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The coronavirus disease 2019 (COVID-19) pandemic, caused by Severe Acute 

Respiratory Syndrome (SARS)-CoV-2, continues to burden medical institutions around 

the world by increasing total hospitalization and Intensive Care Unit (ICU) admissions1–

9. A better understanding of symptoms, comorbidities and medication used for pre-

existing conditions in patients with COVID-19 could help healthcare workers identify 

patients at increased risk of developing more severe disease10,11. Here, we have used 

self-reported data (symptoms, medications and comorbidities) from more than 3 million 

users from the COVID-19 Symptom Tracker app12 to identify previously reported and 

novel features predictive of patients being admitted in a hospital setting. Despite 

previously reported association between age and more severe disease phenotypes13–18, 

we found that patient’s age, sex and ethnic group were minimally predictive when 

compared to patient’s symptoms and comorbidities. The most important variables 

selected by our predictive algorithm were fever, the use of immunosuppressant 

medication, mobility aid, shortness of breath and fatigue. It is anticipated that early 

administration of preventative measures in COVID-19 positive patients (COVID+) who 

exhibit a high risk of hospitalization signature may prevent severe disease progression.  

 

Main 

The COVID-19 Symptom Tracker is a smartphone app where individuals from 

the (United Kingdom) UK and (United States) US can submit their symptoms daily19–22. 

A total of 3,485,804 users have signed up for the app as of July 1st, 202012. A user can 

have multiple entries spanning multiple days recording features such as symptoms, 

comorbidities, medication for pre-existing conditions, and demographics. The features 
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we used in all subsequent models are listed in Table 1. All features were binary except 

for age and BMI, which were continuous; and shortness of breath (SOB), fatigue, race, 

and gender, which were categorical. For the study cohort, we extracted all users who 

tested positive for COVID-19 (n = 10,948). Of those COVID+ users, some cases were 

severe enough to require them to visit the hospital while others managed their disease 

at home (Fig. S1). We used comorbidities, demographics, and symptoms to predict 

patients’ admission to a hospital setting. To do so, we first divided the COVID+ patients 

into two groups: (A) negative for hospitalization, including COVID+ patients who were 

strictly at home without ever having to be admitted to a hospital setting (n = 10,413) and 

(B) positive for hospitalization, including COVID+ users who reported being admitted to 

the hospital (n = 535). The average age of group A was 40.2 (Standard Deviation: 13.6) 

compared to 47.8 (Standard Deviation: 18.8) for group B. For group A, we used 

comorbidities, demographics, and symptoms recorded in the patient's last entry, and for 

group B, we used features recorded one entry prior to the entry where the patient 

indicates admission to a hospital setting (scenario 1) (see Methods). We also analyzed 

the data considering whether a patient ever reported a given symptom along with 

comorbidities, demographics, and pre-existing medications (scenario 2) with similar 

results to those of scenario 1. 
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Table 1. Features used in Elastic Net Model. Features of symptoms, medication 
history, comorbidities, and demographics investigated in relations to whether a user was 
admitted to a hospital setting. All features were binary except for age and BMI, which 
were continuous, and shortness of breath, fatigue, race, and gender, which were 
categorical. For each feature, NA indicates not available/missing data.  
 

We performed an Elastic Net regularized regression to analyze the predictive 

performance of the features and used LASSO regularization to select for the most 

important features for the prediction of patient’s admission to a hospital setting. The 

dataset was divided into training and test sets (ratio: 70:30). Since patients often neglect 

to report all available fields, we used the multiple imputations method to account for 

missing values, a standard procedure to predict missing data using all other features 

(besides the outcome) that are not missing23–25. Since the number of patients in group A 

was considerably larger than in group B (class imbalance) both undersampling of the 

majority cases and oversampling of minority cases was utilized to achieve a balanced 

training set (see Methods). Using cross-validation on the training set, parameters are 

tuned for the Elastic Net Regression, producing the best predictive performance and the 

most parsimonious number of features. We were able to predict patient hospitalization 

with relatively good accuracy (cross-validated area under the receiver operating curve 

(cvAUC) for the training set at the optimal parameters was 0.77) (Fig. 1A). Using the 

features selected by this analysis (Fig. 1B) for the prediction of hospitalization on the 

test set, a similar accuracy was obtained (cvAUC = 78%) (Fig. 1C). The most important 

variables of this signature selected by our predictive algorithm were fever, the use of 

immunosuppressant medication, mobility aid, shortness of breath and fatigue. Age had 

a relatively small regression coefficient indicating that pre-existing clinical conditions 

and symptom presentation are much stronger predictors of hospitalization. 
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Unexpectedly, the body mass index (BMI) was not selected as a significant predictor.

