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Abstract 

 

Background: Cognitive decline remains highly underdiagnosed in the community despite 

extensive efforts to find novel biomarkers to detect it. Finding objective screening tools for 

cognitive decline may improve early diagnosis of Alzheimer’s disease (AD) in the 

community. EEG biomarkers based on machine learning (ML) may offer a noninvasive low-

coast approach for identifying cognitive decline with clinically useful accuracy. However, 

most of the studies use multi-electrode systems which are not vastly accessible. This study 

aims to evaluate the ability to extract cognitive decline biomarkers using a wearable single-

channel EEG system with a short interactive cognitive assessment tool. 

Methods: Seniors in different clinical stages of cognitive decline (healthy to mild dementia, 

n=60) and young healthy participants (n=22) performed a cognitive assessment which 

included auditory detection and resting state tasks, while being recorded with a single-

channel EEG (Aurora by Neurosteer®). Seniors’ MMSE scores were obtained by clinicians 

and used in allocating the groups (Healthy: MMSE>28; MCI-R: 28>MMSE>24; and MD: 

MMSE<24). Data analysis included standard frequency bands as well as three novel 

biomarkers, A0, ST4 and VC9, previously extracted from a different dataset to minimize 

overfitting risks. 

Results: Correlation between MMSE scores and reaction times was significant, validating 

the cognitive assessment tool. Individual MMSE scores correlated significantly with two of 

the EEG biomarkers: A0 and ST4. Furthermore, A0 and ST4 showed significant separation 
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between groups of seniors with high vs. low MMSE scores, as well as the healthy young 

group. ST4 separated between the healthy groups (young and seniors) and the low MMSE 

(MD) group. Conversely, A0 differentiated between the healthy young group and all three 

groups of seniors. In the healthy young group, activity of Theta band and VC9 biomarker 

significantly increased with higher cognitive load, with both separating between the high 

cognitive load task and resting state. Furthermore, VC9 showed a finer separation between 

high and low cognitive load levels within the cognitive task. This was not shown in the 

senior groups, suggesting VC9 may be indicative to cognitive decline in the senior 

population. 

Conclusions: These results introduce novel biomarkers which potentially detect cognitive 

decline, obtained by a wearable single-channel EEG with a short interactive cognitive 

assessment. Such objective screening tools can be used on a large scale to detect cognitive 

decline and potentially allow early diagnosis of AD in every clinic. 

 

Introduction 

Dementia is gradually recognized as one of the most significant medical challenges of the 

future. So much so, that it has already reached epidemic proportions, with prevalence 

roughly doubling every five years over the age of 65 [1]. This rate is expected to increase 

unless therapeutic approaches are found to prevent or stop disease progression [2].  

Since Alzheimer’s Disease (AD) is the most prevalent form of dementia, responsible for 

about 60–70% of cases [3], it remains the focus of clinical trials. To date, most clinical trials 

that include a disease-modifying treatment, fail to demonstrate clinical benefits in 

symptomatic AD patients. This could be explained by the late intervention that occurs after 

neuropathological processes have already resulted in substantial brain damage [4]. 

Interventions starting early in the disease process, before substantial neurodegeneration has 

taken place, can change the progression of the disease dramatically [5]. Cognitive decline is 

an early sign and is highly likely to lead to some form of dementia and specifically AD [6]. 

Hence, the discovery of predictive biomarkers for preclinical or early clinical stages such as 

cognitive decline is imperative [7]. 

Yet, there is still no single, universally recommended screening tool that satisfies all needs 

in the detection of cognitive impairment [8]. The current recommendation includes review 

of patient Health Risk Assessment (HRA) information, patient observation and use of 
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structured cognitive assessment tools, prevalently the Mini-Mental State Examination 

(MMSE) [9]. The MMSE evaluates cognitive function, producing a total possible score of 

30 points. Based on this scoring system patients who score below 24 would typically be 

suspected for cognitive decline or dementia [10]. 

Extensive research is now focusing on biomarkers assessing early signs of AD, including 

quantifiable parameters of blood or CSF [11] [12] [13] [14], non-cognitive symptoms such 

as impairment of speech, olfaction, pupil light response, retinal vasculature and gait that 

may serve as phenotypic markers of preclinical AD [15], as well as imaging and 

neurophysiological technologies [16] [17]. These methods show promising results in 

research but are not yet available in every clinic. Although these methods largely support 

the diagnostic process in clinical practice, most are currently applicable only after the onset 

of clinical symptoms, which typically reflects considerable progression of disease [18]. 

Furthermore, such methods are invasive, time consuming for the patient and the clinical 

staff, and very expensive, making them unsuitable for large scale preventive screening for 

high-risk populations [15]. 

Naturally, a cognitive assessment using objective brain activity measurements would be 

preferable to a subjective evaluation using pen-and-paper assessment tools in clinics. 

Electroencephalography (EEG) biomarkers offer a noninvasive, automatically analyzed and 

relatively inexpensive screening tool for early diagnosis [19]. Novel diagnostic 

classification based on the EEG signal could be useful for differentiating between clinical 

stages [20].  

