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Abstract 

As the Covid-19 pandemic soars around the world, there is urgent need to forecast the expected 

number of cases worldwide and the length of the pandemic before receding and implement 

public health interventions for significantly stopping the spread of Covid-19. Widely used 

statistical and computer methods for modeling and forecasting the trajectory of Covid-19 are 

epidemiological models. Although these epidemiological models are useful for estimating the 

dynamics of transmission of epidemics, their prediction accuracies are quite low. Alternative to 

the epidemiological models, the reinforcement learning (RL) and causal inference emerge as a 

powerful tool to select optimal interventions for worldwide containment of Covid-19. Therefore, 

we formulated real-time forecasting and evaluation of multiple public health intervention 

problems into off-policy evaluation (OPE) and counterfactual outcome forecasting problems and 

integrated RL and recurrent neural network (RNN) for exploring public health intervention 

strategies to slow down the spread of Covid-19 worldwide, given the historical data that may 

have been generated by different public health intervention policies. We applied the developed 

methods to real data collected from January 22, 2020 to July 30, 2020 for real-time forecasting 

the confirmed cases of Covid-19 across the world. We observed that the number of new cases of 

Covid-19 worldwide reached a peak (407,205) on July 24, 2020 and forecasted that the number 

of laboratory-confirmed cumulative cases of Covid-19 will pass 20 million as of August 22, 

2020. The results showed that outbreak of Covid-19 worldwide has peaked and is on the decline 
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Introduction 

As of August 4, 2020, global confirmed cases of Covid-19 passed 18,263,542 cases, including 

693, 726 deaths and has spread to 213 countries and Territories, causing an immense public 

health crisis. The government officers and people around the world have implemented various 

nonpharmaceutical interventions to slow the spread of Covid-19 [1]. These public health 

interventions include cessation of public gatherings, traffic restriction, stay-at-home orders, 

closures of schools and nonessential businesses, face mask ordinances, maintaining social 

distancing, quarantine, isolation and expanding virus testing. However, implementing public 

health interventions will cause substantial economic losses and social damage. Now the critical 

question is how to reopen the economy, while containing the Covid-19 pandemic. A key to 

correctly answering this question is to reconstruct the complex epidemic dynamic systems from 

the data, precisely predict the extent or duration of Covid-19, and develop algorithms to evaluate 

the effects of public health intervention on the transmission dynamics of Covid-19 and devise 

practical implementable public health interventions to control the spread of Covid-19 in the 

world. 

    Widely used statistical and computer methods for modeling of Covid-19 simulate the 

transmission dynamics of epidemics to understand their underlying mechanisms, forecast the 

trajectory of epidemics, and assess the potential impact of a number of public health measures on 

curbing the spread speed of Covid-19 [2-8]. Covid-19 Forecast Hub collected 48 models for 

Covid-19 forecasts [9]. The majority of these models are epidemiological models. Although 

these epidemiological models are useful for estimating the dynamics of transmission, they have 

some critical limitations [10,11]. First, most epidemiological models assume that the 

reproduction number 𝑅 is constant. However, in the real world, the reproduction number 𝑅 is 
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affected by various interventions such as lockdown of the epidemic areas, travel restrictions, 

population mobility, social distancing, and climate factors [12]. Therefore, the reproduction 

number R often changes over time. The assumptions that the parameters in the model are 

constant will dramatically limit our ability to simulate interventions and improve prediction 

accuracy. Second, the epidemiological models consist of ordinary differential equations that have 

many unknown parameters and depend on many assumptions. Most analyses used hypothesized 

parameters, which often lead to poorly fitting data. Third, the successful application of public 

health intervention planning highly depends on the model parameter identifiability. However, 

some researchers show that the parameters in the complex compartmental dynamic models are 

unidentifiable [13]. The values of parameters cannot be uniquely determined from the real data 

[14]. The variances of the estimators of these parameters are very high. Fourth, the intervention 

measures are not explicitly included in the epidemiological models. These models lack the 

mechanisms to evaluate the actual effects of public health interventions on infection rates in the 

ongoing Covid-19 [2]. 

