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Abstract

Objectives

During the early stage of COVID-19 spread, many governments and regional
jurisdictions put in place travel restrictions and imposed quarantine after
arrivals in an effort to slow down or stop the importation of cases. At
the same time, they implemented non-pharmaceutical interventions (NPI)
to curtail local spread. We assess the risk of importation of COVID-19 in
locations that are at that point without infection or where local chains of
transmission have extinguished, and evaluate the role of quarantine in this
risk.

Methods

A stochastic SLIAR epidemic model is used. The effect of the rate, size, and
nature of importations is studied and compared to that of NPI on the risk
of importation-induced local transmission chains. The effect of quarantine
on the rate of importations is assessed, as well as its efficacy as a function
of its duration.

Results

The rate of importations plays a critical role in determining the risk that case
importations lead to local transmission chains, more so than local transmis-
sion characteristics, i.e., strength of NPI. The latter influences the severity
of the outbreaks. Quarantine after arrival in a location is an efficacious way
to reduce the rate of importations.

Conclusions

Locations that see no or low level local transmission should ensure that the
rate of importations remains low. A high level of compliance with post-
arrival quarantine followed by testing achieves this objective with less of an
impact than travel restrictions or bans.
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1 Introduction

The spatio-temporal spread of COVID-19 is documented by a sequence of
importation times reported at different administrative levels. See, for in-
stance, the works1–4 for accounts of early post-importation spread in several
countries. Canada is used here as an example; the first confirmed case was
reported in Ontario on 25 January 2020. British Columbia reported a case
on 28 January 2020, but other provinces and territories (P/T) did not report
cases until March or later, with Nunavut still having not reported confirmed
cases at the time of writing. Figure 1 shows the evolution of the percent-
age of jurisdictions having reported at least one new case in the past three
weeks, for P/T and 112 Canadian health regions.5,6 The initial increase in
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Figure 1: Percentage of provinces, territories and health regions in Canada
having declared new confirmed cases of COVID-19 in 2020 in a three weeks
period.

the number of jurisdictions affected was entirely driven by case importations
to these jurisdictions. Later increases are indicative of importation of a case
from another jurisdiction or existence of silent transmission chains lasting
more than three weeks.

In the first phase of the pandemic, most countries (or lower level bodies
in federal countries with devolved health care) took global, one-size-fits-all
measures. After this initial lockdown period during which travel was also
severely hampered, a second phase has now started, with local transmission
down in some jurisdictions. However, with no therapeutic tools or vaccines
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yet available, preparations must be made for a potential increase of trans-
mission in some jurisdictions. Were this to happen, many locations would
be re-importing cases. It seems important, in this context, to apply a more
measured approach than the total top jurisdiction-level lockdowns that were
used; the enormous economic cost of the first wave of lockdowns, combined
with the potential diminishing compliance of individuals with public health
measures, impose that public health authorities find ways to mitigate spread
that are finer grained.

As part of the arsenal of measures available to public health authorities
in the fight against the spread of COVID-19, there are some that are specif-
ically geared towards the reduction of the risk of case importations: travel
restrictions or bans, self-isolation upon arrival, etc. See the Electronic Sup-
plement A.1 for details These measures have different effects and varying
efficacy. In order to evaluate their relative effectiveness, it is important to
better understand the importation process.

Some works7–16 have considered the link between transportation and
importation of COVID-19. We complement these works here by finely de-
composing the process through which cases are imported into different types
of events and focusing on the role of the rate at which a location is “chal-
lenged” by importations. We also consider the efficacy of the main method
for reducing this rate while maintaining mobility: quarantine.
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Figure 2: Spatialisation process: transport of cases from other locations;
importation into the location of interest; local amplification; exportation to
other locations. Red indicates control methods. See A.1 for details.

Importations are a critical component in the spatialisation of COVID-19
and other emerging or re-emerging infectious diseases, the overall spread
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phenomenon being driven by the repetition of transport, importation, am-
plification and exportation events. We further classify importations as un-
successful if they do not lead to any local transmission chains or successful
if they do. Successful importations then depend on the type of transmission
chains they generate: they are noncritical or critical if they lead, respec-
tively, to minor or major outbreaks. See Figure 2 and A.1 for details.

Here, we consider importations of COVID-19 to locations that are not
in the amplification stage and where importations could tip the balance in
the direction of entering amplification. These include locations that have
not had local cases yet, saw local transmission chains that have since extin-
guished or are seeing limited local transmission. The main issue tackled in
this paper is the assessment of the risk that a successful importation occurs
depending on the rate of case importations and local conditions, as well as
the effect of post-arrival quarantine on these rates. To consider the problem,
we use an SLIAR model “stimulated” by individuals flowing in from other
locations.

2 Methods

To track individual events and gain access to quantities such as the pro-
portion of successful importations, we formulate the model as a continuous
time Markov chain (CTMC).17 The setting under consideration is a single
location in which the population is assumed to be homogeneously mixing.
Initially, there are no active cases in the community; the model tracks the
fate of the cohort of individuals who are susceptible to the disease. We con-
sider the short term response of the model to stimulations taking the form
of inflow of infected individuals, as schematised in Figure 3.

2.1 Epidemiological model and parameters

The structure of the model is detailed in A.2 and A.3, with the epidemi-
ological model detailed in Figure ES.8: susceptible individuals, upon in-
fection, move to the latent compartment. (Incubation and latent periods
are assumed to overlap.) When their latent period is over, they can either
progress to a symptomatic infection or to an asymptomatic one. At the end
of the infectious period, individuals are removed (they recover or die); they
no longer spread the disease. Post-recovery immunity is assumed to last at
least as long as the (short) period of time under consideration.