Traditional EEG biomarkers show ambiguous results in studies [19] [21] [22]. However, the 

development of machine learning (ML) has largely contributed to the extraction of useful 

information from the raw EEG signal using only mathematical algorithms [23]. Novel 

techniques are capable of exploiting the large amount of information on time-frequency 

processes in a single recording [24] [25]. Recent studies demonstrated novel measures of 

EEG for identification of early AD with clinically useful accuracy, using classifiers based 

on neural networks, wavelets, and blind source separation, indicating the relevance of such 

methods for early diagnosis [26] [27] [28] [29] [30]. However, most studies in this field are 

still initial and have several constraints. In terms of the data analysis, the risk of overfitting 

the data in classification studies should be addressed in order to ensure generalization 

capabilities, especially if the sample size is small. Studies that use the same data set for 

training and extracting the features [20] [31] [32], extend the risk of overfitting. 
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Furthermore, correlating the extracted classifiers with standard clinical evaluation (e.g. 

MMSE) or behavioral results of cognitive tests (such as reaction times and accuracy) may 

help to further validate the novel results with well-established parameters. In terms of data 

collection, most of the studies in this field use multichannel EEG systems to characterize 

cognitive decline. The difficulty with high-density multichannel EEG is the long set up time 

which require specifically trained technicians, making the systems costly and not portable 

and thus, not suitable for wide-range screening in every clinic. This emphasizes the need for 

additional cost-effective tools with a short assessment time, allowing detection of subjects in 

the preclinical or early clinical stages of AD in the community.  

In this study we present an easy-to-use wearable EEG system with an interactive cognitive 

assessment, that has the potential to detect cognitive decline for early AD diagnosis. The 

system uses auditory stimuli, and extracts biomarkers using harmonic analysis and machine 

learning methods from a single-EEG-channel. The pre-extracted biomarkers used in this 

study were discussed in a previous study performed on young healthy subjects [33]. Here, 

we correlate these biomarkers to behavioral parameters as well as MMSE scores of seniors. 

This study aims therefore to evaluate the ability of the system to extract cognitive decline 

biomarkers for early AD diagnosis, recognizing the importance of providing an accurate 

low-cost alternative for early detection. 

 

Methods 

Participants 

Senior participants 

Ethical approval for this study was granted by the Ethics Committee (EC) of Dorot Geriatric 

Medical Center on July 01, 2019. Clinical Trials Registry URL: 

https://clinicaltrials.gov/ct2/show/NCT04386902?term=Neurosteer&draw=2&rank=1  

Sixty patients from the inpatient rehabilitation department at Dorot Geriatric Medical Center 

were recruited to this study. For the full demographic details see Table 1. The overall mean 

age was 77.55 (9.67) years old. There was a wide range of ages for each group with no 

significant age difference between the groups. Participants consisted of 47% females and 

53% males. Potential subjects were identified by the clinical staff during their admission to 

the inpatient rehabilitation department. All subjects were hospitalized at the center and were 

chosen based on inclusion criteria specified in the study protocol. The patients undergo a 
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Mini Mental State Examination (MMSE) by an Occupational Therapist upon hospital 

administration and this score was used for screening patients to include those that have 

scores between 10-30. All subjects were also evaluated for their ability to hear, read, and 

understand instructions for discussion of Informed Consent Form (ICF) as well as for the 

auditory task. Patients that speak English, Hebrew, and Russian were provided with the 

appropriate ICF and auditory task in the language they could read and understand. All 

participants provided ICF according to the guidelines outlined in the Declaration of 

Helsinki. Patients that showed any verbal or non-verbal form of objection were not included 

in the study. Other exclusion criteria included MMSE score lower than 10, presence of 

several comorbidities, damage to integrity of scalp and/or skull and skin irritation in the 

facial and forehead area, significant hearing impairments, and history of drug abuse. 

In total, 50 of the 60 patients recruited, completed the auditory task and their EEG data was 

used. 10 patients signed the ICF and were included in the overall patient count but were 

excluded from data analysis due to their desire to stop the study or technical problems in the 

recording. The participants were divided into 3 groups; 17 patients with a score of 17-23 in 

the Mild Dementia (MD) group, 16 patients with a score of 24-27 in the Mild Cognitive 

Impairment Risk (MCI-R) group and 17 patients with a score of 28-30 in the Healthy group. 

See table 1 for demographic information. 

 

Group Healthy  MCI-R MD 

MMSE scores 28-30 24-27 17-23 

n 17 16 17 

MMSE 28.88 (0.78) 25.64 (0.66) 20.46 (2.06) 

Age 74.77 (8.05) 75.42 (7.36) 79.26 (8.57) 

Sex, F(%) 13 (81.25) 9 (56.25) 5 (29.41) 

Table 1. Demographic information of the senior groups included in the analysis.  

 

Healthy young participants 

22 healthy students participated in this study for course credit. The overall mean age was 

24.09 (2.79) years old. Participants consisted of 60% females and 40% males. Ethical 

approval for this study was granted by Tel-Aviv University ethical committee 27.3.18. 
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Apparatus 

EEG device 

EEG recordings were performed using a single channel EEG system (Aurora Neurosteer 

Inc). A 3-electrode medical-grade patch was placed on the subject’s forehead using dry gel 

for optimal signal transduction. The electrodes were located at Fp1 and Fp2 and a reference 

electrode at Fpz. EEG signal was amplified by a factor of a 100 and sampled at 500 Hz. 

Signal processing was done in the Neurosteer cloud, for further details see Appendix A. 

