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ABSTRACT 
  
Background: Long-term care facilities (LTCFs) are vulnerable to COVID-19 outbreaks. Timely 
epidemiological surveillance is essential for outbreak response, but is complicated by a high 
proportion of silent (non-symptomatic) infections and limited testing resources.  
  
Methods: We used a stochastic, individual-based model to simulate SARS-CoV-2 transmission 
along detailed inter-individual contact networks describing patient-staff interactions in real LTCF 
settings. We distributed nasopharyngeal swabs and RT-PCR tests using clinical and 
demographic indications, and evaluated the efficacy and resource-efficiency of a range of 
surveillance strategies, including group testing (sample pooling) and testing cascades, which 
couple (i) testing for multiple indications (symptoms, admission) with (ii) random daily testing.  
 
Results: In the baseline scenario, randomly introducing SARS-CoV-2 into a 170-bed LTCF led 
to large outbreaks, with a cumulative 86 (6-224) infections after three weeks of unmitigated 
transmission. Efficacy of symptom-based screening was limited by (i) lags between infection 
and symptom onset, and (ii) silent transmission from asymptomatic and pre-symptomatic 
infections. Testing upon admission detected up to 66% of patients silently infected upon LTCF 
entry, but missed potential introductions from staff. Random daily testing was more effective 
when targeting patients than staff, but was overall an inefficient use of limited resources. At high 
testing capacity (>1 test/10 beds/day), cascades were most effective, with a 22-52% probability 
of detecting outbreaks prior to any nosocomial transmission, and 38-63% prior to first onset of 
COVID-19 symptoms. Conversely, at low capacity (<1 test/85 beds/day), pooling randomly 
selected patients in a daily group test was most effective (9-15% probability of detecting 
outbreaks prior to transmission; 30-44% prior to symptoms). The most efficient strategy 
compared to the reference was to pool individuals with any COVID-like symptoms, requiring 
only 5-7 additional tests and 17-24 additional swabs to detect outbreaks 5-6 days earlier, prior 
to an additional 14-18 infections. 
 
Conclusions: Group testing is an effective and efficient COVID-19 surveillance strategy for 
resource-limited LTCFs. Cascades are even more effective given ample testing resources. 
Increasing testing capacity and updating surveillance protocols accordingly could facilitate 
earlier detection of emerging outbreaks, informing a need for urgent intervention in settings with 
ongoing nosocomial transmission.  
 
 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2020. ; https://doi.org/10.1101/2020.04.19.20071639doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20071639
http://creativecommons.org/licenses/by-nc/4.0/


BACKGROUND 

From nursing homes to rehabilitation hospitals, long-term care facilities (LTCFs) are hotspots for 

COVID-19 outbreaks worldwide.(1) LTCF patients (or residents) require continuing care, live in 

close proximity to one another, and are typically elderly and multimorbid, placing them at 

elevated risk both of acquiring SARS-CoV-2 (the virus) and of suffering severe outcomes from 

COVID-19 (the disease).(2–4) Healthcare workers (HCWs) are also susceptible to infection and 

may act as vectors, transmitting the virus through necessary daily interactions with patients and 

amidst imperfect hygiene and infection prevention measures.(1,5) Although the full extent of the 

ongoing pandemic is unclear and ever-evolving, LTCFs have and continue to bear a 

disproportionate burden of SARS-CoV-2 infection and COVID-19 mortality.(3,6,7) Across 

Europe, for instance, LTCFs have accounted for an estimated 30-60% of all COVID-19 deaths 

as of June 2020.(8)  

 

Effective COVID-19 surveillance is essential for timely outbreak detection and implementation of 

necessary public health interventions to limit transmission, including case isolation, contact 

tracing and enhanced infection prevention.(9–11) The current gold-standard diagnostic test for 

active SARS-CoV-2 infection is RT-PCR (reverse transcriptase polymerase chain reaction), 

typically performed on clinical specimens from nasopharyngeal swabs.(12) Though sensitive 

and highly specific, RT-PCR is relatively resource intensive, must be outsourced for institutions 

lacking on-site infrastructure, and is in many settings subject to shortages and specific usage 

guidelines. For instance, a common practice in LTCFs in France, the Netherlands, the UK, the 

USA and elsewhere has been to restrict testing to individuals presenting with characteristic 

COVID-19 symptoms.(4,13–15) Yet symptomatic infections represent just the tip of the iceberg: 

many infections cause no or only mild symptoms, produce high quantities of virus in the 

absence of symptoms, and experience relatively long delays until symptom onset.(16–19) Silent 

transmission from asymptomatic and pre-symptomatic infections is now a known driver of 
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COVID-19 outbreaks,(20,21) and non-symptomatic cases can act as Trojan Horses, 

unknowingly introducing the virus into healthcare institutions and triggering nosocomial 

spread.(8,22,23) 

 

Insufficient surveillance systems, including those lacking testing capacity or relying only on 

symptoms as indications for testing, have been identified as aggravating factors for COVID-19 

outbreaks in LTCFs.(8,16,24–27) Various surveillance strategies have been proposed to 

optimize testing while accounting for the particular transmission dynamics of SARS-CoV-2, 

including randomly testing HCWs, testing all patients upon admission, and universal or serial 

testing.(28–30) Yet COVID-19 surveillance is limited in practice by available testing capacity 

and health-economic resources, particularly for institutions in low- and middle-income 

settings.(31,32) In light of testing shortages, group testing (pooling samples from multiple 

individuals for a single test) has garnered attention as a potentially effective and resource-

efficient alternative to standard syndromic surveillance.(33–38)  

 

In order to mitigate and prevent future nosocomial outbreaks, there is an urgent need to 

optimize COVID-19 surveillance in long-term care settings, taking into account both the unique 

epidemiological characteristics of SARS-CoV-2 and limited availability of testing resources. 

Here, we investigated the efficacy, timeliness and resource efficiency of a range of COVID-19 

surveillance strategies using simulations from a dynamic SARS-CoV-2 transmission model that 

uses detailed inter-individual contact data to describe interactions between patients and staff in 

long-term care.  
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METHODS 

  

Simulating COVID-19 outbreaks in long-term care 

We simulated nosocomial outbreaks of COVID-19 using a dynamic, stochastic, individual-based 

Susceptible Exposed Infectious Recovered (SEIR) model of SARS-CoV-2 transmission coded in 

C++.(39) The model is described fully in Appendix A using the Overview, Design concepts, and 

Details (ODD) protocol for individual-based modelling.(40) The goals of our model are to 

simulate (i) dynamic inter-individual contacts among patients and staff in an LTCF setting, (ii) 

transmission of SARS-CoV-2 along this simulated contact network, and (iii) clinical progression 

of COVID-19 among individuals infected with SARS-CoV-2. Throughout, COVID-19 refers to 

any case of SARS-CoV-2 infection, and not only symptomatic cases. 

 

Characterizing LTCF structure, demographics, and inter-individual contact behaviour 

We used data from the i-Bird study to inform the population structure and dynamic inter-

individual contact network used in our model. The i-Bird study has been described 

elsewhere;(41,42) briefly, close-proximity interactions were measured every 30 seconds by 

sensors worn by all patients and staff over a 17-week period in a rehabilitation hospital in 

northern France. There were 170 patient beds across the five wards of this LTCF, and staff 

were distributed across 13 categories of employment, grouped here as HCWs (caregiver, nurse, 

physiotherapist, occupational therapist, nurse trainee, physician, and hospital porter) or ancillary 

staff (hospital services, administration, other rehabilitation staff, management, logistical staff, 

and activity coordinator/hairdresser) (Figure 1A). This population structure was used in our 

model, but a novel contact network was simulated to account for missing data resulting from 

imperfect sensor compliance in the raw contact network (Figure 1B; described in Appendix A). 

There were on average 170 patients and 240 staff present each week in the simulated network, 

stratified by ward and type of individual in supplementary Table B1. Contact behaviours were 
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comparable between the raw and simulated networks, and fidelity of the simulated network has 

been validated previously by its ability to reproduce transmission dynamics from a real outbreak 

of methicillin-resistant Staphylococcus aureus in this LTCF.(41,43)  

 

Characterizing SARS-CoV-2 transmission and COVID-19 infection 

Parameter estimates from the literature were used to characterize SARS-CoV-2 transmission 

and clinical progression of COVID-19 (see supplementary Table A2). We assumed that 

susceptible patients and staff could become infected with SARS-CoV-2 if in direct contact with 

an infectious individual, with the probability of transmission depending on the duration of 

contact. Assuming R0=3 for SARS-CoV-2 in the community prior to lockdown,(44) we derived a 

transmission probability per minute spent in contact p=0.14% (see Appendix A).(45)  

 

Clinical progression of COVID-19 was characterized by a modified SEIR process, with: (i) a 

non-infectious exposed period of 2-5 days, (ii) an infectious pre-symptomatic period of 1-3 days, 

(iii) an on-average 7-day infectious “symptomatic” period with three levels of symptom severity 

(severe, mild or asymptomatic), and (iv) eventual recovery with full immunity (Figure 1C). 

Together, (i) and (ii) amount to an incubation period of 3-8 days, including a 1-3 day window of 

pre-symptomatic transmission; this is consistent with estimates used elsewhere.(17,19,46) For 

(iii), we assumed that only 70% of infections ever develop clinical symptoms,(47,48) 20% of 

which develop severe/critical symptoms.(49) Durations for each stage of infection were drawn 

probabilistically from uniform distributions for each infection. To reflect rapid clinical deterioration 

characteristic of severe COVID-19, we assumed no difference in average time to “symptom” 

onset across asymptomatic, mild symptomatic, and severe symptomatic cases. As surveillance 

strategies were evaluated only for detection of outbreaks, death and potential long-term clinical 

outcomes were not explicitly simulated. Each simulation began by introducing one non-

symptomatic index case (either exposed, pre-symptomatic or asymptomatic) into the facility on 
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the first day of each simulation (t=0). In the baseline scenario, both patients and staff introduced 

SARS-CoV-2 into the LTCF.  