  An essential issue for overcoming these limitations is to explicitly incorporate counterfactual 

evaluation mechanisms into the models. Reinforcement learning (RL) and counterfactual 

outcome can be used as a general framework for evaluating the dynamic response of Covid-19 to 

the intervention measures and optimizing the intervention strategy [15-22]. RL is learning 

actions or interventions. It arises from solving optimal control problems of partially observed 

Markov Decision Processes by learning an intervention policy [23].  

   The control problem consists of identifying the dynamic systems and optimal control design. 

We can view the transmission dynamics of Covid-19 as a dynamic system or Markov Decision 

Process. A typical dynamic system is usually modeled by nonlinear state space equations, which 
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can in turn be transformed into recurrent neural networks (RNN) [24]. The RNN is an ideal tool 

to learn a partially observed Markov Decision Process. After the dynamic system or Markov 

Decision Process is learned from historical data, we can use RL or optimal control theory 

(dynamic programming for a discrete system or Pontryagin’s maximum principle for a 

continuous system) to infer control signal or actions, which transforms the system to the desired 

state [25]. RL provides a wealth of information about the consequences of actions, or 

information about cause and effect.  

  The goal of public health interventions is to contain the Covid-19 as soon as possible. However, 

the set of actions or health interventions for stopping the spread of Covid-19 is limited. The 

environments that determine the transition dynamics of Covid-19 may change rapidly over time. 

The future environments of Covid-19 may be substantially different from the previous one. The 

actions or interventions cannot be only inferred from the historical data. To fully design optimal 

actions or interventions in the RL may not be feasible. Therefore, we formulated the real-time 

forecasting and evaluating multiple public health intervention problem into off-policy evaluation 

(OPE) and counterfactual outcome forecasting problem within the RL framework where the aim 

is to estimate the response of a new public health intervention policy, given historical data that 

may have been generated by different public health intervention policies [26]. We interpreted the 

interventions as treatments where multiple interventions were implemented at different time 

points and the number of new cases as treatment responses. The accurate estimation of effects of 

public health interventions over time would allow health officers to make plans on what 

intervention strategies should be used and at what times to implement interventions [27]. 

  Public health interventions including virus testing, isolation and contact tracing, travel 

restriction, strict self-quarantine for families, maintaining social distancing, stopping mass 
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gatherings, closure of schools and nonessential business and vacating hotels. To quantify 

comprehensive intervention strategies, an intervention variable that comprehensively and 

abstractly measures virus testing, mobility activities and social distancing was used as an action 

variable in the RL.  

  Recurrent neural reinforcement learning (RNRL) is taken as a general framework for 

investigating how Covid-19 evolves under different interventions, how individual nations 

respond to the interventions over time, and what are optimal timings for implementing 

interventions. Therefore, the RNRL will provide new tools to forecast the trajectory of Covid-19 

under interventions and improve public health planning and decision making.  

  The RNRL was applied to the surveillance data of lab confirmed Covid-19 cases in the world 

up to July 30, 2020. Data on the number of confirmed and new cases of Covid-19 from January 

22, 2020 to July 30, 2020 were obtained from the John Hopkins Coronavirus Resource Center 

(https://coronavirus.jhu.edu/MAP.HTML). 

Methods 

RNRL as a framework for modeling and evaluating the effect of the interventions on the 

spread of Covid-19 

Markov Decision Process (MDP) is a theoretic process for the RL. RL has three components: 

state, action and reward and consists of system identification and optimal control of design [28]. 

The RNRL combines the RL with RNN [23]. The RL can be viewed as an open dynamic system 

with a correspondent reward function (or loss function). The dynamic system can be a discrete 

time or continuous time dynamic system. Here we focus on discrete time dynamic systems and 

partially observed MDP.  
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  Let ℎ𝑡 ∈ 𝑅𝑚 be a hidden state, 𝑦𝑡 be the observed variable (the number of new cases), 𝐴𝑡 be an 

intervention variable or action variable and 𝑥𝑡 be a vector of covariates at time 𝑡. Consider the 

following dynamic system underlying the transmission dynamics of Covid-19: 

ℎ𝑡+1 = 𝑓(ℎ𝑡 , 𝐴𝑡, 𝑥𝑡, 𝑦𝑡),          (1) 

𝑦̂𝑡+1 = 𝑔(ℎ𝑡+1) ,           (2) 

where equation (1) is the system equation, equation (2) is the observation equation, and 𝑓, 𝑔 are 

two nonlinear functions. System equation (1) states that the next hidden state ℎ𝑡+1 is transitioned 

from the current hidden state ℎ𝑡 and influenced by the current action or intervention 𝐴𝑡.  