We adopt a case detection-based approach. Symptomatically infectious
individuals are those who have been detected through testing, reporting
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or hospitalisation, i.e., individuals who appear as confirmed cases in the
data. Asymptomatically infectious individuals include those who are asymp-
tomatic in the usual sense, but also symptomatic cases that avoid detection
because of lack of testing. In the perspective of response to a crisis, using
such a case detection-based definition for symptomatic and asymptomatic
individuals allows to tailor model outputs to the situation in the location un-
der consideration. This is further enhanced by using compartments RI and
D directly connected to published data (Figures 3 and ES.8). One draw-
back from using a case detection-based distinction between symptomatic
and asymptomatic cases is that the parameters involved (π, δ and η) in-
corporate not only disease characteristics but also some information about
health policies specific to the location under consideration. For instance,
locations performing a lot of testing have a lower proportion of individuals
following the asymptomatic route, i.e., a lower value of π, than those doing
less testing.

Parameter Definition Value

β transmission coefficient obtained via (ES.1)
η modulation of transmission for incu-

bating individuals
0.054

ξ modulation of transmission for
asymptomatic individuals

0.23

π fraction of asymptomatic individu-
als

0.2

δ case fatality ratio 0.022
2/ε mean duration of incubation 5.71 days
2/γ mean duration of infectious period 10 days
Rt effective reproduction number [0.5, 2.5]

1/λ average number of days between im-
portations

[1, 50]

pX probability of importation of type X
individual

pX ∈ [0, 1]

Table 1: Model parameters.

Simulations are tailored to locations, i.e., health regions or cities. The
initial susceptible population, S(0), is the total population of the location
under consideration, adjusted for pre-existing immunity if transmission oc-
curred in the past. Epidemiological parameters are the means of those in18

as well as values commonly found in the literature. Epidemiological and
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importation parameters are listed in Table 1. Simulations are run using
the exact method in the R package GillespieSSA2 with a time horizon of
three months (92 days). Unless otherwise indicated, 1,000 simulations are
run for each combination of parameter values and, when applicable, initial
conditions.

2.2 Response of the system to case importations
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Unsuccessful importation

Figure 3: Input-output setting: imports arrive through transport, are po-
tentially funnelled through quarantine, then enter one of the infected com-
partments. The three types of outcomes considered are shown on the right.

Inputs to the system with transition probabilities (ES.3) are the importa-
tion events, i.e., stimulations taking the form of inflow of infected individuals
as described by (ES.5); outputs are the responses of the system to these im-
portation events. The nature of importation events and resulting outputs
considered are summarised in Table 2.

Of particular interest here is the consideration of these responses in terms
of the severity of importations as defined in A.1 and briefly summarised here.

• An unsuccessful importation has the import case not resulting in the
transmission of the disease to anyone in the local population; in other
words, there are no susceptible to latent (S → L1) transitions.

• A successful importation sees the import case resulting in at least one
local case. Successful importations are further classified as follows.
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– A noncritical successful importation is one that is followed by a
minor outbreak.

– A critical successful importation is one followed by a major out-
break.

Minor and major outbreaks are defined as in a seminal paper of Whittle;19

see details in A.6. Finally, we say that the disease is locally extinct if there
are no more cases of any type in the population under consideration.

3 Results

Table 2 summarises the questions investigated with the model and the out-
puts presented in the results.

3.1 Single stimulation simulations

3.1.1 Role of the type of importation

The nature of the import case is important, as evidenced in Table ES.3. As
can be expected, the earlier in the disease cycle an infected individual is
when they are introduced in a population, the longer they spend interacting
with others and thus the higher the risk that they transmit the disease. For
instance, from Table ES.3, importing a single L1 latent case is followed by
a major outbreak in 11.5% (Rt = 1.2) to 70.1% (Rt = 2.5) of simulations,
while importation of an A1 asymptomatic case leads to a major outbreak
in 3.5% (Rt = 1.2) to 30.2% (Rt = 2.5) of simulations. For comparison, a
recent study by Kucharski et al15 found that a single importation leads to
a large outbreak 17% to 25% of the time.

The nature of import cases is, to a large extent, a random hand that is
dealt to importing jurisdictions. Unfortunately, most control measures they
can implement “upstream” from an importation only have the capacity to
remove symptomatically infectious individuals from the incoming flow, so
that, in particular, latently infected individuals still can arrive.

3.1.2 Role of the size of the importation

The size of the importation is naturally a key factor in the risk of importa-
tion, as was already established by Kucharski et al.15 To illustrate this and
using outbreak severity criteria defined in A.6, let us focus on importations
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Question Input Output

Single stimulation

Nature of im-
portation

At t = 0, importation of 1 in-
dividual of type I

Probability of no out-
break, minor and major
outbreak

Model: (ES.3) First occurrence of I1,
Time to local extinc-
tion, serial interval

Size of impor-
tation

At t = 0, importation of N
individuals of type U

Probability of no out-
break, minor and major
outbreak

Model: (ES.3)

Chain of stimulations

Rate of impor-
tation vs effec-
tive reproduc-
tive number

Importation of 1 individual of
a type U with pU = 1 at rate
λ

Probability of no out-
break, minor and major
outbreak

Model: (ES.3)+(ES.5) Attack rate

Modulation of chain of stimulations

Quarantine N individuals of type U arriv-
ing at rate λ are quarantined
for tq days

Quarantine efficacy

Model: (ES.3)+(ES.5) for tq
days with β = 0

Quarantine-regulated
importation rate

Table 2: Simulation strategies. Questions addressed with the model and
specification of inputs and outputs used. Individuals of type I are those
infected with the disease, i.e., I ∈ {L1, L2, I1, I2, A1, A2}. Individuals of
type U are unobservable infected, i.e., U ∈ {L1, L2, A1, A2}.
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Figure 4: Proportions of critical (dotted red) and noncritical successful (solid
blue) importations as a function of the initial number of imported L1 cases.
Circles: Rt = 0.8, squares: 1.2 and triangles: 2.5.

of individuals in the L1 compartment. Qualitatively similar results are ob-
tained by considering importations of other types of infected individuals but
are not shown here.