 

Measuring outbreaks 

Simulated COVID-19 outbreaks were described using various outcome measures, including: 

infection incidence, infection prevalence, case mix (proportion of infections among patients, 

HCWs and ancillary staff), outbreak size (cumulative number of cases after 12 weeks of 

unmitigated transmission), and outbreak size upon first presentation of COVID-19 symptoms.  
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Figure 1: Characteristics of the SARS-CoV-2 transmission model. A) A diagram of the baseline LTCF, 
showing the average weekly number of patients and staff in each ward, including “Other” staff not 
primarily in any one specific ward. Below the LTCF is a description of the epidemiological scenarios 
considered for how SARS-CoV-2 was introduced into the LTCF.  B) A snapshot of the simulated dynamic 
contact network, showing all patients (PA, circles) and staff (PE, triangles) present in the baseline LTCF 
as nodes, and inter-individual contacts aggregated over one randomly selected day as edges. Nodes and 
edges are coloured by ward, with grey edges representing contacts across wards. C) A diagram of the 
modified SEIR process used to characterize COVID-19 infection (S = susceptible, E = exposed, IP = 
infectious pre-symptomatic, IA = infectious asymptomatic, IM = infectious with mild symptoms, IS = 
infectious with severe symptoms, R = recovered), with transitions between states a to f (detailed in 
supplementary Table A1). We assume low RT-PCR test sensitivity when exposed (g = 0.3), and high 
when infectious (h = 0.9). 
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Developing a COVID-19 surveillance algorithm 

We developed a stochastic surveillance algorithm to evaluate a range of surveillance strategies 

for their efficacy, timeliness and resource-efficiency in detecting COVID-19 outbreaks. 

Strategies varied according to who received conventional nasopharyngeal swabs and RT-PCR 

tests, and with what priority. The algorithm used demographic and clinical indications to 

administer tests to patients and staff, assuming a daily maximum testing capacity ranging from 1 

to 32 tests/day. The algorithm is described in further detail in Appendix A. 

 

Surveillance strategies considered 

Four types of surveillance were evaluated: (i) testing individuals with particular indications, (ii) 

random testing, (iii) testing cascades, and (iv) group testing (Table 1). Each was further divided 

into distinct surveillance strategies. For (i), three indications were considered: presentation of 

severe COVID-like symptoms (reference strategy), presentation of any COVID-like symptoms, 

or new admission to the LTCF. For (ii), tests were randomly distributed among patients, HCWs, 

or all patients and staff. In contrast to (i) and (ii), strategies (iii) and (iv) were conceived as 

hierarchical testing protocols, in which individuals presenting with severe COVID-like symptoms 

were always tested first to reflect their clinical priority. Remaining tests were subsequently 

allocated via cascades (iii) or as a single group test (iv).  

 

For (iii), testing cascades were conceived as mixed testing strategies combining (i) and (ii), in 

which multiple indications were considered simultaneously but ordered according to their 

perceived clinical priority. If there were more tests available than individuals indicated for 

testing, remaining tests were distributed randomly among remaining patients, such that 

cascades always maximized daily testing capacity. For (iv), clinical specimens from individual 

swabs were pooled and tested as one ‘group test’, up to a maximum 32 swabs per test in the 

baseline analysis. SARS-CoV-2 group testing comes at the cost of reduced test sensitivity,(34) 
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which was assumed to decrease linearly with each additional true negative swab (see Appendix 

A). Various group testing procedures have been proposed elsewhere;(33,35,50–52) here we 

evaluated a simple two-stage protocol that does not require additional investment or 

infrastructure, but which requires all individuals included in the initial group test to be re-

swabbed and re-tested individually upon a positive group test result in order to determine which 

individual(s) is (are) infected.(36,53) 

 

Administering swabs and tests 

Each nasopharyngeal swab was coupled with one RT-PCR test, except for group testing 

strategies, in which multiple swabs were used per test. We assumed a 24-hour lag from swab to 

test result, perfect test specificity (100%), low test sensitivity (30%) for individuals exposed to 

SARS-CoV-2, and subsequently high sensitivity (90%) once infectious.(12,54) We further 

assumed that no individuals refused swabbing/testing. Admission-based tests were 

administered upon a patient’s arrival to the LTCF, and symptom-based tests were administered 

on the first day that symptoms appeared. COVID-19 may clinically resemble other acute 

respiratory infections,(55) such that not all individuals with COVID-like symptoms and indicated 

for symptom-based testing are actually infected with SARS-CoV-2. Using data from French 

emergency departments, average daily incidence of influenza-like illness among older adults 

(50-99 years, 2008-2017) was used as a proxy attack rate for patients and staff presenting with 

COVID-like symptoms of other aetiologies, 20% of whom were also assumed to present with 

severe symptoms.(56)  

 

Surveillance outcomes evaluated 

Surveillance strategies were evaluated for their ability to detect COVID-19 outbreaks using four 

primary outcome measures. First, detection probability, the probability of detecting an outbreak 

(i) at any time t from the index case at t=0, (ii) prior to any secondary cases (interpreted as the 
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probability of detecting the index case before any nosocomial transmission), or (iii) prior to first 

presentation of COVID-19 symptoms. Second, detection lag, the number of days from the index 

case to outbreak detection (first positive test result). We defined a maximum detection lag of 22 

days, after which all outbreaks were assumed to be detected regardless of the surveillance 

strategy used. Third, outbreak size upon detection, the cumulative number of cases at first 

positive test result. Fourth, the total number of (i) swabs taken and (ii) tests conducted until 

outbreak detection; for group testing, this includes resources required to individually re-swab 

and re-test all individuals included in the initial positive group test.  

 

Measuring surveillance efficiency 

From a health-economic perspective, an efficient use of healthcare resources is one that yields 

better health outcomes than alternative uses of the same resources.(57) Efficiency can be 

measured using incremental analysis, in which the additional cost of a particular intervention 

compared to a reference baseline is scaled by its additional health benefit.(58) This is 

traditionally expressed as the incremental cost-effectiveness ratio using monetary costs and 

standardized units of health benefit (e.g., quality-adjusted life-years gained). To report on 

efficiency in terms of the surveillance cost and benefit outcomes measured in this study, we 

defined a similar metric, the incremental efficiency ratio (IER), 
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for each surveillance strategy S relative to the reference R. Here, we took the perspective of an 

LTCF with a reference strategy of only testing individuals with severe COVID-like symptoms. 

Efficiency results were expressed using the IER as the number of additional swabs and tests 

required per 1-day improvement in outbreak detection.  
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Uncertainty and sensitivity analysis 

We ran a range of sensitivity analyses to account for uncertainty in (i) how SARS-CoV-2 was 

introduced into the LTCF, (ii) the size and structure of the LTCF, and (iii) the transmissibility of 

SARS-CoV-2 (see assumptions in Appendix A). For each scenario, 100 epidemics were 

simulated using the transmission model. For each simulated epidemic, the surveillance 

algorithm was run 100 times across six testing capacities (1, 2, 4, 8, 16 or 32 tests/day), for a 

total of 60,000 stochastic simulations for each surveillance strategy and each scenario. Across 

all scenarios, we also varied the maximum number of swabs potentially included per group test 

(2, 4, 8, 16, 32 or 64 swabs/test). Outcomes were only evaluated for epidemic simulations that 

resulted in nosocomial outbreaks, defined as simulations with >=1 new case of COVID-19 within 

21 days of the initial index case. Unless stated otherwise, outcome measures are reported as 

median values across all simulations, with uncertainties expressed as 95% uncertainty intervals 

(UIs), i.e. outcomes from the 2.5th and 97.5th percentiles.  
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Table 1. Surveillance strategies evaluated for detection of COVID-19 outbreaks in a LTCF. Strategies 
differ in how swabs and tests are apportioned to patients and staff. Arrows (→) indicate order of priority 
for testing cascades. Test = RT-PCR test; swab = nasopharyngeal swab; symptoms = COVID-like 
symptoms; admission = arrival of new patient to the LTCF.  

Surveillance 
type 

Description Surveillance strategy 

Daily testing 
capacity 
always 

reached? 

Single 
indication 

Administer tests to any individuals 
indicated for testing, up to the 
daily testing capacity. If the 
number of individuals indicated 
exceeds the number of tests 
available, distribute tests 
randomly among them.  

Symptoms (severe) [reference strategy] No 

Symptoms (any) No 

Admission No 

Random Each day, randomly administer 
tests to individuals in a particular 
demographic group.  

Random (patients) Yes 

Random (healthcare workers) Yes 

Random (all: patients, healthcare workers and 
ancillary staff) 

Yes 

Cascades  A combination of clinical 
indications and random testing. 
First, use indications to administer 
tests according to a given order of 
priority. Then, if any tests remain, 
distribute them randomly among 
patients not otherwise indicated 
for testing. 