 The corresponding reward function is defined as 𝑅: 𝐴 → 𝑅, which is a function of the current 

action. The reward at time 𝑡 is defined as 𝑅𝑡 = 𝑅(𝐴𝑡). Since the current reward may make a 

small contribution to the total reward in the long run, an accumulated reward over time with a 

possible discount factor 𝛾 ∈ [0,1] is defined as 

𝑅 = ∑ 𝛾𝑡−1𝑇
𝑡=1 𝑅𝑡 .         (3) 

The MDP and agent (learner) generate a sequence: ℎ0, 𝐴0, 𝑅1, ℎ1, 𝐴1, 𝑅2, …. The RL consists of 

two step learning: (1) system identification and (2) optimal intervention policy learning. The 

reward functions in two step learning are different.  

Reward function for system identification 

  The system identification serves two purposes. First, since the dynamics of Covid-19 is 

partially observed, the hidden states should be estimated from the historical data. Second, to 

learn the optimal control (intervention) policy, we need to identify the system underlying the 
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dynamics of Covid-19. It serves as a basis for the second step, optimal intervention policy 

learning. For the convenience of discussion, equation (2) is modified to 

𝑦̂𝑡 = 𝑔(𝑦𝑡−1,…,𝑦𝑡−𝑙 , ℎ𝑡, 𝐴𝑡−1, 𝑥𝑡−1) .        (4) 

 Our goal is to minimize the reward (loss) function: 

min
𝑓,𝑔,𝐴

𝑅(𝑓, 𝑔, 𝐴) = ∑ ‖𝑦𝑡 − 𝑦̂𝑡‖2𝑇
𝑡=1 + ∑ ‖𝐴𝑡 − 𝐴̂𝑡‖

2𝑇
𝑡=1 ,    (5) 

where 𝐴 = [𝐴0, 𝐴1, … , 𝐴𝑇−1]𝑇 are estimated from the data, 𝑓, 𝑔 functions are implemented by 

RNN (See Supplementary Note A) 

Reward function for optimal intervention policy learning 

Inferring the optimal intervention (control) policy depends on the model identified in the 

previous step. In the second step, we search an optimal intervention (control) policy that 

minimizes the number of cumulated cases or the number of deaths. Therefore, the reward 

function at time 𝑡 is defined as 

𝑅(𝐴𝑡) = ‖𝑦̂𝑡‖2 . 

In other words, we want to make the number of new cases at time 𝑡 as small as possible.  

Let 𝜋 be the action selection policy which determines the model’s next action 𝐴𝑡. The action 

selection policy 𝜋 which depends on the hidden state, observed data and covariates is given by  

𝐴𝑡 = 𝜋(𝑦𝑡−1, . . , 𝑦𝑡−𝑙, ℎ𝑡  , 𝐴𝑡−1, 𝑥𝑡) .       (6) 

We attempt to minimize the reward function: 

min
𝜋

𝑅 = ∑ 𝛾𝑡−1𝑇
𝑡=1 𝑅(𝐴𝑡) .        (7) 
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RNN for system identification 

System identification is to learn a model underlying the dynamics of Covid-19 from available 

historical data. The historical data includes the number of cases (new or cumulative) 𝑦𝑡, the 

covariates 𝑥𝑡 such as age, sex, race, and the action or intervention 𝐴𝑡. The model captures the 

main developments of the underlying system and explains the system evolvement beyond the 

observed data region. Recurrent neural networks (RNN) are a powerful tool for system 

identification [29]. The RNN can learn the complex dynamics within the temporal ordering of 

input time series of Covid-19 and use an internal memory to remember. 