Figure 4 shows the proportion of simulations with successful importa-
tions followed by major and minor outbreaks as a function of the impor-
tation size, i.e., the initial number of L1 individuals, for different values of
the effective reproduction number Rt. The proportion of simulations with
critical successful importations, i.e., those followed by a major outbreak, is
sensitive to the value of Rt. Therefore, the value of Rt may significantly
change the outcome if several infected individuals arrive simultaneously. The
proportion of simulations with noncritical successful importations shows a
maximum at a given initial number of L1. Indeed, when the initial number
of L1 increases, it is more likely to trigger a critical successful importation
than a noncritical one.

Here, there are obvious implications in terms of disease control, since
one of the mechanisms leading to multiple simultaneous importations is
infection during transport. Take for instance a location maintaining good
but not perfect local conditions (Rt = 1.2). If it receives four L1 individuals,
then there is roughly a 50/50 chance that this leads to a major outbreak. If,
on the other hand, these four individuals each infect another person during
transport because of inadequate protocols aboard the incoming conveyance,
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then the odds of a major outbreak jump up to 3/4.

3.2 Effect of importation rates and NPI efficacy

We now consider the effect of repeated importations. We suppose that in-
dividuals arrive in the location through the importation process defined in
(ES.5) by the Poisson distribution with parameter λ. The rate of impor-
tation λ from a given location can be approximated from epidemiological
and travel characteristics of the origin location of the import case using
(ES.6); the rate of importation from all sources is given in (ES.7). We
vary 1/λ, the mean number of days between importation events. Here,
pL1 = pL2 = pA1 = pA2 = 0.25 and pI1 = pI2 = 0 (we suppose I individuals
are not able or allowed to travel).
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Figure 5: Proportion of successful importations (SI, grey scale) and attack
rates (blue scale) in a 3 month period for different values of the average
number of days 1/λ between two importations and Rt, an indicator of NPI
efficacy.

Both the rate of case importations and the local effective reproduction
number Rt have an effect on the capacity of the disease to become estab-
lished in the population. The larger Rt, the less efficacious the NPI. The
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raster in Figure 5 shows the proportion of simulations with a successful
importation over a three month period.

When importations occur infrequently, local conditions are key. For
instance, if importations occur on average every 40 days, local conditions
change the risk of post-importation outbreaks over a three months period
from roughly 40% to 70% of simulations. As the rate of case importations
increases, post-importation outbreaks are increasingly likely for all local
conditions, to the point that when cases are introduced every three days or
less, 99% of simulations see outbreaks, regardless of the effort of local control.
Thus, reducing the importation rate is key to preventing outbreaks.

On the other hand, the severity of the outbreaks is also sensitive to the
value of Rt. The dots in Figure 5 show the attack rate of the disease in
the population over the three months period considered, computed as the
ratio (expressed as a percentage) (S(0)−S(tf ))/S(0)), where S(0) and S(tf )
are the number of susceptible individuals at the beginning and end of one
simulation, respectively. Even though the probability of an outbreak is high
when the rate of importations is high, regardless of local NPI effort, the
intensity of local NPI effort greatly changes the outcome. Indeed, consider
the attack rates where the average number of days between importations
is one day (left-most column in Figure 5). Attack rates there range from
13.1% when Rt = 2.5 to 0.02% when Rt = 0.5. So, although the probability
of importing the disease is roughly equal for this high importation rate, the
severity of outcomes is very different. For Rt > 1, we distinguish between
minor and major outbreaks using the threshold τ defined in A.6. This is
shown in Figure ES.10.

3.3 Effect of post-arrival quarantine

The rate of importations plays a critical role in the risk that importations
will trigger local transmission chains (Figure 5). The status of individuals
when they arrive is also very important (Table ES.3). In order to evaluate
the benefit of post-arrival quarantine, we proceed to the following simple
numerical experiment. We consider Poisson generated chains of importation
events, where each importation event is one of L1, L2, A1 or A2, i.e., one of
the undetected infected states. These chains are run through (ES.3) with no
transmission (β = 0) and for tq days, where tq is the duration of quarantine.
Running the chains with no transmission means we consider the evolution
of each individual case through disease stages during the quarantine period.
Figure 6 shows, for quarantine periods of 7 and 14 days, the transitions
between stages at the beginning and end of quarantine. We highlight in
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Figure 6: Evolution of the status of import cases during a (left) one or
(right) two week quarantine period imposed upon arrival. Dark grey flows
are individuals who are still a risk to the jurisdiction at the end of the
quarantine period. Here, simulations were run for 2,500 individuals of each
type of undetected cases L1, L2, A1, and A2 entering quarantine.
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dark grey individuals who are still a risk to the community at the end of
their quarantine period since they are still in unobservable stages U (see B.6
for details).