Finally, the female gender was negatively associated with hospitalization.  

 

 

 

or. 
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Figure 1. Elastic Net Regression predictive performance and selected variables. 
We used Elastic Net Regression where outcome of being admitted in a hospital setting 
or not was regressed on features in Table 1. (A) The performance in terms of cross-
validation area under the Reciever Operating Curve (AUC) for validated Elastic Net 
Regression on the training set across different values of lambda. (B) The AUC of the 
trained Elastic Net model applied on a holdout test dataset. (C) The most important 
features selected by the Elastic Net model. Negative coefficients indicate a negative 
association with outcome and vice versa.  
 
 

We next estimated the odds ratio from logistic regression for each feature where 

the outcome (being admitted in a hospital setting) was regressed onto all features (Fig. 

S4). The most important features are consistent with the Elastic Net results. Elastic Net 

Regression was also applied to scenario 2. The prediction performance is comparable 

to scenario 1, and the selected features were also very similar (Fig. S3). The modeling 

from logistic regression and Elastic Net regression using scenario 1 and 2 all selected 

similar features that are predictive of the outcome, lending robustness to the results.  

To understand the age effects better given that it has small significance in 

predicting the outcome, we analyzed the association between age and the other 

features selected. We conducted an experiment where we divided all the COVID+ users 

into three age groups, young, middle age, and old. Running univariate logistic 

regression where the outcome of being admitted to a hospital setting is regressed onto 

each feature selected by the Elastic Net model shows that the coefficients of the 

features do not vary substantially between age groups (Fig. S7). Such results suggest 

that the features’ association to the outcome is not dependent on age.  

 To better understand the fluctuations in the symptoms selected by the Elastic Net 

model, we then analyzed the eight symptoms in a longitudinal manner. We examined a 

window of 20 days before the patient goes to the hospital (for positive cases), and 20 
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days before the last entry (for negative cases) (Fig. 2). For each day, we estimated the 

frequency of each symptom for the positive and negative groups. Day 0 for the positive 

group corresponds to the day when the patient was admitted to a hospital setting, and 

day 0 for the negative group corresponds to the last patient’s entry. Fig. 2A shows 

positive and negative groups of binary variables. Fig. 2B shows categorical variables of 

fatigue and SOB for the positive group, and Fig. 2C shows fatigue and SOB for the 

negative group. A linear regression line is superimposed for each group where the 

frequency is regressed on the days. Slope and intercepts are shown for comparison and 

their significance is evaluated using the likelihood ratio test (Fig. S7). All differences 

between the two groups were significant except for mild fatigue. The slopes of the 

positive group were steeper than in the negative group in all the symptoms except for 

diarrhea, which indicates that the positive group increased in frequency of symptoms 

that are indicative of severe COVID-19 cases as the disease progressed while the 

frequency of the symptoms for the negative group stayed relatively stable. Not 

surprisingly, all the intercepts for the positive group are higher than the negative group 

except for mild fatigue, further indicating that there are higher frequencies of COVID-19 

related symptoms in users who were admitted to a hospital setting. 
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Figure 2. Trajectory analysis of features selected from Elastic Net. We analyzed all 
Elastic Net Regression selected symptoms for a 20 days window where day 0 for the 
positive group is the 20 days before the user goes to the hospital and day 0 for the 
negative group is the 20 days before the user’s last entry. Frequency of users having 
each feature for each day were plotted. A linear regression line where the frequency is 
regressed onto the days is plotted. The slopes and intercepts are labeled. (A) Binary 
features of both positive and negative groups are plotted. (B) Categorical features of 
fatigue and shortness of breath are plotted for the positive group. (C) Categorical 
features of fatigue and shortness of breath are plotted for the negative group. 
 