 

EEG Recording and Auditory battery 

The recording room was quiet and illuminated. The research assistant set up the sanitized 

system equipment (electrode patch, sensor, EEG monitor, clicker) and provided general 

instructions to the participants before starting the task. Then the electrode was placed on the 

subject’s forehead and the recording was initiated. The participant was sitting during the 

assessment and heard instructions through a loudspeaker connected to the EEG monitor. 

The entire recording session typically lasted 20-30 minutes. The cognitive assessment 

battery was pre-recorded and included a detection task as well as answering a series of 

true/false questions by pressing on a wireless clicker button. Further explanations for the 

task were kept at a minimum to avoid bias. A few minutes of baseline activity were 

recorded to ensure an accurate test. The auditory cognitive assessment lasted 18 minutes. 

 

Detection Task 

Figure 1 illustrates the detection task used in the study. In each block, participants were 

presented with a sequence of melodies (played by a violin, a trumpet, and a flute). The 

participants were given a clicker to respond to the stimuli. In the beginning of each block, 

auditory instructions indicated an instrument to which the participant responded by clicking 

once. The click response was only to “yes” trials, when the indicated instrument melody had 

played. The task included two difficulty levels to test increasing cognitive load. In level 1, 

each melody was played for 3 seconds, and the same melody repeated throughout the entire 

block. The participant was asked to click once as fast as possible for each repetition of the 

melody. In level 2, the melodies were played for 1.5 seconds, and all three instruments 

appeared in the block. The participants were asked to click only for a specific instrument 

within the block and ignore the rest of the melodies. 
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Figure 1. An example of six trials of detection level 1 (top) and detection level 2 (bottom). 

Both examples show a “Trumpet block” in which the participant reacts to the trumpet 

melody. Red icons represent trials in which the participant was required to respond with a 

click when hearing the melody, indicating a “yes” response. 

 

Data Analysis 

Construction of Brain Activity Features and Classifiers 

The signal processing algorithm interprets the EEG data using a time/frequency wavelet-

packet analysis, which characterizes different components by their fundamental frequency 

and corresponding higher harmonics. In addition, standard spectral analysis of the signal 

was used to produce the classical EEG frequency bands.  

The optimal number of different features was determined on a large dataset using 

unsupervised Machine Learning techniques (i.e. ML extracting features on unlabeled data). 

This analysis resulted in 121 Brain Activity Features (BAFs) [34] [35]. The BAFs activity 

can be regarded as a series of vectors with 121 values that are sampled every second. 

Combinatorically, there are millions of linear and non-linear combinations that can be 

created out of these long vectors. Prior to this examination, several such combinations were 

computed using ML. These combinations were calculated from data of healthy subjects 

performing different tasks in different difficulty levels. The labelled data was used to train 

linear and non-linear classifiers that differentiate between different tasks. The value of each 

feature was calculated once every second from a moving window of 4 seconds. Three of 

those biomarkers were described in a previous study on healthy subjects performing a well-

validated cognitive task (i.e. n-back task) [33]. The biomarkers exhibited separation between 

different levels of cognitive load and therefore were the most relevant for the present study. 

The full technical specifications regarding the construction of these features and the 

extractions of the biomarkers are provided in Appendix A. 

 

 

Detection 2 

Detection 1 
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Dependent variables 

Behavioral measurements 

The behavioral dependent variables included mean response accuracy and mean reaction 

time (RT) per participant, for correct responses only. 

Electrophysiological variables      

The electrophysiological dependent variables included the power spectral density. Absolute 

power values were converted to logarithm base 10 to produce values in dB. The following 

frequency bands were included: Delta (0.5-4 Hz), Theta (4–7 Hz), Alpha (8–15 Hz), Beta 

(16–31 Hz), and lower Gamma (32–45 Hz). 

The BAFs analysis included the activity of the three selected biomarkers: ST4, A0, and VC9 

normalized to a scale of 0-100. The EEG variables were calculated per each second from a 

moving window of 4 seconds, and mean activity per condition was taken into the analyses. 

 

Statistical analyses 

Five statistical analyses were performed on the dependent variables in three parts. Data of 

the 50 senior participants and their individual MMSE scores were included in the first two 

parts of the analyses (1 and 2). The third part included all study data (seniors and young 

healthy controls, see Figure 2). 

The purpose of the first analysis was to confirm the validity of the detection task. It was 

assumed based on previous studies [5] that Reaction Times (RTs) would be higher for 

participants with lower MMSE scores. This was tested by calculating the Pearson 

correlation between mean RTs in detection levels 1 and 2, and the individual MMSE score 

of each participant. Additionally, correlations were calculated between RTs and the EEG 

variables. 

The second analysis was performed to find which of the EEG variables correlated with the 

previously assigned MMSE score of each participant. For this purpose, Pearson correlation 

was calculated using the mean activity of the EEG variables during the detection task and 

each individual MMSE score. 

For the third analysis, data of the 50 senior participants was divided into three groups 

according to the MMSE scores. The groups were allocated as follows (see Figure 2): Mild 

Dementia (MD) group with MMSE<24, Mild Cognitive Impairment Risk (MCI-R) group 

with 24>MMSE<28, and Healthy Seniors with MMSE>28. We used MMSE score cutoffs 
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of 24 and 27 in allocating the groups, as we are mostly interested in very early detection of 

AD and MCI, and found previous indications that a higher cutoff score would achieve 

optimal evaluations of diagnostic accuracy [36]. Furthermore, it was argued that educated 

individuals who score below 27 are at greater risk of being diagnosed with dementia [37]. 