Symptoms (severe) → Symptoms (mild) → 
Random (patients) 

Yes 

Symptoms (severe) → Symptoms (mild) → 
Admission → Random (patients) 

Yes 

Symptoms (severe) → Admission → Random 
(patients) 
  

Yes 

Symptoms (severe) → Admission → Symptoms 
(mild) → Random (patients) 

Yes 

Group 
testing 

A classical two-stage group 
testing protocol, modified to 
account for clinical urgency of 
severe COVID-19. First, 
administer individual tests to any 
patients or staff presenting with 
severe symptoms. Then, if at least 
one test remains, pool clinical 
specimens together and run as 
one test. If the group test result is 
positive, individually re-swab and 
re-test all included individuals. In 
the baseline, we assume a 
maximum of 32 swabs per test, 
but vary this from 2 to 64 swabs 
per test in sensitivity analysis. 

Symptoms (any) No 

Admission No 

Random (patients) (always maximizes number of 
specimens per group test) 

No 
 

Random (HCWs) (always maximizes number of 
specimens per group test) 

No 
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RESULTS 

  

SARS-CoV-2 spreads quickly, but COVID-19 symptoms lag behind 

SARS-CoV-2 spread quickly, but with a great degree of stochasticity upon its random 

introduction to simulated LTCFs (Figures 2, B1). After three weeks of unmitigated transmission, 

a cumulative 86 (95% UI: 6-224) individuals were infected, predominantly other patients 

(median 72%), then HCWs (25%) and ancillary staff (3%) (Table B2). Outbreaks were 

characterized by a median lag of 9 (2-24) days between the non-symptomatic index case 

entering the LTCF and first presentation of mild COVID-19 symptoms among any patient or staff 

in the facility (Table B3). By the time symptoms emerged, an additional 5 (0-29) individuals had 

acquired SARS-CoV-2 but were not (yet) showing symptoms (Table B4). Lags were longer for 

first presentation of severe COVID-19 symptoms (15 days from index case, 4-28), coinciding 

with a greater cumulative number of secondary infections (25, 0-101). 

 

Less effective surveillance strategies allow infections to accumulate 

Surveillance strategies varied in their ability to detect emerging COVID-19 outbreaks. 

Surveillance efficacy depended on the stochastic nature of outbreaks, including how many, and 

which types of individuals became infected over time (Figure 2C,2D). Outbreaks grew 

exponentially at their outset, so delaying outbreak detection by just one or two days potentially 

coincided with tens more infections (Figure B2). Five days from the index case entering the 

LTCF (shortest median detection lag of any strategy), only 2 (1-12) individuals were infected; 

after ten days, 9 (1-44) were infected; and after fifteen days (longest detection lag at highest 

testing capacity), 36 (2-124) patients and staff were infected. 
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Figure 2. Epidemic curves of COVID-19 infection resulting from random introductions of SARS-CoV-2 
into a 170-bed LTCF. Symptomatic cases represent just the “tip of the iceberg” in nascent outbreaks. (A) 
Four examples of epidemic simulations, demonstrating variation in outbreak velocity and lags until first 
onset of COVID-19 symptoms. (B) The median epidemic curve across all simulations for the baseline 
scenario, with dotted lines demarcating median time lags to selected events. Bars represent the median 
number of individuals in each infection class over time, and do not necessarily total to the median number 
infected (e.g. there is a median 1 infection at t=0 but a median 0 infections in each class, as each index 
case had an equal 1/3 probability of being exposed, pre-symptomatic or asymptomatic). For the same 
simulation examples (C) and median (D), the probability of detecting outbreaks varied over time for 
different surveillance strategies (coloured lines), depending on how many, and which types of individuals 
became infected over time (vertical bars); here, testing capacity = 1 test/day. 

 

Optimal surveillance depends on daily testing capacity 

Across all testing capacities, only testing individuals with severe COVID-like symptoms was 

among the least effective surveillance strategies considered (Figure 3). This “reference” strategy
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took a median 15-16 days to detect outbreaks, and had a 3-4% probability of detecting the initial 

index case prior to any secondary cases (Figure B3). Instead of only severe symptoms, testing 

individuals with any COVID-like symptoms was more effective, taking 8-14 days to detect 

outbreaks, with a 4-16% probability of detecting index cases prior to any secondary cases. Only 

testing patients at admission was overall ineffective by right of detecting neither staff index 

cases nor ongoing outbreaks already underway in the LTCF, resulting in long median delays to 

outbreak detection (11-22 days) despite comparatively high probabilities of detecting COVID-19 

prior to any secondary cases (9-35%). (In the scenario where only new patients introduced 

SARS-CoV-2 into the LTCF, when screening all admissions there was a 66% probability of 

detecting the index case upon admission and hence prior to transmission.) For random testing 

strategies, surveillance was highly ineffective when few tests were available, but increasingly 

effective at higher testing capacities. Conversely, for indication-based strategies, efficacy 

plateaued when capacity exceeded the number of individuals indicated for testing (Figure B3). 

 

At high testing capacity (16-32 tests/day, ≈1 test/5-11 beds/day), testing cascades were the 

most effective surveillance strategies. The four cascades considered here detected outbreaks 

within a median 5-8 days, coinciding with just 1-4 COVID-19 infections among all patients and 

staff. Cascades had a 23-52% chance of detecting outbreaks prior to any secondary cases, a 

38-63% chance prior to the emergence of any COVID-19 symptoms, and an 84-91% chance 

prior to severe COVID-19 symptoms. Cascades that included both new patient admission and 

presentation of any COVID-like symptoms as indications for testing were most effective.  

 

At low testing capacity (1 or 2 tests/day, ≈1 test/85-170 beds/day), group testing was the most 

effective form of surveillance considered. Compared to the reference (16 days) and cascades 

(14-15 days), outbreaks were detected within 8-11 days (coinciding with a cumulative 5-9 

infections) when pooling random patients, or 10-12 days (9-15 infections) when pooling random 
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HCWs. At this low capacity, it was also more effective to pool symptomatic individuals in group 

tests (9-11 days, 7-13 infections) than to test them individually (11-14 days, 13-21 infections) 

because individuals with non-COVID but COVID-like symptoms were also “in competition” for 

limited tests. Compared to the baseline protocol, which assumed a maximum of 32 swabs/test, 

group testing was less effective given fewer swabs per test, despite potentially higher test 

sensitivity. For example, when pooling randomly selected patients in daily group tests, 

outbreaks were detected within 8-11 days at 32 swabs/test, 10-13 days at 8-16 swabs/test, and 

11-16 days at 2-8 swabs/test (Figure B4).  

 

 
Figure 3. Test more to detect outbreaks sooner. Median lags to outbreak detection (95% uncertainty 
interval) are shown for each surveillance strategy (y-axis) as a function of the daily testing capacity (x-
axis). Group testing strategies assume a maximum of 32 swabs per test. For both cascades and group 
testing, individual tests were always reserved for individuals with severe COVID-like symptoms; remaining

d 
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tests were then distributed according to cascades or as a single group test. SS = severe symptoms; MS = 
mild symptoms; A = admission; R = random patients. 
 

Group testing symptomatic individuals is the most efficient use of both swabs and tests 

Surveillance strategies varied considerably in their use of testing resources (Figure B5) and in 

their efficiency for improving COVID-19 outbreak detection relative to the reference strategy 

(Figure 4). The reference used the fewest swabs and tests, on average <1/day regardless of the 

assumed daily testing capacity (owing to a low daily incidence of severe COVID-like symptoms). 

At high testing capacity (16-32 tests/day), the high incremental efficacy of cascades (outbreak 

detection 7-10 days earlier than the reference, prior to 19-22 additional infections) resulted from 

extensive resource use (83-211 additional tests and swabs), for efficiency ratios of IER=9.2-

26.4 additional swabs and tests per 1-day improvement in outbreak detection. Simply allocating 

individual tests to patients and staff with any COVID-like symptoms was a more efficient means 

to improve surveillance (detection=7 days earlier, IER=3.4 additional swabs and tests / 1-day 

improvement in outbreak detection). 

 

Group testing strategies were generally efficient with respect to tests, but used highly variable 

numbers of swabs to detect outbreaks. At high swabbing capacity (16-32 swabs/group test, ≈1 

swab/5-11 beds/day), pooling randomly selected patients used a median 18-30 excess tests to 

detect outbreaks 4-7 days earlier (IERtests=3.0-5.6), but a median 80-254 additional swabs 

(IERswabs=20.0-36.3). Results were similar when pooling randomly selected HCWs (detection=5-

6 days earlier, IERtests=3.2-4.5, IERswabs=32.2-47.5). By contrast, for all scenarios considered, 

pooling individuals with any COVID-like symptoms was among the most efficient strategies in 

terms of both swabs and tests. In the most resource-limited scenarios (1-2 tests, ≈1 test/85-170 

beds/day; 2-8 swabs per group test, ≈1 swab/21-85 beds/day), it was both the most effective 

means to detect COVID-19 outbreaks (detection=3-6 days earlier, prior to 10-18 additional 
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infections) and the most efficient means to improve surveillance from the reference (4-7 

additional tests, 9-24 additional swabs; IERtests=0.8-1.4, IERswabs=2.8-4.0). 
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Figure 4. Incremental efficiency plots for selected surveillance strategies relative to a reference strategy 
of only testing individuals with severe COVID-like symptoms, balancing improvement in COVID-19 
surveillance (x-axis) against additional nasopharyngeal swabs used (y-axis for A) and additional RT-PCR 
tests conducted (y-axis for B) until outbreaks were detected. For both plots, daily testing capacity is fixed 
at 8 tests/day, small translucent points represent median outcomes across all surveillance simulations for 
each simulated outbreak, and larger opaque points represent median outcomes across all outbreaks. 
 