In order to investigate the effect of the duration tq of quarantine, as
observed in Figure 6, we now quantify the efficacy of quarantine as the
probability that a case that is initially unobservable becomes observable or
recovers. Figure 7 shows the probability of success of quarantine (its efficacy
c) as a function of its duration, for different values of the proportion π of
asymptomatic and undetected cases. The curves here are obtained by using
the method in B.6.
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Figure 7: Probability c that the quarantine is successful as a function of
its duration tq. From dark to light grey: fraction π of asymptomatic or
undetected cases varying from 0.1 to 0.9 by steps of 0.1.

We observe that the probability c of success of the quarantine increases
with the duration of quarantine, as could be expected. Furthermore, from
Figure 7, testing helps the success of quarantine. Indeed, consider for in-
stance the most widely used duration of quarantine: two weeks. If 90% of
cases are asymptomatic or undetected, as could happen in a location making
no effort to follow people during their isolation, the efficacy of quarantine
would be about 70%. Efficacy would reach 90%, on the other hand, if only
10% of cases went undetected.

Note that the effect of quarantine on the rate of importation is derived
directly from the efficacy c of quarantine. If λ is the rate of importation
prior to quarantine and λq is the quarantine-regulated rate of importation,
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then λq = (1 − c)λ. Consider Figure 5, whose abscissa is expressed in
units of 1/λ. The effect of a quarantine with efficacy c is to scale the days
between importations right by a factor of 1/(1− c). Consider a jurisdiction
receiving a case on average every five days. A 50% efficacious quarantine
leads to receiving one case every 10 days on average, while a 90% efficacious
quarantine leads to receiving one case every 50 days on average.

4 Discussion

The main results of this study are summarised by Figure 5, where the pro-
portion of successful importations is given as a function of the effective
reproduction number Rt and the average number 1/λ of days between im-
portations, and Figure 7, which shows the probability that quarantine is
successful as a function of its duration tq. We use Rt as a measure of the
effort of local public health authorities.

For an initially susceptible population, the probability of an outbreak
increases with the rate of importations, even when Rt < 1, so that with
importations every few days or less, outbreaks are almost certain, regardless
of local efforts. However, the resulting attack rates increase with Rt. With
the parameters chosen for simulations, if case importations occur more than
once every 10 days on average, then using measures to reduce Rt to 0.5 still
gives a 90% chance of outbreak, but with an attack rate of less than one
percent at the end of three months. Thus, at the beginning of the spread,
it is crucial to first hinder the importation of new cases in the location to
reduce drastically the chance of an outbreak.

The sensitivity of the efficacy of the quarantine to its duration and to
monitoring effort seen in Figure 7 and the resulting scaling of importation
rates have important policy implications. A location receiving few cases
because it is connected only to places with zero or low prevalence could
reasonably adopt a shorter (seven to ten day) quarantine period and still
achieve a large right scaling on the importation risk (Figure 5), provided
it also implements a high level of follow up of quarantining individuals.
Locations receiving cases at a high rate will need to ensure that quarantine
is longer and with high compliance with the imposed duration, since non-
compliance is equivalent to imposing shorter quarantines.

Our results apply to populations that see very few or no cases at all.
They can however be applied to places seeing more cases if appropriate
contact tracing allows to distinguish between cases stemming from imported
cases and community generated cases. They can also be applied in general,
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but it will then be difficult or impossible to distinguish, as we do here,
between cases generated by importations and community transmitted cases.
Note that our results are also robust to the values used for parameters.
We chose to use parameters mostly stemming from other work we have
carried out on COVID-19, but we could also have used values from the now
abundant literature on the subject. This would modify some of the graphs
in a limited manner but would not alter our conclusions. We will make some
of our code available on Github so it will be easy for readers to tailor our
results to their specific situation. The approach used here allows to focus
on the rate at which cases are imported and is in this sense quite different
from other published work on the topic, which amalgamates several distinct
components. It is useful, though, to provide some sense of the type of rates
one can expect to observe. A formula and some examples are provided in
Section A.5.
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A Methods

A.1 Mechanisms of spatialisation of epidemics and the na-
ture of importations

We give here more details about the notions summarised in Figure 2 concern-
ing the spatialisation of epidemics. Also, we make explicit the definitions
regarding importations used in all the work.

Transportation is the actual movement of an infected individual to a new
location. Importation occurs when an infected individual having acquired
their infection in one location arrives in a different location while still in-
fected with the disease. There can be two outcomes to an importation event;
our terminology uses the point of view of SARS-CoV-2, the ætiological agent
of COVID-19.

• An unsuccessful importation is one that does not lead to any further
local transmission. Note that unsuccessful importations usually are
not detected. It is possible that a location will see many unsuccessful
importation events before it actually detects one.

• A successful importation is one that leads to at least one local trans-
mission event, i.e., where the import case becomes the origin of one or
more local transmission chains.

Amplification is then a critical phase of propagation that typically follows a
successful importation. During amplification, cases multiply within a com-
munity, usually exponentially. In view of this, we define the severity of a
successful importation as follows.

• A noncritical successful importation results in local chains of trans-
mission that are not sustained, i.e., a minor outbreak. Case counts
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remain low before eventually dying out. As for unsuccessful importa-
tions, some of these local chains of transmission might go completely
unnoticed.

• A critical successful importation sees sustained local chains of trans-
mission. This is a major outbreak.

Finally, exportation is the process through which a community that is seeing
some local transmission becomes the source of transportation events. Note
that exportation does not require amplification to be taking place, although
amplification does increase the probability that an individual leaving the
community is harbouring the pathogen.

In our classification, exportation and transportation are very closely re-
lated. They are, however, considered as separate processes because they pro-
vide different entry points into the control of the spatial spread of COVID-
19. Here, some methods of control of the spatial spread of an epidemic are
listed.