SARS-CoV-2 has been shown to cause more severe diseases in older adults 26. 

Even though age was not a major contributor to the prediction of COVID-19 related 

hospitalization, we explored whether age was associated with other features selected 

by the model. In conjunction, we also examined other demographic variables, such as 

race, BMI and gender. We conducted multivariate logistic regression models where 

each of the features selected by the Elastic Net model was regressed on the 

demographic variables analyzed (Fig. 3). Age was associated with 10/13 of the 

predictive features (P < 0.01). The most age-correlated features were mobility aid, 

limited activity, blood pressure medication and immunosuppressant medication use. 

This indicates that age-related phenotypes in this cohort are associated with 

hospitalization due to COVID-19. This emphasizes the fact despite age, any population 

that expresses the features selected from our model could be susceptible to a more 

severe form of COVID-19. Understanding vulnerable young populations that make them 

biologically older than their chronological age and exhibit features that are generally 

associated with the older population could help identify susceptible young populations.  

In addition to age, being of black ethnicity was associated with a number of 

features selected by the Elastic Net such as a high frequency of delirium, limited 

activity, and blood pressure medications usage. However, whether this is associated 
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with social-economical status or an innate biological difference in people of African

descent need further investigation. The gender feature was a predictor of hospitalization

(Fig. 1C) but was not significantly correlated with any of the predictive features

suggesting that the sex of an individual affects other aspects of disease severity not

evaluated in this study. 

 

 

 

Figure 3. Demographics correlation to Elastic Net Regression selected features.
Multivariate logistic regression where each Elastic Net Regression selected feature is
regressed onto demographic information such as age, BMI, gender, and race.
Coefficients are plotted in a heatmap. Only statistically significant associations are
plotted. Age has significant but weak association with many selected features. Users
identified as black ethnicity in the UK have many positive associations with high
coefficients.  
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A relatively small effect of the loss of smell feature associated with mild disease 

outcomes (Fig. 1C) have also been reported in recent studies 27,28. However, we also 

show that this feature is age and race associated. The female gender also had a 

negative correlation with hospitalization consistent with recent findings in large 

populations 29,30. In our data, gender did not correlate strongly with any features, 

indicating that there may be factors other than comorbidities or symptoms that make 

females have a better prognosis. Underlying immunological differences in females 31–34 

could lead to the mounting of a better immune response that could neutralize the virus 

more efficiently than in men.  

 From our analyses, we have found features that are predictive of people having 

severe enough COVID-19 disease to be admitted into a hospital setting. However, there 

are some features where additional research would help elucidate the mechanism 

behind their correlation. For example, immunosuppressant use was a major predictor of 

patient hospitalization and from the data we cannot investigate whether patients taking 

these drugs are more prone to severe COVID-19 because underlying auto-

immune/auto-inflammatory disease or because of the direct effect of the drug on the 

suppression of the inflammatory response. If the latter was true immunosuppressant 

use should ameliorate severity since severe disease phenotypes are initiated by a 

cytokine storm35 which could be attenuated by the use of immunosuppressant 

medication. 

Besides the need for additional research into the mechanism behind some of the 

features associated with more severe disease state, time is an important variable that is 

not explored in depth in this paper. A Cox survival analysis would be informative, 
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however, the start time of each user is inconsistent and thus, the application of Cox 

survival is inappropriate. Some users’ first entries already indicate testing positive for 

COVID-19 with symptoms suggesting that they are already in the midst of the disease 

course, while others slowly develop symptoms and test positive for COVID-19 later in 

time.  

 Age has been shown to be important in the severity of COVID-1913. In our 

results, age shows a slight positive correlation with being admitted in a hospital setting. 

The difference between the average age of those who were admitted to a hospital and 

those who did not was relatively small, consistent with age not being a strong predictor. 

It is possible that the older population was less likely to use a smartphone app, leading 

to under representations of the sick older population. The fact that age-associated 

variables outperform age in the prediction of patient hospitalization indicates that 

biological age or immunological age36,37 could be appropriate measures in assessing an 

individual's prognosis.  

