthetic SARS-CoV-2 RNA Control 2, Twist Biosciences #102024) were added.  193 

Six µl of RNA eluate was used as input for a 20 µl RT-qPCR reaction in a CFX384 194 

qPCR instrument using 10 µl iTaq one-step RT-qPCR mastermix (Bio-Rad 195 

#1725141) according to the manufacturer’s instructions, using 250 nM final 196 

concentration of primers and 400 nM of hydrolysis probe. Primers and probes were 197 
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synthesized by Integrated DNA Technologies using clean-room GMP production. For 198 

detection of the SARS-CoV-2 virus, the Charité E gene assay was used (FAM)16; for 199 

the internal control, a proprietary hydrolysis probe assay (HEX) was used. Prior to 200 

May 25th, 2 singleplex assays were performed; after May 25th, 1 duplex RT-qPCR 201 

was performed (with 1/8th of spike-in control RNA). Cq values were generated using 202 

the FastFinder software v3.300.5 (UgenTec). Only batches were approved with a 203 

clean negative control and a positive control in the expected range. 204 

 205 

Assembly of positive Cq value distribution 206 

First, a subset of full 96-well RNA plates is selected containing less than 10 positives. 207 

The latter selection criterium is introduced to filter out plates originating from high 208 

COVID-19 positive rate circumstances, such as hospitals, to avoid putative bias 209 

towards high viral loads. Only plates are retained with a positive control value that is 210 

within two standard deviations of the mean positive control value of all filtered plates. 211 

Next, in order to correct the Cq values for inter-plate variation, the difference of the 212 

average positive control Cq values per qPCR plate from the overall mean positive 213 

control Cq is calculated. The Cq values in each qPCR plate are then corrected by the 214 

qPCR plate-specific difference from the mean. Supplemental Figure 1 displays the 215 

distribution of the corrected Cq values of the positive samples. Finally, by inspecting 216 

this histogram, we dismiss all Cq values larger than 37 as noisy data, resulting in a 217 

final set of 1632 positive Cq values.   218 

 219 

Simulation of 1D and 2D pooling strategies 220 

Simulations of are run using R 4.0.1. First, several cohorts of 100 000 patients are 221 

repeatedly simulated with varying fractions �, defined by � � 10��  ���� � �222 
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 4, 3.95, … , 1, of positive cases (resulting in 61 cohorts of 0.01% to 10% prevalence). 223 

This is done five times, resulting in five replicate cohort per prevalence (302 cohorts). 224 

The Cq values of the positive samples are sampled with replacement from the set of 225 

1632 positive Cq values. Next, the patients are randomly separated into pools 226 

depending on the pooling strategy that is simulated. The pooling strategies that were 227 

simulated are 1x4, 1x8, 1x12, 1x16, 1x24 (all 1D), and 8x12, 12x16 and 16x24. The 228 

Cq value of the pool was calculated as follows: 229 

 230 

"���� � log� # � log� $ 2���

�

�	


 

 231 

With "���� the Cq value of the pool, # the number of samples in the pool, � the 232 

number of positive samples in the pool, "
, "�, … , "� the Cq values of the positive 233 

samples. If the Cq value of the pool is smaller than 37, it is classified as a positive 234 

pool. For 1D pooling, only samples in positive pools are retained and the remaining 235 

individual Cq values were checked to be positive. For 2D pooling, the Cq values of 236 

the differently sized pools are checked simultaneously and the samples in negative 237 

pools are removed, after which all Cq values of the remaining samples are checked 238 

individually. Samples that were retained after the testing of the pools and had an 239 

individual Cq lower than 37 are classified as positive, all other samples are classified 240 

as negative. 241 

The sensitivity is calculated as: 242 

 243 
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The analytical efficiency gain is calculated as: 245 

 246 


--�"�
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��� �
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	 �
���&�
# �
��� �
.*��
/ -�� ���	�&� ���
�
�(  

 247 

In all simulations, the number of tests required for individual testing is equal to the 248 

number of samples.  249 
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Figures 316 

 317 

Figure 1: Average efficiency increase (number of samples divided by the number of tests performed) 318 

over a 0.01 to 10% prevalence range for different pooling strategies. The averages are approximated 319 

by the median over five replicate simulations of a cohort size of 100 000 patients each. The ranges 320 

around the line indicate the minimum and maximum value over five replicate simulations. 321 

 322 
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  323 

Figure 2: Sensitivity in function of the prevalence for different strategies. Each point is colored by its 324 

corresponding efficiency. Each data point illustrates the median value of five replicate simulations, 325 

each simulation starting from a set prevalence and pooling strategy for a testing cohort of 100 000 326 

patients. 327 

 328 

 329 
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 330 

Figure 3: Cumulative sensitivities calculated for all Cq values up to a cut-off Cq for four prevalences. 331 

All true positives and false negatives over five replicate simulations for each sampled Cq value are 332 

counted and used for calculation of the sensitivity up to the cut-off Cq. The data is filtered for 333 

prevalences of 0.01%, 0.1%, 1% and 10% and grouped by prevalence. 334 
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Supplemental Figures 336 

 337 

Supplemental Figure 1: The binned distribution of Cq values of all full 96-well RNA plates with good 338 

controls and less than 10 positives. The Cq values are corrected by calculating the difference between 339 

the mean positive control Cq value per 384-well qPCR plate from the overall mean of the positive 340 

control Cq values. Grey bars indicate the Cq values classified as noise. 341 

 342 

 343 
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Supplemental Figure 2: Cq value distributions for false negatives (FN) and true positives (TP) for 345 

different pooling strategies. Each data point represents a Cq value from a replicate simulation with a 346 

set prevalence. 347 

 348 

 349 

Supplemental Figure 3: Distributions of the average sensitivity for the simulations in each group. 350 

Each data point is the median sensitivity over five simulations.  351 

 352 
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 353 

Supplemental Figure 4: Cumulative sensitivities calculated for all Cq values up to a cut-off Cq for 354 

each strategy. All true positives and false negatives over five replicate simulations for each sampled 355 

Cq value are counted and used for calculation of the sensitivity up to the cut-off Cq. The data is filtered 356 

for prevalences of 0.01%, 0.1%, 1% and 10% and colored accordingly. 357 

 358 
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