• Acting on transportation involves limiting the number of individuals
hailing from known exporting locations that are allowed to enter one’s
jurisdiction. In the case of COVID-19, this has taken the form of
partial or complete travel bans.

• To minimize the chance that, were an importation to occur, it be a
successful one, most jurisdictions imposed a quarantine for travellers
inbound from other locations. Some jurisdictions also implemented
entry screening.

• Once successful importations occur, jurisdictions used a variety of non-
pharmaceutical interventions (NPI) to limit spread, i.e., curtail the
amplification phase.

A.2 Structure of the epidemiological model

The structure of the epidemiological model is a slight modification of the
SLIAR model in,1 itself a modified version of the SLIAR model in.2 The
flow diagram is as shown in Figure ES.8: susceptible individuals, upon in-
fection, move to the latent compartment. (Incubation and latent periods
are assumed to overlap.) When their latent period is over, they can either
progress to a symptomatic infection or to an asymptomatic one. At the end
of the infectious period, individuals are removed ; they no longer spread the
disease.
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Figure ES.8: Flow diagram of the SL1L2I1I2A1A2RIRAD model. Φ =
β(I1 + I2 + ξ(A1 +A2) + ηL2) is the force of infection. Blue compartments
are observable, with I1 and I2 usually indistinguishable and observed as
I1 + I2.

As in Arino & Portet,1 there are two each of the latent, symptomati-
cally infectious and asymptomatically infectious compartments. This is so
that the time of sojourn in these disease states is Erlang distributed; see
B.3. Also, the force of infection Φ includes contributions not only from
symptomatic infectious I and asymptomatically infectious A individuals
but also from individuals in L2. This is to accommodate observations of
pre-symptomatic COVID-19 infections.3 Finally, contrary to,1 the removed
compartment is further subdivided into compartments for individuals hav-
ing recovered from symptomatic and asymptomatic infections, RI and RA,
respectively, and those having died from the disease, D.

Symptomatically infectious individuals are those who present symptoms
and should normally be detected through testing, i.e., individuals who ap-
pear as confirmed cases in the data. Asymptomatically infectious individu-
als include those who are asymptomatic in the usual sense, but also symp-
tomatic cases that avoid detection because of lack of testing. In the per-
spective of response to a crisis, using a case detection-based definition for
symptomatic and asymptomatic cases allows to tailor model outputs to the
situation in the location under consideration. This is further enhanced by
using compartments RI and D directly connected to published data.

One drawback from using a case detection-based distinction between
symptomatic and asymptomatic cases is that the parameters involved (π,
δ and η) must be understood as incorporating not only disease characteris-
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tics but also some information about the location under consideration. For
instance, locations performing a lot of testing will typically have a lower pro-
portion of individuals following the asymptomatic route, i.e., a lower value
of π, than those doing less testing.

Some notation is introduced to make discussions simpler. Individuals of
type I are those infected with the disease, i.e., I ∈ {L1, L2, I1, I2, A1, A2}.
The prevalence of infection at time t is then I(t) = L1(t) + L2(t) + I1(t) +
I2(t) + A1(t) + A2(t). Individuals of type U are unobservable infected, i.e.,
U ∈ {L1, L2, A1, A2}. Observable infected are O ∈ {I1, I2}. The prevalence
of unobservable and observable infections are obtained like that of infected
cases, by summing the corresponding state variables. We can also define
sets UT and OT for, respectively, total unobserved and observed cases, by
adding RA to U and RI and D to O; these will not be used here.

We refer to1 for some basic properties of the corresponding ordinary
differential equations (ODE) model and just mention here that the effective
reproduction number of the ODE version is

Rt = β

(
2
πξ

γ
+ 2

1− π
γ

+
η

ε

)
S(0), (ES.1)

where S(0) is the initial susceptible population.1 This formula is applicable
to the stochastic model and is therefore useful to set some parameter values.
It is used for instance when considering the intensity of NPI measures in the
local community.

A.3 Base model with a single importation event

Let t ∈ [0,∞) be a continuous variable (time). The random vector V(t)
defined as

(S(t), L1(t), L2(t), I1(t), I2(t), A1(t), A2(t), RI(t), RA(t), D(t))

is the state of the system at time t. Denote ∆V(t) = V(t+ ∆t)−V(t) the
change in system state in the time interval [t, t+∆t], with ∆t > 0 sufficiently
small to have at most one change during this interval. The probability of a
transition is

P (∆V(t)|V(t)) , (ES.2)

where ∆V(t) = (∆S,∆L1,∆L2,∆I1,∆I2,∆A1,∆A2,∆RI ,∆RA,∆D). The
components ∆S,∆L1, . . . ,∆D take only the values ±1 and 0 because of the
hypothesis on ∆t being small enough. Transition probabilities are defined
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as follows (only nonzero values are shown):

Rate ∆S ∆L1 ∆L2 ∆I1 ∆I2 ∆A1 ∆A2 ∆RI ∆RA ∆D

ΦS −1 1
εL1 −1 1
(1− π)εL2 −1 1
γI1 −1 1
δγI2 −1 1
(1− δ)γI2 −1 1
πεL2 −1 1
γA1 −1 1
γA2 −1 1

(ES.3)

Parameters are β, the transmission coefficient, η and ξ the modifications
of infectiousness for individuals who are, respectively, pre-symptomatically
and asymptomatically infectious. A fraction π of individuals moves into
an asymptomatic phase following incubation (and correspondingly, 1 − π
develop symptoms or are detected). Because of the interpretation that we
make of the symptomatic cases being those that are effectively detected, π
is in essence a combination of the proportion of cases that are asymptomatic
and those that are symptomatic yet avoid detection.