 
 
 
 
 
 
DISCUSSION 

  

The ongoing COVID-19 pandemic continues to devastate LTCF populations worldwide, with 

high rates of mortality among particularly frail and elderly patients, and high rates of infection 

among patients and staff alike.(3,5,6,8) This motivates a need for timely and efficient 

surveillance strategies that optimize limited testing resources to detect outbreaks as quickly as 

possible. We used an individual-based transmission model to simulate COVID-19 outbreaks in 

LTCF settings, and compared a range of strategies for how to allocate limited nasopharyngeal 

swabs and RT-PCR tests to detect these outbreaks as quickly and efficiently as possible, under 

a range of epidemiological scenarios.  

 

Our findings suggest that LTCFs with ample testing resources can detect emerging COVID-19 

outbreaks most quickly by using testing cascades. The most effective cascades considered 

multiple indications, including both COVID-like symptoms and patient admission, and detected 

outbreaks days ahead of traditional symptom-based screening. By extension, of the strategies 

considered here, cascades had the greatest probability of identifying non-symptomatic cases. 

These findings held in sensitivity analyses considering outbreaks in a smaller, 30-bed geriatric 

LTCF (Figure B6), as well as when assuming unusually low or high SARS-CoV-2 transmission 

rates (Figures B7, B8). Although only a select few indications were considered in the present 
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study, LTCFs may consider a wider range of known risk factors for SARS-CoV-2 acquisition in 

their own cascades to maximize the probability of detecting emerging outbreaks before 

widespread transmission.  

 

COVID-19 surveillance was less effective in resource-limited settings because of an inability to 

regularly test large numbers of patients and staff. However, resource limitations were in part 

overcome by group testing: in our analysis, group testing was the most effective means of 

COVID-19 surveillance under limited testing capacity, and group testing strategies were among 

the most resource efficient means to improve surveillance outcomes with respect to a “bare 

minimum” reference of only testing individuals with severe COVID-like symptoms. Recent 

mathematical modeling results have further suggested that group testing could be cost-effective 

for COVID-19 screening in large populations.(33) As with cascades, LTCFs interested in group 

testing may consider a wider range of indications than was possible to include in this study, in 

order to maximize the probability of including potentially infected patients and staff in routine 

group tests. 

 

Our analysis was limited to classical two-stage group testing, initially proposed by Dorfman in 

1943 for syphilis screening among World War II soldiers,(53) in which all individuals in a positive 

group test are individually re-tested to determine who is infected. This is regarded as the most 

straightforward approach,(36) and we conservatively assumed re-swabbing in addition to re-

testing of all individuals in a positive group test to account for potential logistical challenges of 

storing and maintaining large numbers of swabs for re-testing. Various alternative group testing 

strategies have been proposed and implemented elsewhere, including the use of simultaneous 

multi-pool samples, non-adaptive pooling schemes, and others.(36,38,51,52) These have the 

advantage of not requiring separate re-testing of all individuals in a positive group test, and are 

hence more efficient in terms of the number of tests required for case identification. However, 
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these strategies may also require additional testing infrastructure and expertise, which may be 

cost-prohibitive for the resource-limited settings that may benefit most from group testing in the 

first place. Decision-makers must consider trade-offs between the various costs and benefits of 

different group testing technologies, including how many individuals to include per test, and how 

many stages of testing to conduct.  

   

We predicted that silent introductions of SARS-CoV-2 led to large outbreaks in the absence of 

specific control strategies. This is consistent with large COVID-19 outbreaks observed in LTCFs 

worldwide,(6,8,10,16) including an infamous outbreak in King County, Washington that resulted 

in 167 confirmed infections within three weeks of the first reported case.(5) We further predicted 

that larger proportions of patients became infected than staff, consistent with emerging evidence 

of higher SARS-CoV-2 incidence in patients than staff across LTCF settings worldwide.(3,8) We 

also predicted larger and more rapid outbreaks when SARS-CoV-2 was introduced through 

admission of an infected patient, rather than through a member of staff infected in the 

community, with important implications for surveillance efficacy (Figure B9). These findings are 

likely due to the nature of human interactions in the LTCF upon which we based our model, in 

which patient-patient contacts were particularly long and numerous.(42) Overall, these findings 

reinforce both (i) a need to screen incoming patients potentially exposed to or infected with 

SARS-CoV-2,(59) and (ii) the importance of interventions to limit contact between patients (e.g. 

isolation of retirement home residents), as already widely recommended for affected facilities in 

the current pandemic context.(4) 

 

Simulated outbreaks were further characterized by delays between silent introduction of SARS-

CoV-2 and first onset of COVID-19 symptoms, during which time new infections not (yet) 

showing symptoms accumulated. This is consistent with reported transmission dynamics of 

SARS-CoV-2; for instance, modelling studies have estimated that 37-48% of secondary 
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infections among hospital transmission-pairs resulted from pre-symptomatic transmission,(60) 

and that, early on in COVID-19 outbreaks, transmission events occur on average two to three 

days prior to symptom onset.(17) Findings are also consistent with high proportions of 

asymptomatic infection, and important roles for pre-symptomatic and asymptomatic 

transmission reported in various LTCF outbreaks.(5,16,21,26–29) The often silent nature of 

SARS-CoV-2 transmission highlights epidemiological challenges associated with screening for 

emerging outbreaks using symptoms alone. In addition to the strategies highlighted above, we 

found that testing patients and healthcare workers with any, and not only severe COVID-like 

symptoms can substantially improve outbreak detection, supporting recommendations to 

expand testing criteria in LTCFs to include individuals with atypical signs and symptoms of 

COVID-19, such as muscle aches, sore throat and chest pain.(59) 

 

A strength of the present study is the use of highly detailed inter-individual contact data to 

inform our individual-based transmission model. This allowed for recreation of life-like 

interaction dynamics among and between LTCF patients and staff, and facilitated simulation of 

more realistic SARS-CoV-2 dissemination than a traditional mass-action transmission process. 

We are aware of no other studies using detailed individual-level contact networks to simulate 

SARS-CoV-2 transmission, nor of studies using transmission modelling to evaluate COVID-19 

surveillance strategies for healthcare settings. 

 

This work has several limitations. First, substantial uncertainties remain regarding 

epidemiological characteristics of COVID-19, including the exact proportion of asymptomatic 

infections in LTCFs,(23,27,61,62) the transmissibility of SARS-CoV-2 over the course of 

infection and per unit of time spent in contact, and a potential role for environmental 

acquisition,(63–65) which was not included in our model. Furthermore, many LTCFs have 

already implemented control measures, such as interruption of social activities and provisioning 
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of personal protective equipment, that should act to reduce transmission from baseline. We 

conducted sensitivity analyses to consider unusually high and low transmission rates to reflect 

these uncertainties. Although SARS-CoV-2 spread more or less quickly, the relative efficacies of 

surveillance strategies were largely unchanged in these analyses, resulting in the same 

conclusions for optimizing use of limited testing resources to detect COVID-19 outbreaks 

(Figures B7, B8, B10, B11).  

 

Second, LTCFs represent a diverse range of healthcare institutions, each with unique 

specializations, patient populations and living conditions, and the generalizability of our findings 

across these settings is not clear. For this reason, simulations restricted to the geriatric ward 

were conducted to approximate a smaller LTCF geared towards elder care. In this ward, 

simulated contact patterns (8.0 daily patient-patient contacts, 8.3 daily patient-staff contacts) 

were comparable to patterns observed in a nursing home in Paris (5.0 daily patient-patient 

contacts, 6.3 daily patient-staff contacts),(66) and corresponding results may be interpreted as 

what may occur in a nursing home environment. In this 30-bed LTCF, high testing and swabbing 

capacities approximated universal testing strategies, in which large proportions of individuals 

were routinely tested. This explains why randomly testing among all individuals was the single 

most effective strategy at highest testing capacity (Figure B6), and why pooling randomly  

selected individuals was a particularly effective strategy in this setting (Figure B12). Otherwise, 

conclusions for surveillance were similar to the baseline LTCF. 

 

Finally, the testing landscape for COVID-19 is due to shift quickly, with increased testing 

capacity and alternative testing technologies, such as rapid diagnostic tests, likely to become 

increasingly available in the coming months and years. However, uptake of new technologies is 

certain to be heterogeneous, and testing resources may remain limited for the foreseeable 

future, particularly in low- and middle-income settings.(31,32) Although we explicitly modelled 
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standard RT-PCR testing, our findings may be broadly generalizable to other COVID-19 testing 

technologies with limited capacity. Findings for group testing, however, necessarily assume that 

pooling samples from multiple individuals is both logistically feasible and retains sufficient test 

sensitivity, as demonstrated for RT-PCR. Further, even in settings with abundant testing 

capacity, limiting the number of tests necessary to detect an outbreak will remain a priority given 

health-economic concerns. 

 

Conclusions 

In conclusion, our findings demonstrate the susceptibility of LTCFs to large COVID-19 

outbreaks, and suggest that testing cascades, which combine clinical indications and random 

testing, are a highly effective means to detect emerging outbreaks given ample testing 

resources. For resource-limited settings unable to routinely screen large numbers of individuals, 

however, group testing is a preferable strategy, both more effective and resource-efficient than 

cascades and other considered strategies. These findings add to a limited evidence base for 

optimizing COVID-19 surveillance in healthcare institutions. Even in regions where non-

pharmaceutical interventions have come to slow transmission in the community, LTCFs remain 

uniquely vulnerable to COVID-19. Increasing testing capacity and expanding surveillance 

beyond symptom-based screening could allow for earlier outbreak detection, facilitating timely 

intervention to limit transmission and save lives.  
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Introducing a SARS-CoV-2 transmission model for long-term care settings 

 
Nosocomial COVID-19 outbreaks were simulated using a dynamic, stochastic, individual-based 
model (IBM) coded in C++ with three main goals: (i) to use detailed inter-individual contact data 
to simulate dynamic contact networks among patients and staff in long-term care facility (LTCF) 
settings, (ii) to simulate transmission of SARS-CoV-2 among LTCF patients and staff in 
simulated contact networks, and (iii) to simulate clinical progression of COVID-19 among 
individuals infected with SARS-CoV-2 using a Susceptible Exposed Infectious Recovered 
(SEIR) process (throughout, the virus is referred to as SARS-CoV-2, and human infection with 
this virus as COVID-19). We subsequently developed a surveillance algorithm to evaluate 
different surveillance strategies for detection of simulated COVID-19 outbreaks. 
 