An ANOVA analysis was conducted for each of the EEG variables, with group as a 

between-participant independent variable. A linear trend analysis was also performed on the 

three groups.  

Finally, to examine the differences in activity patterns between the groups of senior 

participants and healthy young controls, a repeated-measures ANOVA was conducted on 

each of the EEG variables with task level (detection levels 1 and 2 and resting task) as 

within participants variable, and group as between participant variable. The groups were 

allocated as before with an addition of the young healthy group (see Figure 2). A resting 

state task was included as well to test the differences between a passive condition (resting) 

and an active condition (task elicited cognitive load). Significance level was p<0.05, and 

post-hoc analyses were calculated with Bonferroni correction. A linear trend analysis was 

also performed on the four groups. Data was analyzed with Python SciPy [38] and R studio 

(R Foundation for Statistical Computing).  

 

 

 

 

 

 

 

 

 

 

Figure 2. Study design and groups at each stage. The study included both seniors and young 

participants as controls. For the senior participants, an MMSE score was obtained, and 

division into groups was based on the individual MMSE score. 
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Results 

Validation of behavioral task 

The correlations between individual MMSE scores and participants’ Reaction Times (RTs) 

in both levels of the detection task was significant, both for each level separately as well as 

the mean activation in the entire cognitive detection task (p<.01 for all, see Table 2). 

Additionally, mean RTs were calculated for each participant and each task. A0 biomarker 

activity significantly increased with slower participant reaction times, and ST4 biomarker 

activity significantly decreased with slower reaction times (see Table 3 and Figure 3). 

 

Task level Detection 1 Detection 2 Mean 

r -.535** -.423** -.519** 

p <.001 0.005 <.001 

df 49 43 49 

Table 2. Results of Pearson correlation between individual MMSE scores and reaction 

times (RTs) for the cognitive detection task (levels 1 and 2) and mean reaction times. 

Significant effects are marked in bold. 

Feature Alpha Beta Delta Gamma Theta A0 VC9 ST4 

r 0.198 0.194 0.037 0.183 0.000 0.264 -0.036 -0.252 

p 0.058 0.064 0.728 0.081 0.997 0.011 0.732 0.016 

Table 3. Pearson correlation analysis between individual mean RTs (detection 1 and 

detection 2), and EEG variables activity. Significant effects are marked in bold. 

 

 

 

  

 

 

Figure 3. Correlation between individual A0 (right) and ST4 (left) biomarkers activity 

during detection task, and individual mean reaction times. A0 biomarker shows significantly 

increased activity with slower participant reaction times, while ST4 biomarker shows 

significantly decreased activity with slower reaction times. 
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Correlations between MMSE scores and EEG variables 

For statistical values of all EEG variables see Table 4. The activity of A0 increased for 

lower MMSE score while the activity of ST4 decreased for lower MMSE score (p=.010 and 

p=.009, respectively, see Table 4 and Figure 4). 

Feature Alpha Beta Delta Gamma Theta A0 VC9 ST4 

r -0.1111 -0.2430 0.0773 -0.2269 0.1439 -0.3570 0.0930 0.3617 

p 0.4423 0.0891 0.5938 0.1130 0.3187 0.0109 0.5204 0.0099 

Table 4. Pearson correlation analysis between individuals MMSE scores and mean activity 

of the EEG variables during the detection task. Significant effects are marked in bold. 

 

 

 

 

 

 

 

Figure 4. Correlation between A0 (left) and ST4 (right) biomarkers activity (during the 

cognitive detection task per participant) and individual MMSE score (n=50). A0 biomarker 

shows significantly increased activity for lower MMSE score, while ST4 biomarker shows 

significantly decreased activity for lower MMSE score. 

 

Comparison between three groups of senior patients 

For a full description of the F values, p values and effect size (𝜂𝑝
2) of all statistical tests in 

the ANOVA see Table 5. Biomarkers A0 and ST4 showed a significant main effect for 

group between the three groups of senior patients with p=.048 and p=.011 respectively (see 

Figure 5). Activity of A0 biomarker increased while activity of ST4 biomarker decreased for 

the lower functionality group (MD). Post-hoc analyses using Bonferroni corrections 

revealed a significant difference between Healthy and MD groups for A0 and ST4 (p=.037 

and p=.008 respectively) during performance of a cognitive detection task. Additionally, a 

linear trend between the three groups (e.g. Healthy, MCI-R and MD) was significant for A0 

and ST4 with p=.014 and p=.003 respectively.  
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Figure 5. Mean A0 (left) and ST4 (right) activity during the detection task for the Healthy 

(blue), MCI-R (orange) and MD (grey) groups. A0 shows lower activity, while ST4 shows 

higher activity for the healthy group, differentiating it from the MD group. Brackets present 

post-hoc analysis with Bonferroni correction, bold bracket presents main effect. A linear 

trend was observed for both biomarkers between the three groups. Data is presented as mean 

and SEM. 