Finally, ε and γ describe the rates at which incubation and infectiousness
end, respectively. The fraction δ is the case fatality ratio; it is assumed that
asymptomatic cases are mild and never lead to death.

Model (ES.3), when it is used to consider single introduction events,
is combined with initial conditions at time t = 0 of the form S(0) = S0
(the initial susceptible population), RI(0) = RA(0) = D(0) = 0 and one
or several of L1(0), L2(0), I1(0), I2(0), A1(0) or A2(0) containing an integer
number of individuals. In most cases, we consider the importation of a single
individual, although in Section 3.1.2 we consider the effect of introductions
of more than one infected individual.

When considering importations of a single infected individual at time
t = 0, explicit formula can be derived concerning probabilities of events
affecting individuals. For instance, suppose that importation is of a single
infected individual in the L2 compartment, i.e., L2(0) = 1 with all other
infected compartments empty. The probability that this individual recovers
or dies from the disease without ever transmitting the virus is(

(1− π)ε

ε+ βηS(0)

)(
γ

γ + βS(0)

)2

+

(
πε

ε+ βηS(0)

)(
γ

γ + βξS(0)

)2

. (ES.4)
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The first term is the probability of progression from L2 to I1 without local
transmission. The second one is the probability of progression from I1 to
D or RI without local transmission. The third term is the probability of
progression from L2 to A1 without local transmission and the last term is
the progression from A1 to RA without local transmission.

A.4 Adding repeated importations to the model

A case importation event is described by three components: the time at
which the event occurs, the size of the importation (the number of cases
imported simultaneously), and the type (epidemiological status) of cases
that are imported. In order to better understand the role of the rate of
importation and lower the number of parameters affecting the output of the
model, we suppose here that all importations are of size 1 and focus on the
rate (timing) and nature (type) of importations.

The timing of importations is described using a Poisson process with a
parameter λ; the mean time between importation events is 1/λ. An im-
ported infected individual can belong to one of the six compartments L1,
L2, I1, I2, A1 or A2; the infectious status of the imported individual is the
type of the importation event. The probability of each type is given by pL1 ,
pL2 , pI1 , pI2 , pA1 and pA2 where pL1 + pL2 + pI1 + pI2 + pA1 + pA2 = 1.

So the model with repeated importations is the CTMC with transition
rates given by (ES.3), with initial condition S(0) = S0 and all other com-
partments zero, to which the following transitions are added.

Rate ∆L1 ∆L2 ∆I1 ∆I2 ∆A1 ∆A2

λpL1 1
λpL2 1
λpI1 1
λpI2 1
λpA1 1
λpA2 1

(ES.5)

A.5 Estimation of importation rates

The number per day of case arrivals in destination from origin i can be
approximated by:

λi ' fraction active cases among population at origin i

× fraction undetected among active cases at origin i (ES.6)

× number of PAX per day from origin i to destination.
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In general, a given location is connected to many other locations, say,
N of them. Using (ES.6), we obtain a value λi for each of the i = 1, . . . , N
locations that are potential sources of importation for the location under
consideration. As arrival times are Poisson distributed, from the perspec-
tive of the receiving location, arrival times of events are independent expo-
nentially distributed random variables. As a consequence, the parameter of
the Poisson distribution for a location is obtained by considering competing
risks and

λ =
N∑
i=1

λi. (ES.7)

A.6 Characterising outbreak severity

To define the severity of the outcome, a threshold τ is chosen by adapting the
results developed by Whittle19 for a simpler stochastic SIR model. Whittle
establishes that the probability of a major outbreak for an SIR model is
1− (1/Rt)

I(0) if Rt > 1, while no major outbreak is possible when Rt < 1,
where I(0) is the initial number of infected individuals in the population.
He also establishes the probability of a minor outbreak when Rt < 1, but
this is not used here as we employ a different method for detecting minor
outbreaks. Rather than computing the probability of a major outbreak,
we decide on a probability p (in practice, p = 0.95) of observing a major
outbreak and set the threshold τ = − ln(1 − p)/ ln(Rt). This threshold is
then interpreted as follows: suppose that during a simulation, we observe
a successful importation; if at some point following the importation, the
prevalence of the disease increases to or past τ , then with probability p, a
major outbreak occurs.

As a consequence, we classify the type of importation events as follows.

• A successful importation sees an S → L1 transition for a local suscep-
tible individual.

• An unsuccessful importation event does not lead to such a transition.

• A critical successful importation is detected by checking, whenRt > 1,
whether for some t ∈ [0, tf ], the prevalence of infection I(t) > τ . There
is no major outbreak (and thus no critical successful importations) for
Rt < 1.

• A noncritical successful importation is a successful importation that
is not critical.
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Severity can be further evaluated using observable infected cases O(t),
unobservable infected cases U(t), and total prevalence of infection I(t).

B Results

The examples that follow use the data for Prince Edward Island (PEI).
Although not completely homogeneous, PEI is small in surface area (5,660
square kilometres) and quite densely populated (25 inhabitants per square
kilometre). PEI can be reached by plane, ferry and through a bridge linking
it to the continent (the Confederation Bridge). PEI has, to this point, had
very few cases of COVID-19, most of them being imported.