First, we broadly introduce the data used to inform and parameterize the transmission model. 
Second, we describe the transmission model in full using the Overview, Design concepts, and 
Details (ODD) protocol for individual-based modelling. Third, we describe the surveillance 
algorithm and evaluation of different surveillance strategies.  
 

I. Data informing the individual-based model 
 
Characterizing dynamic inter-individual contacts in an LTCF setting 
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As described in the main text, LTCF structure, demographics, and dynamic contact networks 
were estimated using data from the i-Bird study. A statistical analysis of the i-Bird contact 
network has been published previously.(1) Briefly, using nearly 2.7 million close-proximity 
interactions (CPIs) recorded from 318 patients and 262 staff between July and October 2009, 
distinct contact patterns were identified for individuals in each ward, reflecting behaviours 
particular to patients and different types of staff in this LTCF. For instance, patients typically 
spent 24 hours per day in the facility and had higher rates of contact with HCWs during 
mornings and afternoons, but with other patients in evenings. Patients were potentially admitted 
or discharged over the course of the study period. The average patient length of stay was 7 
weeks and a median 2 (range 0 - 11) new patients were admitted per day. Staff were present 
according to their respective working hours, and had fewer overall contacts during evenings and 
weekends. HCWs had more distinct contacts with other individuals (on average 14.3/day) than 
patients (11.2/day), but had a shorter cumulative duration of time spent in contact with others 
(15 minutes/day) than patients (32 minutes/day). Compared to other wards, contacts were 
fewest (8.6 distinct CPIs/day) and longest (47 cumulative minutes/day) in the geriatric ward. 
Further, in contrast to a contact network observed using similar methods in an acute care 
setting, patient-patient CPIs were particularly frequent and numerous in this LTCF.(1,2)  
 

Characterizing SARS-CoV-2 transmission along human contact networks 
In the transmission model, Susceptible patients and staff could become infected with COVID-19 
if in direct contact with an Infectious individual. We assumed that the probability of transmission 
per infectious contact depends on the duration of that contact, d (limited to intervals of 30 
seconds, the discrete time-step for the transmission model). This transmission probability was 
computed as follows. Assuming homogeneous mixing among individuals, the basic reproduction 
number (R0) of a pathogen can be approximated as 
 

R0 = p ⨉ n ⨉ d ⨉ � 
 
where p is the per-minute probability of transmission between Susceptible and Infectious 
individuals in contact with one another; n is the average number of daily contacts per individual; 
d is the average duration of these contacts; and � is the duration of the infectious period.(3) 
Using community estimates from France, including epidemiological modelling of COVID-19 
transmission prior to lockdown (R0=3)(4) and a detailed survey of inter-individual contacts in the 
general community (n = 8 contacts/days, d = 30 minutes),(5) and assuming an infectious period 
of � = 9 days for COVID-19, we calculated a transmission probability of p = 0.14% per minute 
spent in contact with a Susceptible individual. We further set a saturation threshold at one hour 
of contact, such that the per-contact transmission probability was at most 8.3% per contact 
between any two individuals. To reflect uncertainty in the transmissibility of COVID-19 per 
infectious contact, in sensitivity analyses we considered extreme estimates for COVID-19 
epidemicity in the community (R0=1.5, 6), which translate to low and high transmission 
probabilities per minute spent in contact (p=0.07%, 0.21%). 
 
Characterizing COVID-19 infection  
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The natural history of COVID-19 infection was conceptualized as a modified SEIR process. 
Corresponding with the model illustration in Figure 1C of the main text, the transitions of this 
model are described below in Table S1. 
 
Table A1. State transitions for the SEIR infection process. Numerical values are drawn 
probabilistically for each transition for each individual in the IBM. 
Symbol Name Transition Description 

a Infection S � E 

After a contact with an Infectious individual, 
Susceptible individuals become infected and enter 
Exposed class with probability: (p × duration of 
contact) 

b 
Infectiousness 
onset 

E � IP 
Exposed individuals become Infectious (but do not 
yet show symptoms) at rate: (1/dE) 

c 
Sympton onset 
(severe) 

IP � IS 
Pre-symptomatic Infectious individuals develop 
severe symptoms at rate (1/dP) × (sMS) × (sS) 

d 
Symptom onset 
(mild) 

IP � IM 
Pre-symptomatic Infectious individuals develop mild 
symptoms at rate (1/dP) × ((sMS) –  (sMS × sS)) 

e 
Symptom onset 
(asymptomatic) 

IP � IA 
Pre-symptomatic Infectious individuals progress to 
the asymptomatic Infectious state at rate (1/dP) × (1 
– sMS) 

f Recovery 
(IS or IM or 
IA) � R 

Individuals progress to a Recovered state (non-
infectious, non-symptomatic, non-susceptible to re-
infection) at rate (1/dS) 

 
As described in the main text, clinical progression of COVID-19 was characterized by: (i) a non-
infectious exposed period of 2-5 days, (ii) an infectious pre-symptomatic period of 1-3 days, (iii) 
an on-average 7-day infectious “symptomatic” period with three levels of symptom severity 
(severe, mild or asymptomatic), and (iv) eventual recovery with full immunity.  
 
Similar infection processes have been used in contemporaneous COVID-19 modelling 
studies,(4,6–8) , and sources for assumed parameter values are provided in parameter Table 
S2. Here, this structure allows for (i) a 3-8 day incubation period, (ii) 1 to 3 days of pre-
symptomatic transmission, as well as (iii) potential asymptomatic transmission in individuals 
who never show symptoms. 
 
 
 
Table A2. Model parameter estimates. 

Parameter Value (distribution) Source 

Parameters for estimation of SARS-CoV-2 transmission rate per minute of contact 

SARS-CoV-2 basic reproduction number (R0) in the general 

community prior to lockdown 

3.0 (1.5, 6.0 in sensitivity analysis) (4) 

Average infectious period of SARS-CoV-2 (τ) 9 days (9) 
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Average number of contacts per day per individual prior to lockdown 

(n) 

8 (5) 

Average duration per contact prior to lockdown (d) 30 minutes (5) 

Epidemiological and clinical parameters 

SARS-CoV-2 transmission rate per minute of contact (p) 0.00139 (0.00070, 0.00278 in sensitivity 

analysis) 

Estimated 

Duration of exposed period (latency) (dE) 2-5 days (uniform) Approximated from 

(10,11) 

Duration of pre-symptomatic period (dP) 1-3 days (uniform) Approximated from 

(10,11) 

Duration of symptomatic period  

(whether asymptomatic, mild symptomatic or severe symptomatic) 

(dS) 

7 days (log-normal, σ² = 7) Approximated from 

(12) 

 

Proportion of COVID-19 infections presenting any symptoms (sMS) 0.7 Approximated from 

(13,14) 

 

Proportion of symptomatic COVID-19 infections with severe 

symptoms (sS) 

0.2 (15) 

Testing and surveillance parameters 

Daily incidence proportion of non-COVID but COVID-like symptoms 0.011 Estimated from 

OSCOUR data, 

described in (16) 

Proportion of non-COVID but COVID-like symptoms with signs of 

severity 

0.2 Assumed 

Delay from test to test result 1 day Assumed 

Test specificity 100% (17) 

Test sensitivity (infectious stages of infection) 90% Approximated from 

(17,18)  

Test sensitivity (exposed stage of infection) 30% Approximated from 

(17,19) 

Daily testing capacity (tests/day) 1, 2, 4, 8, 16, 32 Assumed 

Maximum number of specimens per group test 2, 4, 8, 16, 32, 64 Assumed 

RT-PCR sensitivity discounting rate per additional true-negative 

specimen 

0.3125% Estimated from (20) 
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II. Description of the model using the ODD protocol 
 
The simulation model used in this study is CTCModeler, an individual-based model (IBM) 
developed to simulate pathogen transmission among and between patients and staff in 
healthcare settings.(21) The IBM was programmed in C++ with the repast HPC library 2.2.0. In 
the following, we describe the IBM as it was used for the present study, following the ODD 
protocol of Grimm et al.(22) 
 
1. Purpose.  

 
The IBM simulates nosocomial transmission of SARS-CoV-2 between humans using inter-
individual contact data. The main goals are (i) to simulate inter-individual contacts between 
individuals in an LTCF, (ii) to trace SARS-CoV-2 transmission along this contact network, and 
(iii) to describe clinical progression of COVID-19 infection among individuals infected with 
SARS-CoV-2. 
 
2. Entities, State Variables and Scales.  
 
Entities and state variables 
All entities in the model are conceived as existing within the LTCF. There are two main classes 
in the model: Individual and Pathogen. These are derived from the abstract Organism class, 
which is composed of common variables inherited by both Individual and Pathogen. The 
Individual class has two children, patient and staff (visitors were excluded). Pathogen has only 
one child, the virus SARS-CoV-2. Each object has a unique ID variable in each simulation.  
 