 

Comparison between senior patients and healthy young controls 

For a full description of the F values, p values and effect size (𝜂𝑝
2) of all statistical tests in 

the ANOVA see Table 5. The main effect for group was significant for A0 and ST4 (p<.001 

and p=.005 respectively). Post-hoc analysis with Bonferroni corrections showed that 

activity of the healthy young participants was significantly lower than each of the other 

three senior groups for A0 biomarker (p<.001 for all comparisons). Additionally, A0 

biomarkers showed significant separation within the senior population between the MD 

group and Healthy seniors group (p=.027). Higher activity was observed for ST4 for the 

healthy young group and the healthy seniors group compared to the MD group (p=.007 and 

p=.012 respectively). Moreover, a linear trend between the four groups was significant for 

A0 and ST4 (p<.001 and p=.001 respectively). 
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Figure 6. Mean biomarkers A0 (left) and ST4 (right) activity during the detection and 

resting state tasks for the Healthy young (yellow) Healthy seniors (blue), MCI-R (orange) 

and MD (grey) groups. Brackets present post-hoc analysis with Bonferroni correction, bold 

bracket presents main effect. A linear trend was observed for both biomarkers between the 

four group. Data is presented as mean and SEM.  

 

Comparison between detection and resting state tasks 

 For a full description of the F values, p values and effect size (𝜂𝑝
2) of all statistical tests in 

the ANOVA see Table 6. When measuring the differences between the three task levels: 

detection 1, detection 2 and resting state, across the healthy young group (n=22) and mean 

of all three groups of seniors that performed all three tasks (n=43), both Theta band and 

VC9 biomarker showed significant difference between the tasks (p=.007 and p<.001, 

respectively). Pairwise comparisons reveled that for Theta band the difference between 

detection 2 (highest cognitive load) and resting state task was significant (p=.001). For VC9, 

the difference between detection 2 (highest cognitive load) and resting state was significant 

(p=.001), as well as the difference between levels within the cognitive task (detection levels 

1 vs. 2, p=.019). For both Theta band and VC9 biomarker, this difference between the tasks 

was present only in the young healthy group and insignificant for the three senior groups. 

Significant main effect is shown for Theta band and VC9, when calculated separately 

including only the young healthy group (p<0.01 for both, see Figure 7). 

30

40

50

60

70

80

90

 A0  ST4

B
io

m
ar

ke
r 

ac
ti

vi
ty

 le
ve

l

Healthy young

Healthy seniors

MCI

MD

*** 

*** 

*** 

* 

** 

** 

* 

*** 

-R 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.08.13.20171876doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.13.20171876
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Mean activity of Theta band (top) and VC9 biomarker (bottom) comparing 

between the tasks: detection 2 (dark green, high cognitive load), detection 1 (green, low 

cognitive load) and resting state (light green), for healthy young controls and mean across 

all three groups of seniors. Brackets present post-hoc analysis with Bonferroni correction, 

bold bracket presents main effect for healthy young group only. Data is presented as mean 

and SE with Morey’s correction [39]. 
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ANOVA results between 3 groups of seniors 

(cognitive detection task) 

ANOVA results between 4 groups including seniors 

and young healthy (cognitive and resting state task) 

EEG 

Variable 

Type III 

SS 
df 

Mean 

Square 
F Sig. 𝜂𝑝

2 
Type III 

SS 
df 

Mean 

Square 
F Sig. 𝜂𝑝

2 

Alpha 5.995 2 2.998 0.578 0.565 0.024 33.63 3 11.21 2.348 0.08 0.094 

Beta 35.58 2 17.79 1.062 0.354 0.043 43.889 3 14.63 1.03 0.385 0.043 

Delta 28.991 2 14.495 0.799 0.456 0.033 45.208 3 15.069 0.958 0.418 0.041 

Gamma 45.054 2 22.527 1.051 0.358 0.043 55.217 3 18.406 1.013 0.392 0.043 

Theta 23.611 2 11.805 0.945 0.396 0.039 24.699 3 8.233 0.745 0.529 0.032 

A0 526.155 2 263.077 3.358 0.043 0.125 4362.476 3 1454.159 23.98 <.001 0.514 

VC9 55.362 2 27.681 0.668 0.518 0.028 224.401 3 74.8 2.061 0.114 0.083 

ST4 373.146 2 186.573 4.764 0.013 0.169 502.587 3 167.529 4.749 0.005 0.173 

 

Table 5. The F values, p values and effect size (𝜂𝑝
2) of the ANOVA analyses with group as 

between-participant variable. The ANOVA results on the left are between the three groups 

of senior participants performing the cognitive detection task. The ANOVA results on the 

right are between the healthy young group and the three senior groups performing the 

detection and resting state tasks. Significant main effects are marked in bold. 

 

Table 6. The F values, p values and effect size (𝜂𝑝
2) of the within-participants repeated 

measures ANOVA (all four groups of Healthy young, Healthy seniors, MCI-R and MD) 

between the tasks: detection (level 1 and 2) and resting state. Significant main effects are 

marked in bold. 