B.1 Role of the nature of the import case

Compartment with initial case
Rt L1 L2 I1 I2 A1 A2

UI 0.8 0.511 0.500 0.509 0.669 0.805 0.888
– 1.2 0.401 0.434 0.347 0.597 0.757 0.848
– 2.5 0.210 0.268 0.164 0.407 0.607 0.756

NSI 0.8 0.489 0.500 0.491 0.331 0.195 0.112
– 1.2 0.484 0.458 0.518 0.309 0.208 0.132
– 2.5 0.089 0.065 0.073 0.088 0.091 0.054

CSI 0.8 0 0 0 0 0 0
– 1.2 0.115 0.108 0.135 0.094 0.035 0.020
– 2.5 0.701 0.667 0.763 0.505 0.302 0.190

Table ES.3: Proportion of simulations with unsuccessful (UI), noncritical
(NSI) and critical (CSI) successful importations, as a function of the type
of initial case.

Since L1 individuals are not yet infectious to others, their effect on the
proportion of simulations going to local extinction is not different from intro-
ducing an L2 individual. Importation of an asymptomatic case is more likely
to be unsuccessful; this is even more noticeable late stage asymptomatic A2

cases. Indeed, in the simulations, asymptomatically infected individuals are
less infectious and those in A2 spend, together with those in I2, the least
amount of time in the population (parameter values used in simulations are
given in Table 1). The effect of the length of time spent in the population is
also visible for symptomatically infectious individuals, as evidenced by the
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difference between proportions of simulations with local disease extinction
for I1 and I2 imports. Note that the proportion of simulations with unsuc-
cessful importation (UI) can be computed theoretically from equations such
as (ES.4). For instance, taking an initial case L2, the probability that the
individual dies or recovers from the disease without transmitting the virus
is 0.5288 (resp. 0.4176 and 0.2351) for Rt = 0.8 (resp. 1.2 and 2.5) from
(ES.4); compare these values with the values of unsuccessful importations
for L2 in Table ES.3. In further simulations, we assume that I individuals
cannot travel.

B.2 Time to detection of local cases after importation

We continue with single stimulation simulations and present here results
not discussed in the main text. We take the example of importation at time
t = 0 of an L1 individual; results are qualitatively similar for importations
of other types, with only the time distributions varying.

T
im

e 
(d

ay
s)

Time to extinction First local I1 First import I1 Serial interval

0
30

60
90

Figure ES.9: Time to extinction of the disease, first detected locally infected
individual, first detected imported case, and serial interval. Base case simu-
lation with S(0) = 142, 906 (population of Prince Edward Island), L1(0) = 1
and all other states equal to 0. Horizontal lines indicate the median value.
Black rectangles are the inter-quartile range. Here, Rt = 0.8.

In Figure ES.9, the first violin plot describes the distribution of local
extinction times, the second shows the time distribution of the first local
detected case, the third represents the time distribution of the first import
detected case, i.e. when the import case L1 becomes I1. The distribution
of serial intervals generated by the index case is shown on the right. Here,
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we define the serial interval as the length of time between the start of the
simulation (i.e., the importation of an L1 individual) and the time at which
the first local infection occurs (S → L1 transition).

The median time to the detection of the first symptomatic infection
(I1 individual) following an importation event is 4.7 days (95% confidence
interval 1.01 − 13.6) for the import case and 15.3 days (95% confidence
interval 6.04−30.6) for a local case. In contrast, the first local infection event
(S → L1 transition) occurs, on average, 9.4 days following an importation
event (95% confidence interval 2.7− 21.8), and more than 81% of these first
infections occur after 5 days (roughly the median time of the first L2 → I1
transition).

Thus, if the import case is detected, this happens generally slightly be-
fore the first local transmission event takes place. In such a situation, the
immediate isolation of the infected import case can prevent over half the
local transmissions this individual would make. Note that this highlights
the importance of quarantine: those transmissions that happen before iso-
lation would not have taken place had this individual been quarantine. So
quarantine is an efficacious way to compensate for delays in detection and
isolation.

Most first detections of local I1 take place within 20 days following the
importation of an L1 individual; however, in some situations, the first in-
fected and detected I1 individual appears more than 30 days after the im-
portation event. This characterises silent local transmission chains, i.e., ones
involving only asymptomatically infected individuals.

B.3 Effect of the distribution of incubation periods

As mentioned in Section 2.1, compartments for L, I and A are subdivided
in order to have Erlang distributed times of sojourn in these compartments
rather than exponentially distributed ones. For instance, an individual
traversing the two compartments L1 and L2 at the rate ε spends an av-
erage time 2/ε between entry into L1 and exit from L2, with their time of
sojourn Erlang distributed.

Between the incubation and infectious periods, the average COVID-19
patient spends an average of 15 days infected. The time horizon for the
present work and for other work on COVID-19, on the other hand, is short.
With such commensurate time scales, the variance of distributions becomes
important. Several papers have considered distributions of incubation peri-
ods.4,5 Early work on 181 patients outside Hubei province before 24 Febru-
ary 20204 found the best fit for the distribution of incubation times for these
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patients to be an Erlang distribution with shape parameter (the number of
compartments needed in our approach) equal to six. In order to judge the
effect of using more compartments to obtain a better shaped distribution of
incubation times, we ran the same simulations as in Table ES.3, with six L
compartments instead of two as in the rest of this work. Results are shown
in Table ES.4; the model is robust to the number of latent compartments
used.

Compartment with initial case
n L1 L2 I1 I2 A1 A2

UI 2 0.401 0.434 0.347 0.597 0.757 0.848
– 6 0.436 0.392 0.379 0.586 0.746 0.836

NSI 2 0.484 0.458 0.518 0.309 0.208 0.132
– 6 0.464 0.513 0.497 0.350 0.225 0.151

Table ES.4: Proportions of simulations with unsuccessful (UI) and non-
critical successful (NSI) importations, as a function of the type of initial
case, when Rt = 1.2. n is the number of latent compartments used in the
simulations.