Common variables for Individuals are anonymous hospital ID number, age, gender, type of 
individual (patient or staff), admission date, discharge date, allocated ward, a map of infection, 
current positive SAR-CoV-2 infection, and infection status (statuses following a modified SEIR 
process are described above). For patients, admission refers to arriving to the LTCF as a new 
patient, and discharge refers to leaving the LTCF; for staff, admission refers to coming to work, 
and discharge refers to leaving work. 
 
The map of pathogen status contains the current status of infection as well as its duration, i.e. 
the date at which an individual passes from one infection state to the next. The patient class 
also includes a hospital flag variable, which describes the reason for hospitalization, while the 
staff class also includes a category variable, which describes that individual’s occupation. There 
are 13 occupations in total: caregiver, nurse, physiotherapist, occupational therapist, nurse 
trainee, physician, hospital porter, hospital services, administration, other rehabilitation staff, 
management, logistical staff, and activity coordinator/hairdresser.  
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The common variable for Pathogen is current positive individuals, which lists all individuals who 
are infected with the virus at a given point in time. 
 
Scales 
The model runs using discrete 30-second time-steps and each simulation is run for 
approximately 12 weeks (85 days). 
 
There is no explicit spatial scale in the model; instead, individuals enter into contact with one 
another according to hourly probabilities of contact, stratified by type of individual, occupation 
(for staff), ward, time of day and day of the week (weekday vs. weekend). Simulation of this 
contact network is detailed further below. 
 
3. Process Overview and Scheduling.  
Simulation processes are run on three time schedules: weeks, days and time steps. 
 
Weeks. Each week, a spontaneous infection can occur either in a new patient upon their 
admission to the LTCF, or among admitted staff. The latter is conceptualized as infection 
occurring in the community (i.e. outside the LTCF). This scheduling process is only relevant for 
epidemiological scenarios with weekly introductions of SARS-CoV-2 (scenarios 1, 3, and 5). 
See the Details (initialization) section for more information on epidemiological scenarios 
considered. 
 
Days. The model performs three actions on Individuals each day: change infection status, add 
individual (admission), or remove individual (discharge). Infection progression follows an SEIR 
process, described above and in the main text. Durations for each stage of infection for each 
individual are drawn probabilistically from uniform distributions (parameter values in Table A1). 
Individuals are added or removed based on daily admissions and discharges listed in the 
admission file from the i-Bird study. Readmissions are possible for both patients and staff. When 
individuals “leave” the simulation, they go into a transitory container that keeps track of their 
information (e.g. immunization status) in case later re-admitted. 
 
Time Step. The model time step is 30 seconds. At each time step, the model simulates (i) 
contacts and (ii) possible SARS-CoV-2 transmission events between individuals, which are 
calculated using the sum total of the number of time steps in each contact.  
 
 
4. Design concepts 
 
Basic principles. 
This IBM uses detailed inter-individual contact data from the i-Bird study to build a stochastic, 
dynamic contact network between all Individuals in the LTCF over a 12-week period. Individuals 
with a ‘Susceptible’ infection status can become infected with SARS-CoV-2 if in contact with an 
Individual with an ‘Infectious’ infection status. This infection process is based on classical 
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concepts from the mathematical modelling of infectious diseases. Both of these processes are 
conceptualized as ‘Interactions’ and are described below.  
 
Interactions.  
Two types of interactions occur during the simulation: 
 
Inter-individual Contacts.  
 
Patient and staff populations of the Berck-sur-Mer rehabilitation hospital in Northern France are 
used in the model. This includes 318 patients and 262 staff included in the i-Bird study and 
present in the LTCF over a 12-week period, described elsewhere.(1) Patients and staff are 
distributed across five wards: Menard 1 (neurology), Menard 2 (neurology), Sorrel 0 (nutrition), 
Sorrel 1 (neurology), and Sorrel 2 (geriatrics). 90 members of staff are not affiliated with one 
particular ward and are instead grouped as being in the ‘Other’ ward. This includes both staff 
working in back offices (i.e. not on any particular ward), as well as staff who regularly work 
across multiple wards.  
 
Real staff scheduling and patient admission data are used to determine who is ‘admitted’ in the 
model (i.e. present in the LTCF) on any given day of the 12-week simulation period.  However, 
instead of using the raw contact measured in the i-Bird study, a novel contact network is 
simulated to account for missing data resulting from imperfect sensor compliance in the raw 
network.  
 
For the simulated network, contact probabilities are estimated using hourly contact rates from 
the raw network for each type of individual, ward, time of day, and day of the week (weekday vs. 
weekend). Contact durations are drawn from log-normal distributions; duration means and 
standard deviations also estimated from the raw network.  
 
At each time step, the model builds an edge between pairs of Individuals if newly in contact with 
one another (based on contact probabilities described above), maintains the edge if still in 
contact (based on contact durations described above), and removes the edge once no longer in 
contact. 
 
In a previous analysis, the simulated network was found to have a greater total number of 
contacts than the raw network, as expected to account for missing data, but contact durations 
were nearly identical and other network properties were similar; for instance, the degree of the 
patient-to-staff subgraph for the simulated network (8.98, 8.85 – 9.12) is comparable to the raw 
network (8.71, 8.52 – 8.91).(23)  
 
Inter-individual Transmission. Infectious Individuals can transmit their Pathogen to Susceptible 
Individuals through the contact network. For each contact, the probability of transmission per 
minute spent in contact (p) rate is multiplied by the duration of the contact in minutes (d). Here, 
the model also incorporates transmission probability saturation at 60 minutes (such that p <= 
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8.3%). The infection process has no bearing on the infection status of the Individual acting as 
the Pathogen donor.  
 
Stochasticity.  
For each model scenario, CTCModeler is run 100 times to produce 100 distinct epidemic 
simulations (see details of different model scenarios below). This is done to account for 
stochasticity in three model process: (i) initialization conditions, (ii) COVID-19 life history, and 
(iii) SARS-CoV-2 transmission. 
 
For (i), the first Individual infected with SARS-CoV-2 at t=0 (the index case) is randomly 
selected among patients newly admitted that same day, or among staff presently admitted 
(depending on the epidemiological scenario considered; see below). For scenarios with weekly 
SARS-CoV-2 introductions, infected patients and staff are always randomly selected in this way. 
 
For (ii), durations of each stage of infection are drawn randomly from their respective probability 
distributions as soon as an Individual becomes infected. 
 
For (iii), when a pair of Infectious and Susceptible Individuals are in contact with one another, a 
transmission event occurs if the calculated probability of transmission (p � d) is greater than or 
equal to a number randomly drawn from a uniform distribution bounded by 0% and 100%.  
 
Although the contact network was generated stochastically as described above, the same 
contact network was used for each epidemic simulation, and hence variation between epidemic 
simulations does not result from stochasticity in inter-individual contacts. 
 
 
Details 
 
Initialization.  
This section describes initialization conditions for running of the model, as well as the various 
scenarios and sensitivity analyses considered to account for model uncertainty. 
 
Before the first time-step in each simulation, one randomly selected Individual is infected with 
non-symptomatic SARS-CoV-2 infection (with equal probabilities of their infection stage being 
exposed, infectious pre-symptomatic, or infectious asymptomatic). This first infection is referred 
to as the ‘index case’. Index cases are conceived as being either infected patients newly 
admitted to the LTCF upon transfer from another setting, or staff who acquired infection in the 
community.  
 
The following describes how initialization conditions are adjusted in the model to allow 
simulation of various scenarios: (i) five distinct scenarios of SARS-CoV-2 introduction into the 
LTCF, (ii) the baseline 170-bed LTCF vs. a smaller 30-bed LTCF geared towards elder care, 
and (iii) three distinct transmission rates. 
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Epidemiological scenarios of SARS-CoV-2 introduction 
Five distinct epidemiological scenarios are considered, each describing a different source and 
frequency of SARS-CoV-2 introduction(s) into the LTCF: (baseline scenario 1, weekly patient or 
staff) either one infected patient admitted or one staff member infected once weekly, assuming 
50% probability of patient or staff each week; (scenario 2, single patient transfer) one infected 
patient admitted at t0; (scenario 3, weekly patient transfer), a different infected patient admitted 
once weekly; (scenario 4, single infected staff), one staff member infected in the community at 
t0; and lastly (scenario 5, weekly infected staff) a different staff member infected in the 
community once weekly. 
 
 
Two distinct LTCFs 
Two distinct LTCFs are considered. The baseline LTCF uses all Individuals in the LTCF from 
the i-Bird study as described above. The second LTCF excludes all Individuals from Wards 1, 2, 
3 and 4, leaving only individuals in Ward 5 and the Other ward. For this second LTCF, a distinct 
contact network was simulated in the same way as described above for the baseline LTCF. All 
of the five epidemiological scenarios above were also run for this second LTCF. 
 
 
SARS-CoV-2 transmission rate 
To account for uncertainty in SARS-CoV-2 transmissibility, the model for the baseline LTCF and 
introduction scenario is also run using extreme R0 estimates (R0=1.5, R0=6) to derive the 
probability of transmission per minute spent in contact (p=0.07%, p=0.21%). 
 
 
Input.  
Three input files are needed to run the IBM (admission, contact and parameter files). The 
admission file lists dates of hospital arrival and departure for all individuals included in a 
simulation. The contact file lists all contacts that occur between individuals (patients and staff) 
over time during simulations. Here, simulated contact files were obtained as described above. 
The parameter file gathers all parameter values that the IBM needs. 
 