 

ANOVA within participants (all 4 groups, difference between the 3 tasks) 

EEG Variable Type III SS df Mean Square F Sig. 𝜂𝑝
2 

Alpha 0.731 2 0.365 0.181 0.835 0.003 

Beta 5.361 2 2.681 1.053 0.352 0.017 

Delta 29.259 2 14.63 2.767 0.067 0.043 

Gamma 8.16 2 4.08 1.248 0.291 0.02 

Theta 39.37 2 19.685 5.143 0.007 0.078 

A0 31.647 2 15.823 1.675 0.191 0.027 

VC9 159.547 2 79.773 8.687 <.001 0.125 

ST4 59.112 2 29.556 2.131 0.123 0.034 
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Discussion 

Cognitive decline remains highly underdiagnosed in the community [40]. As cognitive 

decline is an early sign of AD, it would be beneficial to improve the detection rate in the 

community to allow early intervention. The aim of this study was to evaluate cognitive 

decline using novel biomarkers extracted with a wearable single-channel EEG sensor. We 

demonstrate that a short evaluation, which can be self-administered and performed in every 

clinic, may provide an objective assessment tool for early signs of AD, and potentially offer 

an alternative to the commonly used Mini-Mental State Examination (MMSE) [9]. 

60 seniors were recruited to this study and participated in a short and automatic cognitive 

assessment battery. 50 participants finished the full assessment and were included in data 

analysis. Classical EEG frequency bands were used in the analysis of the data as well as pre-

defined ML features. Machine Learning (ML) applied on raw EEG signals is increasingly 

being used for early diagnosis of AD. The biomarkers that are extracted using ML 

approaches show accurate separation between healthy and cognitively impaired populations 

[27] [28] [30] [41]. Our approach utilizes advanced wavelet-packet analysis [42] [43] as pre-

processing to ML. The biomarkers used here were calculated on a different dataset to avoid 

the risks associated with classification studies such as overfitting [44]. This is unlike other 

studies that use classifiers trained and tested via cross validation on the same dataset [20] 

[31] [32]. Specifically, the pre-extracted biomarkers used here, ST4 and VC9, were 

previously considered in a study performed on young healthy subjects. Results showed a 

correlation of VC9 to working memory load and correlation of ST4 to individual 

performance [33]. 

A novel interactive cognitive assessment based on auditory stimuli with three cognitive load 

levels (high, low and rest) was used to probe different cognitive states. Individual response 

performance in the tasks (i.e. reaction times) was correlated to the MMSE score which 

further validates the cognitive assessment tool. Importantly, individual response 

performance also significantly correlated with A0 and ST4 biomarkers. These results 

support previous findings that recording EEG during active engagement in cognitive and 

auditory tasks offer distinct features and may lead to better discrimination power of brain 

states [23] [45]. To continue this notion, we used an auditory assessment battery with 

musical stimuli. It was previously shown that musical stimuli elicit stronger activity than 

using visual cues such as digits and characters [46]. 
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Results further show that A0 and ST4 significantly correlated with individual MMSE 

scores. To get a clearer separation between cognitive stages, we divided the participants to 

groups according to the MMSE scores. In allocating the groups, we used the common cutoff 

score of 24 to divide between low-functioning (MMSE<24) and high-functioning 

participants, however, we divided the high-functioning group further using a cutoff score of 

27. This was inspired by the debate in the literature over cognitive functionality of patients 

with scores below 27 [37] [47]. 

Results demonstrated the ability of A0 and ST4 to significantly differentiate between groups 

of seniors with high vs. low MMSE scores, as well as the healthy young group.  

Specifically, ST4 separated between the healthy groups, namely, the healthy young and 

healthy senior groups, and the low MMSE group (MD group). Conversely, A0 showed 

differences between the healthy young group and all three groups of seniors (all with 

p>0.01). A linear trend was found between the four groups, where the healthy young 

participants are at the one end, and the cognitively impaired MD group at the other end. 

These results may suggest different cognitive functionality between healthy young 

participants and healthy seniors. Importantly, A0 also showed more delicate differences 

between lower and higher MMSE senior groups, separating between the lowest MMSE 

group (MD group) and the healthy seniors group, with a cutoff score of 24, comparable to 

previous reports in this field [48] [26] [31]. Moreover, a linear trend was shown between the 

three groups of seniors, suggesting that the activity of the MCI-risk (MCI-R) group is a 

midpoint between the cognitively impaired and the cognitively healthy senior groups. This 

may indicate a different cognitive functionality stage in between entirely healthy seniors and 

MD patients. Together, these results provide initial indication of the ability of the proposed 

assessment to detect early signs of AD in the elderly population. 

Both biomarkers showed ability to differentiate between different cognitive sates using only 

a single channel and a short assessment battery, unlike most studies attempting to assess 

cognitive decline which use multichannel EEG systems [27] [41] [49]. It has been argued 

that the long setup time of multichannel EEG systems may cause fatigue, stress, or even 

change mental states, affecting EEG patterns and subsequently study outcomes [32]. This 

suggests that cognitive decline evaluation using a wearable (one-channel) EEG with a quick 

setup time may not only make the assessment more affordable and accessible but also 

potentially reduce the effects of the pretest time on the results. Using a single EEG channel 

was previously shown to be effective in detection of cognitive decline [48], however, here 
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we demonstrate results of early detection of AD using biomarkers that were extracted on an 

independent dataset.  

With regards to the classical frequency bands, which were also extracted and tested in this 

study, theta activity increased with higher cognitive load, separating between high cognitive 

load and resting state tasks in the young healthy group. This is in line with previous reports 

[50] [51]. This difference was not present in the senior population, suggesting that theta may 

be indicative to cognitive decline and serve as a predictor of AD status, consistent with 

previous findings [20] [52] [53]. VC9 biomarker showed similar separation between high 

cognitive load and resting state, as well as a significant difference between high and low 

cognitive load levels within the cognitive task. Therefore, VC9 can be referred to as a 

refinement of theta indication, supporting previous work validating VC9 as a working 

memory load biomarker in the healthy population [33]. 