B.4 Estimation of importation rates

As some of our numerics is inspired by the example of Prince Edward Island
(PEI), let us continue with this. The first day of the “Atlantic bubble”,
where residents of all Maritime provinces of Canada were allowed to travel
freely between these provinces, 8,500 people used the Confederation Bridge,
which links PEI to the continent (in New Brunswick), going towards PEI.
Suppose that cases in this flow happen with the same rate as in the general
population and that prevalence in the general population can be deduced
from confirmed case counts.

Assume that all travellers to PEI that day came from New Brunswick
and that this relaxation of travel restrictions happened when New Brunswick
experienced its highest number of active cases, on 2 April 2020, when there
were 72 active cases.6 The estimate of the population of New Brunswick for
the second quarter of 2020 was 780,890,7 i.e., a fraction of active cases of
0.000092202. Estimates for the prevalence of asymptomaticity vary; how-
ever, let us use the figure we have used throughout: 20%. Based on (ES.6),
this gives 0.156744228 expected cases that day or, in other words, a mean
time between importations of about 6.4 days, implying a rather high risk of
importation (see Figure 5).
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In practice, the Atlantic Bubble was put in place on 3 July 2020, at
which time there was 1 active case in New Brunswick. Reasoning the same
way, the mean time between importations in this instance would be of about
460 days, giving a very low risk of importation.

B.5 Effect of importation rates on outbreak severity

Using the threshold τ derived from Whittle,19 we investigate in Figure ES.10
the proportion of simulations with critical successful importations when
Rt > 1.
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Figure ES.10: Proportion of critical successful importations (CSI) in a 3
month period for different values of the average number of days between
two importations and Rt, an indicator of NPI efficacy.

B.6 Effect of post-arrival quarantine

The efficacy of quarantine can be expressed as the complement of the proba-
bility that an imported case is still in one of the unobservable infected states
L1, L2, A1, or A2 at the end of the quarantine time tq, i.e., the probability
they emerge from quarantine infected and undetected. Consider the matrix
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of transition rates constructed from the entries of the first column of (ES.3),
represented here as the table of transition rates between stages of infection:

L1 L2 I1 I2 A1 A2 RI RA D

L1 −ε 0 0 0 0 0 0 0 0
L2 ε −ε 0 0 0 0 0 0 0
I1 0 (1− π)ε −γ 0 0 0 0 0 0
I2 0 0 γ −γ 0 0 0 0 0
A1 0 πε 0 0 −γ 0 0 0 0
A2 0 0 0 0 γ −γ 0 0 0
RI 0 0 0 (1− δ)γ 0 0 0 0 0
RA 0 0 0 0 0 γ 0 0 0
D 0 0 0 δγ 0 0 0 0 0

Let T be the matrix whose entries are given in this table, and let tij
denote the ith row jth column entry of T. The diagonal entries of T are the
rates of exit from each stage, and tij with i 6= j is the rate of transition from
stage j to stage i. If we let pi(t) denote the probability a given individual
is in stage i at time t then p(t) satisfies the differential equations dp

dt = Tp,
whose solutions are the matrix exponential eTt. Specifically, entries of eTt

are the probabilities an individual is in the corresponding row-stage at time
t conditional on having started in the corresponding column-stage at time 0.
Figure 6 gives a graphical representation of eTt with parameters specified in
Table 1 and t set to 7 days and 14 days respectively. Specifically, the entries
of e7T are as follows:

L1 L2 I1 I2 A1 A2 RI RA D

L1 0.086 0.000 0.000 0.000 0.000 0.000 0 0 0
L2 0.211 0.086 0.000 0.000 0.000 0.000 0 0 0
I1 0.304 0.299 0.247 0.000 0.000 0.000 0 0 0
I2 0.168 0.246 0.345 0.247 0.000 0.000 0 0 0
A1 0.076 0.075 0.000 0.000 0.247 0.000 0 0 0
A2 0.042 0.061 0.000 0.000 0.345 0.247 0 0 0
RI 0.088 0.182 0.399 0.736 0.000 0.000 0.978 0 0
RA 0.023 0.047 0.000 0.000 0.408 0.753 0 1 0
D 0.002 0.004 0.009 0.017 0.000 0.000 0.022 0 1

An individual in stage L2 at time 0 is distributed at time t = 7 according
to column 2 of the table.

If an infected individual with state distributed according to pX arrives
in a community at time 0 and is placed in quarantine for a time tq, then
that individual’s state at time tq has distribution eTtqpX . Further, the
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probability the individual is in one of the states in {L1, L2, A1, A2} at time
t is given by ueTtpX where u is the characteristic vector for undetected
infections, u = (1, 1, 0, 0, 1, 1, 0, 0, 0) and a range of times tq. If, after tq
days, the individual is still in an unobservable state U , then quarantine has
failed. Otherwise, quarantine is considered a success. Recall that, in the
model, I individuals have been detected by the authority, explaining why I1
and I2 individuals are considered as a success of the quarantine. We define
the efficacy of quarantine, c, as the probability,

c = 1− ueTtqpX , (ES.8)

that the imported case is in either an observable state, I1, I2, RI , or D, or
recovered in state RA. Figure 7 represents c for different values of tq, where
ueTtqpX is computed for pX = (0.25, 0.25, 0, 0, 0.25, 0.25, 0, 0, 0)T .

Furthermore, the quarantine-regulated importation rate λq is expressed
by

λq = (1− c)λ. (ES.9)
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