A separate file containing parameter values was used as input to define all parameter values for 
Individuals. Parameter values were derived from the original contact network from the i-Bird 
study, including patient demographic information. However, parameters related to infection were 
not included, because there were simulated and modified over the course of simulations. 
(described below).   
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III. Description of the COVID-19 surveillance algorithm 

 

Overview 

A surveillance algorithm was developed to distribute nasopharyngeal swabs and RT-PCR tests to 

Individuals from the individual-based transmission model described above, and to test them for active 

COVID-19 infection. Swabs and tests were distributed once per day using clinical and demographic 

indicators and assuming a daily limit (capacity) to the number of swabs and tests available. The 14 

surveillance strategies considered differ according to which individuals were selected each day for 

testing. These strategies are outlined further in the main text, although more information for group 

testing specifically is provided below. 

 

Surveillance indicators 

Included indicators for surveillance were: LTCF admission (for patients only), type of individual (patient, 

HCW or ancillary staff), any COVID-like symptoms and severe COVID-like symptoms. Output files from 

epidemic simulations contained a table of all Individuals in the model, their unique ID number and their 

identity (patient or type of staff). For each day of each simulation, LTCF admission status and infection 

status for each Individual were also included. Surveillance indicators were obtained from these output 

files, and were supplemented with additional symptom data as described below. 

 

Accounting for non-COVID but COVID-like symptoms 

We generated 100 ‘symptom incidence files’ for each epidemic simulation. Symptom incidence files 

indicate the first day that COVID-like symptoms emerged for each Individual, and their severity (mild or 

severe). Note that many Individuals never experienced COVID-19 symptoms.  

 

Since actual COVID-19 symptoms were taken from output files from epidemic simulations, they were 

identical across all 100 symptom incidence files within each epidemic simulation. The daily incidence of 

non-COVID but COVID-like symptoms (approximately 1.1% of Individuals, see Table A2) was then used to 

assign additional COVID-like symptoms (mild or severe) to randomly selected Individuals on each day. 

These non-COVID but COVID-like symptoms thus varied across each of the 100 symptom incidence files.  

 

Running the surveillance algorithm 

Starting on the first day of each epidemic simulation (t=0), the surveillance algorithm was run to (i) 

identify which individuals were to be tested, (ii) obtain test results, and (iii) to count the cumulative 

number of swabs and tests used. Individuals were selected randomly among those indicated if on a 

given day there were more Individuals indicated for testing than there were tests available. The 

algorithm continued until the first positive test result was returned, to a maximum of 21 days, after 

which all outbreaks were assumed to be detected.  

 

 

Defining group testing 
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For group testing, clinical specimens (swabs) from multiple individuals were pooled and tested as one 

(up to, but not necessarily reaching a maximum of 2, 4, 8, 16, 32 or 64 specimens per test). SARS-CoV-2 

group testing comes at the cost of reduced test sensitivity: using standard RT-PCR, Yelin et al. estimated 

a false negative rate of 10% (sensitivity=0.9) when pooling a single positive SARS-CoV-2-positive sample 

with 31 negative samples, all from nasal/throat swabs.(20) Conservatively assuming a 0% false negative 

rate in their un-pooled samples (sensitivity=1), and for simplicity assuming a linear decrease in 

sensitivity with each additional true negative sample, we calculated a sensitivity discounting rate per 

additional true negative sample: 

 

� �
��  – ���

31
 

 

where s0 is the test sensitivity when no true negative samples were pooled with the original true 

positive sample, s31 is the sensitivity when 31 true negative samples were pooled with the positive 

sample, and solving yields r=3.23x10
-3

. Hence for a group test with S specimens and P true positive 

specimens, we calculated sensitivity as: 

 

�� � �� 
 � � �� 
 
� 

 

where sg and si are group- and individual-level test sensitivities, respectively.  

 

Test sensitivity varied for individuals in the Exposed and Infectious stages of infection. When pooled 

samples included true positive swabs from both Exposed and Infectious Individuals, test sensitivity was 

calculated using only the Infectious Individual(s), while Exposed swabs were counted as negative 

samples. As with individual RT-PCR testing for SARS-CoV-2, group testing is highly specific,(24) so perfect 

specificity was assumed. 
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Appendix B: Supplementary results for the article Optimizing COVID-19 surveillance in long-term 

care: a modelling study 

 

David RM Smith*
1,2,3

, Audrey Duval*
1
, Koen B Pouwels

4,5
, Didier Guillemot

1,2,6
, Jérôme Fernandes

7
, Bich-

Tram Huynh
1
, Laura Temime§

3,8
, Lulla Opatowski§

1,2
, on behalf of the AP-HP/Universities/Inserm COVID-

19 research collaboration 

 

1. Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France 

2. Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, 

Montigny-Le-Bretonneux, France 

3. Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des 

arts et métiers, Paris, France 

4. Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, 

Oxford, United Kingdom 

5. The National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare 

Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK 

6. AP-HP, Paris Saclay, Public Health, Medical Information, Clinical Research, Le Kremlin-Bicêtre, France 

7. Clinique de soins de suite et réadaptation, Choisy-Le-Roi, France 

8. PACRI unit, Institut Pasteur, Conservatoire national des arts et métiers, Paris, France 

 

*contributed equally 

§ contributed equally 

 

 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2020. ; https://doi.org/10.1101/2020.04.19.20071639doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20071639
http://creativecommons.org/licenses/by-nc/4.0/


Table B1. Demographic breakdown of patients and staff present in each ward of the simulated baseline 
LTCF. Staff were grouped as healthcare workers (HCWs) or ancillary staff. The ward ‘Other’ accounts for 
staff not affiliated with any one particular ward, including those who work in the back office or regularly 
move between wards. The geriatric ward (Sorrel 2, with its distinct patients, staff and within-ward contact 
network) was used independently in a sensitivity analysis to simulate outbreaks in a separate 30-bed 
geriatric LTCF.  

Type of individual 

Average number present per week per ward (% of all individuals present per ward) 

Menard 1 Menard 2 Sorrel 0 Sorrel 1 Sorrel 2 Other All 

Patient Patient 
38 (49%) 32 (45%) 35 (55%) 35 (67%) 30 (54%) 0 (0%) 170 

(41%) 

HCW 

Caregiver 
20 (26%) 19 (27%) 14 (21%) 7 (13%) 10 (18%) 21 (23%) 92 (22%) 

Nurse 
11 (14%) 7 (10%) 8 (13%) 6 (11%) 7 (13%) 12 (13%) 51 (12%) 

Physiotherapist 
0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 12 (13%) 12 (3%) 

Nurse trainee 
1 (1%) 3 (5%) 2 (3%) 0 (0%) 2 (3%) 2 (2%) 10 (2%) 

Occupational 

Therapist 

0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 7 (8%) 7 (2%) 

Physician 
1 (1%) 2 (3%) 1 (2%) 1 (2%) 1 (2%) 0 (0%) 6 (1%) 

Hospital porter 
0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6 (6%) 6 (1%) 

Ancillary 

Hospital services 

staff 

4 (5%) 4 (6%) 3 (5%) 2 (4%) 3 (5%) 0 (0%) 16 (4%) 

Logistical staff 
0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 16 (18%) 16 (4%) 

Other 

rehabilitation staff 

1 (1%) 3 (4%) 0 (0%) 0 (0%) 2 (4%) 2 (2%) 8 (2%) 

Administrative 

staff 

0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 8 (9%) 8 (2%) 

Management 
1 (1%) 1 (1%) 1 (2%) 1 (2%) 1 (2%) 2 (2%) 7 (2%) 

Activity 

coordinator/hairdr

esser 

0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (2%) 2 (0%) 
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Total (100%) 
78  72 63 53 55 90 410 
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Table B2. Simulated cumulative COVID-19 case counts over time, stratified by epidemiological scenario, 
LTCF, and type of individual. Only simulations resulting in outbreaks were included (for LTCF 1, 64% of 
simulations from scenario 4, 100% from other scenarios; for LTCF 2, 96% from scenario 2, 24% from 
scenario 4, 100% from other scenarios). 

Scenario 
Type of 

individual 

Median cumulative number infected per outbreak by time t (95% UI) 

LTCF 1: Rehabilitation hospital 
(170 beds) 

LTCF 2: Geriatric LTCF (30 beds) 

1 week 
(t=7) 

2 weeks 
(t=14) 

3 weeks 
(t=21) 

1 week 
(t=7) 

2 weeks 
(t=14) 

3 weeks 
(t=21) 

Scenario 1: 
Weekly patient or 
staff 

Patient 3 (0 - 16) 21 (0 - 84) 64 (2 - 
142) 

1 (0 - 10) 7 (0 - 27) 24 (0 - 31) 

HCW 1 (0 - 5) 5 (0 - 25) 22 (1 - 77) 1 (0 - 2) 2 (0 - 12) 8 (1 - 18) 

Ancillary 
staff 

0 (0 - 1) 1 (0 - 5) 3 (0 - 13) 0 (0 - 1) 1 (0 - 3) 2 (0 - 5) 

Total 4 (1 - 20) 30 (2 - 
100) 

86 (6 - 
224) 

2 (1 - 12) 10 (2 - 39) 34 (3 - 52) 

Scenario 2: 
Single patient 
transfer 

Patient 7 (2 - 19) 30 (9 - 86) 96 (33 - 
145) 

3 (1 - 11) 19 (1 - 26) 27 (3 - 31) 

HCW 1 (0 - 5) 8 (1 - 25) 32 (7 - 68) 0 (0 - 3) 5 (0 - 11) 12 (1 - 17) 

Ancillary 
staff 

0 (0 - 2) 1 (0 - 4) 4 (0 - 11) 0 (0 - 1) 0 (0 - 2) 2 (0 - 5) 

Total 9 (2 - 23) 40 (10 - 
111) 

133 (39 - 
221) 

4 (1 - 13) 25 (2 - 36) 40 (7 - 49) 