While the study shows promising results, more work is needed. Specifically, additional 

studies should include a longer testing period to quantify the variability within subjects and 

potentially increase the predictive power. Also, larger cohorts of patients that are quantified 

by extensive brain scanning methods would offer an opportunity to get more sensitive 

separation between earlier stages of cognitive decline using the suggested tool, and 

potentially reduce the subjective nature of the MMSE test. Moreover, a longitudinal study 

using the suggested tool could assess cognitive state in asymptomatic elderly patients and 

follow participants over time. Additionally, since cognitive decline could be an early 

symptom of several conditions, a follow up study should consider testing comorbidities to 

other neurological conditions. 

In conclusion, this study presents the results obtained with a self-administered single-

channel EEG system for detection of cognitive decline. Using an automatic and low-cost 

approach, it can provide objective biomarkers and consistency in assessment across patients 

and between medical facilities clear of tester bias. Furthermore, due to a short set-up time 

and interactive cloud-based assessment, this tool can be used on a large scale in every clinic 

and test participants before clinical symptoms emerge and may potentially be used for early 

detection of cognitive decline. 
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Appendix A: Methodological details 

The data analysis methodology is composed of three steps: 

1. Creation of a brain activity representation by novel Brain Activity Features (BAFs)  

2. Creation of Novel Biomarkers based on the BAFs 

3. Examination of the features on previously unseen data 

Each of the steps is described below. 

 

Creation of Brain Activity features (BAFs) 

The creation of the Brain Activity Features (BAFs) occurs prior to application of the 

methodology onto the new data to be analyzed. Calculation of the BAFs is based on 

collecting a large cohort of high dynamic amplitude and frequency range single channel 

EEG data. The cohort includes multiple subjects that are exposed to different cognitive, 

emotional, and resting tasks. A schematic representation of the signal processing is depicted 

in Fig A1. The signal processing module is decomposing the EEG signal input into a large 

number of components which comprise the Brain Activity Features (BAFs). The output of 

the module is a Brain Activity Representation which is constructed based on the BAFs for 

any given EEG signal. 

 

Figure A1. schematic representation of the construction of the Brain Activity Features 

(BAFs). See text for the description of the different steps. 

A: electrophysiological signal input 

The EEG cohort described above is the input of the signal processing algorithm presented as 

the first step of the process. 
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B: Wavelet Packet Analysis  

For a given cohort of EEG recordings, a family of wavelet packet trees is created. For the 

mathematical description, we follow the notation and construction provided in chapters 5, 6 

and 7 of Wickerhauser’s book1. 

To demonstrate the process; let g and h be a set of biorthogonal quadrature filters created 

from the filters G and H respectively. Each of these is a convolution-decimation operator, 

where in the case of the simple Haar wavelet, g is a set of averages and h is a set of 

differences. 

The construction of the full wavelet packet tree is by successive application of these 

functions (Figure A2), so that at every level, a new full orthogonal decomposition of the 

original signal x is created. In the classical wavelet decomposition by Daubechies2, only the 

marked parts are used and the signal is decomposed into Gx, GHx etc., but the full 

construction of the tree continues recursively, on Gx, GHx and so forth, to create a full 

binary tree. Coifman and Wickerhauser3 observed that a large number of orthogonal 

decompositions can be constructed from the full tree by mixing between the different levels 

and different blocks of the tree, following a simple rule. The recursive construction of the 

full tree is described next.                                                                                                  
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Figure A2. Construction of a Discrete Wavelet Transform Tree (Taken from 

Wickerhauser1). The top panel represents the classical wavelet construction and the bottom 

panel extends the construction to a full wavelet packet tree. 

Let 𝜓1 be the mother wavelet associated to the filters 𝑠 ∈ 𝐻, an 𝑑 ∈ 𝐺.  Then, the 

collection of wavelet packets 𝜓𝑛, is given by:  

𝜓2𝑛 = 𝐻𝜓𝑛;                𝜓2𝑛(𝑡) = √2 ∑
𝑗∈𝑍

𝑠(𝑗)𝜓𝑛(2𝑡 − 𝑗), 

𝜓2𝑛+1 = 𝐺𝜓𝑛;                 𝜓2𝑛+1(𝑡) = √2 ∑
𝑗∈𝑍

𝑑(𝑗)𝜓𝑛(2𝑡 − 𝑗). 

The recursive form provides a natural arrangement in the form of a binary tree (Figure A2). 

The functions 𝜓𝑛 have a fixed scale. A library of wavelet packets of any scale s, frequency f, 

and position p is given by: 

 𝜓𝑠𝑓𝑝(𝑡) = 2−𝑠/2𝜓𝑓(2−𝑠𝑡 − 𝑝). 

 

The wavelet packets {𝜓𝑠𝑓𝑝: 𝑝 ∈ 𝑍} are an orthonormal basis for every f (under 

orthogonality condition of the filters H and G) and are called 

𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑚𝑎𝑙 𝑤𝑎𝑣𝑒𝑙𝑒𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠. 