In conclusion, we identify age-dependent and independent sets of symptoms and 

comorbidities predictive of COVID-19 patient hospitalization. Our analyses show 

features that predict disease severity in advance and this can be utilized to inform 

severe cases of COVID-19 even in younger individuals who may not be labeled as high 

risk. Continued rise in the number of cases, as societies struggle to balance reopening 

the economy and ‘flattening the curve’, places an enormous burden on healthcare 

systems around the world. Knowing the signs of possible severe cases like the ones 

derived in this study could help healthcare systems devote resources to intervening in 

potentially severe cases before they become costly to manage.  
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Methods 

Study Cohort 

Of all the users who signed up for the Tracker app, we extracted all users who have 

indicated testing positive for COVID-19 from March 24, 2020 to June 23, 2020 (Fig. S1). 

United States users were excluded from the study to maintain homogeneity of the study 

cohort, reducing potential noise. Users who did not enter values for more than 90% of 

variables were excluded. It is extremely difficult to impute the missing values and derive 

any meaningful analysis from such users.  

 

Outcomes and features of Scenario 1 and 2  

From the study cohort, the outcomes or dependent variable that we are 

interested in is whether a user from the Tracker app is admitted to a hospital setting in 

any capacity or not. Since the users can enter their symptoms everyday, there are many 

time points we can use as features. For what we call scenario 1, for users who were 

admitted to a hospital setting, we used the time point right before a user indicated 

he/she is in the hospital and the features at that time point for analysis. For users who 

were always at home, we used the last time point and the features at that time point for 

analysis (Fig. S2A). In what we call scenario 2, for users who were admitted to a 

hospital setting, if a user indicated that he/she had a feature in any of his/her entire 

entries before the day of being admitted in a hospital setting, we labeled that feature as 

positive for that user. For users who were always at home, if he/she had a feature for 

his/her entire entry log, we labeled that feature as positive for that user (Fig. S2B). 
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Using such methods only apply to symptoms since they can change everyday and not 

to comorbidities, pre-existing medication use,  or demographics.  

 

Imputation 

Multiple imputations were used to impute missing values. Instead of imputing the 

missing value with a single value, multiple imputations repeatedly samples the data n 

times and impute the missing values n times using different methods for different data 

type. We used predictive mean matching for numerical data (age, BMI), polytomous 

regression for unordered categorical data (gender, race), proportional odds model for 

ordered categorical data (fatigue, SOB), and logistic regression for binary data (all other 

features). The variables for the logistic regression would be all other independent 

variables while the outcome would be the missing variable. The most stringent process 

would only impute the training set, but there are not enough complete instances to have 

both positive and negative cases, therefore, we imputed training and testing together. 

To account for bias, when creating the test set we assessed the pattern of missingness 

and sampled each pattern so that the test set is representative of all missingness 

patterns. Multiple imputations produce n imputations, and we pool n imputed matrices 

together to form a larger training set.   

Some variables had a large percentage of missing values as seen in Fig. S3B. A 

comparison of imputed distribution to the original distribution indicates that some 

variables would produce a wide range of distribution from one imputation to another that 

is too different from the original distribution (Fig. S3). Therefore, those variables are 

removed from the datasets.  
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Data Balanceness 

 Class imbalance is an issue given that users who specified they are in the 

hospital is 1.5% of the total entries. To balance out the training set so that Elastic Net 

regularization does not bias toward negative cases, we oversampled the positive cases 

and undersampled the negative cases until the number of positive and negative cases 

are equal.  

 

 

Elastic Net Regularization 

 Two parameters can be tuned in Elastic Net, alpha and lambda. Alpha is the 

mixing parameter indicating how much lasso regularization and ridge regularization 

should contribute to the model. Lambda is the amount of shrinkage or regularization the 

model should apply as a whole. A series of alpha is used in each cross-validation of 

lambda. The alpha that produces the highest AUROC at the minimum lambda is 

chosen. For scenario 1, the alpha is 0.1. Two common lambdas are generally used, the 

lambda that gives the best performance (lambda.min) or the lambda with the fewest 

features selected and is within one standard error of the best performing lambda 

(lambda.1se). We used lambda.1se because it is the most generalizable model, 

avoiding overfitting and selecting the most salient variables.  