Scenario 3: 
Weekly patient 
transfer 

Patient 7 (2 - 19) 37 (11 - 
93) 

109 (43 - 
148) 

4 (1 - 11) 17 (2 - 26) 28 (12 - 
32) 

HCW 1 (0 - 4) 9 (2 - 28) 36 (11 - 
76) 

0 (0 - 4) 4 (0 - 12) 11 (1 - 18) 

Ancillary 
staff 

0 (0 - 2) 1 (0 - 4) 5 (0 - 12) 0 (0 - 1) 0 (0 - 3) 2 (0 - 5) 

Total 9 (2 - 21) 48 (15 - 
116) 

150 (62 - 
227) 

4 (1 - 13) 23 (3 - 38) 42 (13 - 
51) 

Scenario 4: 
Single infected 
staff 

Patient 0 (0 - 6) 3 (0 - 41) 25 (0 - 97) 0 (0 - 4) 4 (0 - 22) 18 (0 - 29) 

HCW 1 (0 - 4) 3 (1 - 14) 8 (1 - 43) 1 (0 - 2) 2 (1 - 7) 6 (2 - 13) 

Ancillary 
staff 

0 (0 - 1) 0 (0 - 3) 1 (0 - 6) 0 (0 - 1) 0 (0 - 1) 1 (0 - 3) 
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Total 2 (1 - 9) 6 (2 - 57) 36 (2 - 
146) 

2 (1 - 6) 6 (2 - 29) 26 (2 - 44) 

Scenario 5: 
Weekly infected 
staff  

Patient 0 (0 - 11) 2 (0 - 48) 20 (0 - 
108) 

0 (0 - 4) 0 (0 - 19) 0 (0 - 29) 

HCW 1 (0 - 4) 3 (1 - 15) 10 (1 - 40) 1 (0 - 2) 2 (0 - 7) 3 (1 - 13) 

Ancillary 
staff 

0 (0 - 1) 1 (0 - 3) 1 (0 - 6) 0 (0 - 1) 1 (0 - 2) 1 (0 - 4) 

Total 2 (1 - 13) 6 (2 - 64) 34 (3 - 
150) 

1 (1 - 6) 2 (2 - 25) 4 (3 - 44) 

 

 
 
Table B3. Lags between introduction of the index case and first presentation of mild and severe COVID-
19 symptoms. Results are stratified by epidemiological scenario and LTCF. Only simulations resulting in 
outbreaks were included (for LTCF 1, 64% of simulations from scenario 4, 100% from other scenarios; for 
LTCF 2, 96% from scenario 2, 24% from scenario 4, 100% from other scenarios). Lags for outbreaks in 
which symptoms never appeared are indicated as ‘never’. 
 

Scenario 

Lag until first symptom onset, days (95% CI) 

LTCF 1: Rehabilitation hospital LTCF 2: Nursing home 

Mild symptoms Severe symptoms Mild symptoms Severe symptoms 

Scenario 1: Weekly 

patient or staff 
9 (2-24) 15 (4-28) 9 (2-28) 18 (2 - never) 

Scenario 2: Single 

patient transfer 
7 (2-15) 12 (4-21) 9 (2-24) 15 (3 - never) 

Scenario 3: Weekly 

patient transfer 
7 (2-13) 10 (4-23) 8 (2-19) 14 (3 - never) 

Scenario 4: Single 

infected staff 
8 (2-never) 20 (3-never) 17 (2-never) 27 (3 - never) 

Scenario 5: Weekly 

infected staff 
10 (2-37) 21 (4-never) 9 (2-28) never (3 - never) 

 
 
 

Table B4. The cumulative number of individuals infected on the day that COVID-19 symptoms first 
appeared among anyone present in the LTCF (outbreak size upon first symptom onset). Results are 
stratified by epidemiological scenario and LTCF. Only simulations resulting in outbreaks were included 
(for LTCF 1, 64% of simulations from scenario 4, 100% from other scenarios; for LTCF 2, 96% from 
scenario 2, 24% from scenario 4, 100% from other scenarios), and outbreaks were excluded if no 
symptoms ever occurred over the course of the outbreak. 
 

Scenario 

Outbreak size upon first symptom onset (95% UI) 

LTCF 1: Rehabilitation hospital LTCF 2: Nursing home 

Any symptoms Severe symptoms Any symptoms Severe symptoms 

Scenario 1: Weekly 6 (1-30) 26 (1-102) 3 (1-24) 24 (1-49) 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2020. ; https://doi.org/10.1101/2020.04.19.20071639doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20071639
http://creativecommons.org/licenses/by-nc/4.0/


patient or staff 

Scenario 2: Single 

patient transfer 
8 (1-25) 26 (3-100) 7 (1-22) 25 (3-42) 

Scenario 3: Weekly 

patient transfer 
7 (1-24) 23 (4-97) 5 (1-19) 24 (1-45) 

Scenario 4: Single 

infected staff 
2 (1-20) 18 (1-115) 2 (1-9) 22 (2-43) 

Scenario 5: Weekly 

infected staff 
2 (1-23) 26 (1-89) 2 (1-20) 20 (1-44) 
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Figure B1. Epidemiological characteristics of COVID-19 epidemics simulated over a 12-week period in 
the baseline LTCF, in the absence of any surveillance, control measures or interventions, and comparing 
different scenarios of SARS-CoV-2 into the LTCF (columns). A) The daily incidence of COVID-19 
infection among all patients and staff, with each coloured line representing a different simulation. Black 
lines represent the median daily incidence across all simulations. B) Histograms of the final epidemic size 
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at 12 weeks (NB: data are naturally censured by the 12-week simulation period). C) Distributions of 
cumulative infection totals at 12 weeks among the fourteen different categories of individuals present in 
the hospital. 

 

 

 

 

 
 
Figure B2.  Relationship between detection lag (x-axis) and the number of undetected cases upon 
outbreak detection (y-axis), for selected surveillance strategies (colours), for the baseline SARS-CoV-2 
importation scenario and at a testing capacity of 1 test/day. Symbols represent medians and error bars 
represent 95% credible intervals. 
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Figure B3. Probability of detecting COVID-19 outbreaks before any secondary cases (top panel), before 
the onset of any COVID-19 symptoms (middle panel), and before the onset of any severe COVID-19 
symptoms (bottom panel). Probabilities depended on the surveillance strategy considered (x-axis) and 
the daily testing capacity (colours), and saturate at high testing capacity for all but random and cascade 
strategies. 
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Figure B4. Efficacy of group testing strategies depend on the which individuals are indicated for inclusion 
in group tests (colours), the maximum number of specimens potentially included per group test (x-axis), 
and the epidemiological scenario considered (columns). In the main analysis, the number of samples per 
group test was capped at 32, owing to uncertainty about sufficient test sensitivity above this threshold. 
Circles represent medians and error bars represent 95% uncertainty intervals. 
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Figure B5. Efficiency plots for selected surveillance strategies, comparing the efficacy (y-axis) and 
resource use (x-axis) in terms of the number of tests used (top row) and swabs collected (bottom row) 
until outbreaks were detected. The assumed daily testing capacity varies across columns. Symbols 
represent medians and error bars represent 95% uncertainty intervals across all outbreak simulations. 
Overlapping symbols were shifted along the x-axis by up to 5 units and can be identified by reduced size 
of error bar whiskers. For cascades: SS=severe symptoms, MS=mild symptoms, A=admission, 
R=random (patients).  
 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2020. ; https://doi.org/10.1101/2020.04.19.20071639doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20071639
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure B6. For simulations in the 30-bed geriatric LTCF, median lags to outbreak detection (95% 
uncertainty interval) are shown for each surveillance strategy (y-axis) as a function of the daily testing 
capacity (x-axis). Group testing strategies assume a maximum of 32 swabs per test. 
 

 
Figure B7. For simulations in the baseline LTCF with a low transmission rate (p=0.07%), median lags to 
outbreak detection (95% uncertainty interval) are shown for each surveillance strategy (y-axis) as a 
function of the daily testing capacity (x-axis). Group testing strategies assume a maximum of 32 swabs 
per test. 
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Figure B8. For simulations in the baseline LTCF with a high transmission rate (p=0.21%), median lags to 
outbreak detection (95% uncertainty interval) are shown for each surveillance strategy (y-axis) as a 
function of the daily testing capacity (x-axis). Group testing strategies assume a maximum of 32 swabs 
per test. 
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Figure B9. The size of COVID-19 outbreaks varied over time (vertical bars) across SARS-CoV-2 
importation scenarios (columns). Consequently, the probability of detecting outbreaks over time using 
different surveillance strategies (coloured lines) varied as a result of differences in how many, and which 
types of individuals became infected over time across these different importation scenarios; here, testing 
capacity = 1 test/day. 
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Figure B10. Incremental efficiency plots for simulations in the baseline LTCF with a low transmission rate 
(p=0.07%). Daily testing capacity is fixed at 8 tests/day, small translucent points represent median 
outcomes across all surveillance simulations for each simulated outbreak, and larger opaque points 
represent median outcomes across all outbreaks.

te 
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Figure B11. Incremental efficiency plots for simulations in the baseline LTCF with a high transmission 
rate (p=0.21%). Daily testing capacity is fixed at 8 tests/day, small translucent points represent median 
outcomes across all surveillance simulations for each simulated outbreak, and larger opaque points 
represent median outcomes across all outbreaks. 
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Figure B12. Incremental efficiency plots for simulations in the 30-bed geriatric LTCF. Daily testing 
capacity is fixed at 8 tests/day, small translucent points represent median outcomes across all 
surveillance simulations for each simulated outbreak, and larger opaque points represent median 
outcomes across all outbreaks. 
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