Using this construction, Coifman and Wickerhauser applied the best basis algorithm3 to 

search for an orthonormal base that satisfies a specific optimality condition. The optimality 

condition that was chosen is Shannon’s entropy of the coefficients of each component (or 

wavelet packet atom). It is a measure that prefers coefficients with a distribution that is far 

from uniform, in the sense that it prefers a distribution with a small number of high value 

coefficients and a long tale, namely, a large number with low value coefficients. The full 

details of the best basis search are described in chapter 7 of Wickerhaser’s book.  

The process of creating a best basis from the wavelet packet tree can be further iterated by 

an optimization on the mother wavelet using a gradient descent in wavelet space as is 

described in Neretti and Intrator4. 
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C: Pruning the optimal representation 

The outcome of the best basis algorithm is an orthogonal decomposition that is adapted to 

the stochastic properties of the collection of EEG signals. However, there is a risk that the 

decomposition is “overfitting” namely it is too adapted to the EEG signals from which it 

was created. To avoid this phenomenon, we first have to get rid of “small” coefficients. This 

can be done by the denoising technique of Coifman and Donoho5. The next step is 

introducing a validation set, which is another collection of EEG-recordings that was not 

used in the creation of the best basis. Using this set, we can determine which atoms maintain 

a high energy (some large coefficients) when decomposing the new signals. These atoms 

will remain in the representation. At the end of this part, the resulting set of decomposing 

signal contains only a part of the full orthonormal basis that was found. We then reorder the 

basis components not based on the binary tree that created them, but based on the 

correlation between the different components In this way, we created a brain activity 

representation in which components that are more correlated to each other, are also 

geographically close to each other within the representation. This is done for the purpose of 

improved visualization. 

D: brain activity representation output 

The result of the signal processing module is the brain activity representation. Specifically, 

it is a collection of 121 energy components, emanating from the wavelet packets as well as 

standard frequency bands which are updated each second. The representation (D) shows a 

color heatmap of each of the 121 X time matrix, so that the x axis represents time and the y 

axis represents the different components. 

 

Creation of Novel features based on the BAFs 

The signal components, which we termed BAFs, were constructed from single EEG channel 

recordings in an unsupervised manner, namely, there were no labels attached to the 

recordings for the purpose of creating the decomposition. To create biomarkers based on the 

BAFs, task labels are used, indicating the nature of cognitive, emotional, or resting 

challenge the subject is exposed to during the recording. 

Given labels from a collection of subjects, and the corresponding high-dimensional BAF 

data, a collection of models attempting to differentiate between the labels based on the BAF 

activity can be used. In the linear case, these models are of the form: 
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𝑉𝑘(𝑤, 𝑥) = 𝛹 (∑
𝑖

𝑤𝑖𝑥𝑖), 

where w is a vector of weights, and 𝛹  is a transfer function that can either be linear, e.g., 

𝛹(𝑦) = 𝑦,  or sigmoidal for logistic regression 𝛹(𝑦) = 1/(1 + 𝑒−𝑦).  

 

Figure A3. Supervised construction of different features from labeled brain activity 

representation of different cognitive and non-cognitive tasks.    

For each predictor, which we term biomarker, a standard machine learning procedure is 

applied as follows: 

1. Choose a labeled data set with at least two different tasks (e.g. cognitive, emotional, or 

resting challenge). The data set may include the same challenge but for a non-

homogenous group. 

2. Separate the data into three sets: training, validation, and test. 

3. Choose a model to train on from a family of models that includes linear regression, 

linear regression with binary constrains (zero and one values for the weights), linear 

regression with only positive values, logistic regression, discriminant analysis and 

principal components analysis. In the non-linear models, use neural networks, support 

vector machine and the like. 

4. Train each model on several sets of train/test and validation to best estimate internal 

model such as the variance constraints, on the ridge regression, the kernel size and 

number of kernels in a support vector machine, or the weight constraints in a neural 

network model. 

5. From the above models, obtain predictors to be tested on other data with potentially 

other cognitive, emotional and rest challenges. 
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6. The last step in the process includes testing the biomarkers using a test data labeled set 

that was not used in the creation of these features. This allows removal of features that 

were overfitting to the training data, namely, they do not produce high significant 

difference on the validation data. This is still part of the model creation and not part of 

the model testing that is done on new data and is described in step 3. 

All above steps are described in the scheme on Figure A3. 

 

Examination of the features on previously unseen data 

Following the creation of BAFs and the creation of features as described above, the features 

relevance can be tested on various cognitive or emotional challenge. The testing scheme is 

described in Figure A4. Specifically, data is collected with the sensor system and sent to the 

cloud for creation of a BAF representation using the previously determined wavelet packet 

atoms. The BAF representation is provided to previously determined ML models, which 

convert the BAF activity into features. Statistical tests are then applied to determine the 

quality of the predictions and the correlation of the features to the cognitive and emotional 

challenges that the participants undergo. This may include single subject analysis as well as 

group analysis.  

 

 

 

 

 

Figure A4: Testing the relevance of the previously found features on the data. 

In the process of testing the features on new data, we may want to get an upper bound to the 

performance of the feature, by seeking an overfitting biomarker on the currently tested data. 

This is only done to get an idea of the potential upper bound on prediction abilities from the 

existing data, and indirectly can tell us more about the optimality of the actual features that 

were constructed from a different data set and are assumed to be more general in this sense. 
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