 

Likelihood Ratio Test 
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 The likelihood ratio test was used to compare whether there are statistically 

significant differences between the slopes of positive and negative cases in the 

trajectory analysis. Linear regression was used to quantify the association between 

days and frequency of each selected symptom in positive and negative cases. The 

likelihood ratio test was used to compare the linear regression model where the 

frequency of the feature was the independent variable and the linear regression model 

where the frequency of the feature and whether cases are positive or negative were the 

independent variables. The null hypothesis is that a linear model with only frequency of 

the feature as the independent variable is the superior model, the alternative hypothesis 

is that the superior model is the model with frequency of features and whether cases 

are positive or negative are independent variables. Rejection of the null hypothesis 

suggests that knowing positive or negative cases predicts better frequency, therefore 

the positive and negative cases are statistically different.  

 

Supplementary 
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Supplementary Figure 1. Diagram of cohort with inclusion and exclusion critiera.
Only Users tested positive for COVID-19 were included. Users with too many predictors
missing were excluded.  
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Supplementary Figure 2. Usage of the features. (A) For users who were admitted to
a hospital setting, we used the time point right before a user indicated he/she is in the
hospital and the features at that time point for analysis. For users who were always at
home, we used the last time point and the features at that time point for analysis (B) For
users who were admitted to a hospital setting, if a user indicated that he/she had a
feature in any of his/her entire entries before the day of being admitted in a hospital
setting, we labeled that feature as positive for that user. For users who were always at
home, if he/she had a feature for his/her entire entry log, we labeled that feature as
positive for that user. Such methods only apply to symptoms since they can change
everyday and not to comorbidities, pre-existing medication use,  or demographics.  
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Supplementary Figure 3: Multiple Imputation of missing values. An example of the
original distribution of features and imputed distribution of those features is shown in
(A). The last column of each feature group labeled ‘org’ is the original distribution
without imputation. Labels 1-10 are the ten different distributions after multiple
imputations of the missing values. Some features, ‘Abdominal pain’ and ‘Chest pain’ in
this example are able to retain the original distribution after multiple imputations. Other
features had a wide range of distributions that were wildly different from the original,
indicating the multiple imputations for these features were not suitable. Those features
were removed from the original dataset. The features removed are labeled with a red
cross in (B). The percentage missing is shown for each feature. 
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Supplementary Figure 4:  Estimated Odds Ratios for each potential risk factor
from a logistic regression model. Error bars represent 95% confidence interval for the
odds ratio. All odds ratios are adjusted for all other factors listed. Only Significant
features are shown. 
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Supplementary Figure 5. Univariate Logistic Regression of young, middle age,
and old age groups. All the COVID+ users were divided into three groups of young,
middle age, and old age groups. The number of positive cases (admitted in a hospital
setting) and the number of negative cases (stayed home) are shown. The outcome of
whether a user was admitted to the hospital was regressed onto each of the features
selected by the Elastic Net Regression. The coefficients for each feature for each age
group is plotted. Only significant ones are colored. The three groups have similar
patterns of expression in the features selected. 
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Supplementary Figure 6: Results of Elastic Net Regression using scenario 2.
Scenario 2 where for each feature, if a user indicated he/she had that feature in any of
his/her entire entries, we labeled that feature as positive for that user. (A) The
performance in terms of cross-validation area under the Reciever Operating Curve
(AUC) for validated Elastic Net Regression on the training set across different values of
lambda. (B) The AUC of the trained Elastic Net model applied on a holdout test dataset.
(C) The most important features selected by the Elastic Net model. Negative
coefficients indicate a negative association with outcome and vice versa. Features
selected are similar to scenario 1. Predictive performances are also comparable. 
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Supplementary Figure 7. Likelihood ratio test between positive and negative
groups. A 20 days window was examined for positive and negative cases. For each
day, the frequency of users having the feature for the positive and negative groups is
plotted. Linear regression where the frequency is regressed on the days before the last
day. Slope and intercepts were obtained and the likelihood ratio test was used to
evaluate whether the slopes were statistically different. P-value < 0.05 indicates the
positive and negative groups have statistically different slopes.  
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