  The RNN consists of two types of inputs and outputs: (1) internal input and output and (2) 

external input and output (Figure 1). The internal output of RNN can be viewed as “system state” 

ℎ𝑡  which is passed to the next time step. An RNN cell receives a prior internal state ℎ𝑡−1 and a 

current external input: the number of cases 𝑦𝑡 , … , 𝑦𝑡−𝑙+1, action (intervention) 𝐴𝑡 and covariates 

𝑥𝑡, and generates a current internal state ℎ𝑡 and an external current output 𝑦̂𝑡+1 (the number of 

cases) at time (𝑡 + 1). The RNN models input the time series (past history of the number of 

cases of Covid-19 over time) and predict future response time series (number of cases of Covid-

19 in the future with a planned sequence of interventions).  

  Define the input vector 𝑉𝑡 as 

𝑉𝑡 = [

𝑦𝑡

⋮
𝑦𝑡−𝑙+1

] . 

The RNN model a state transition and an output equation of the dynamic system underlying 

Covid-19 as follows: 

state transition   ℎ𝑡 = 𝑓ℎ(𝑊ℎℎℎ𝑡−1 + 𝑊𝑣ℎ𝑉𝑡 + 𝑊𝑎ℎ𝐴𝑡
𝑘 + 𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ),  (8) 
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output equation  𝑌̂𝑡+1 = 𝑓𝑦(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦),     (9) 

where 𝑊ℎℎ is a 𝑚 × 𝑚 dimensional weight matrix that connects the previous state to the current 

state, 𝑊𝑣ℎ is a 𝑚 × 𝑙 dimensional matrix, 𝐴̂𝑡
𝑘 is the 𝑘𝑡ℎ iteration of intervention measure at time 

𝑡, 𝑊𝑎ℎ is a 𝑚 dimensional vector. 𝑊𝑥ℎ is a 𝑚 × 𝑘 dimensional matrix, 𝑥𝑡 is a 𝑘 dimensional 

vector of covariates, and 𝑏ℎ = [𝑏ℎ
1, … , 𝑏ℎ

𝑚]𝑇 is a 𝑚 dimensional bias vector that corrects the bias, 

and 𝑓ℎ is an element-wise nonlinear activation function, and 𝑊ℎ𝑦 is a 𝑚 dimensional weight 

vector, 𝑓𝑦 is an activation function and 𝑏𝑦 is the bias vector of the output neurons.  

  In summary, using RNN to identify the system underlying the dynamics of Covid-19 can be 

formulated as the following optimization problem: 

min
𝜃,𝐴

𝑅(𝑔, ℎ, 𝐴) = ∑ ‖𝑦𝑡 − 𝑦̂𝑡‖2𝑇
𝑡=1 + ∑ ‖𝐴𝑡 − 𝐴̂𝑡‖

2𝑇
𝑡=1  ,    (10) 

s. t. 

ℎ𝑡 = 𝑓ℎ(𝑊ℎℎℎ𝑡−1 + 𝑊𝑣ℎ𝑉𝑡 + 𝑊𝑎ℎ𝐴𝑡
𝑘 + 𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ),    (11) 

𝑌̂𝑡+1 = 𝑓𝑦(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦),        (12) 

𝐴̂𝑡
𝑘+1 = 𝜋(𝑊𝑎ℎℎ𝑡 + 𝑏𝑎),        (13) 

where 𝐴̂𝑡
𝑘+1 is the (𝑘 + 1)𝑡ℎ iteration of intervention measure at time 𝑡, 𝜋 is a nonlinear 

activation function, 𝑊𝑎ℎ is a 1 × 𝑚 dimensional matrix, and the parameters 𝜃 are the weight 

matrices and bias vectors. The above minimization problem will be solved by a backpropagation 

method and forward dynamic programming [27]. The detailed algorithm for training is 

summarized in the Supplementary Note A. 

RNN for learning actions 
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The main purpose of the RL is to make the best decision from historical data. The second part of 

the typical RL is to learn optimal control policy (Figure 2). Learning optimal control policy is 

usually formulated as an optimal control problem. If the state space is discrete, dynamic 

programming is used to find the optimal control policy [27]. If the state space is continuous, the 

Hamilton-Jacobi-Bellman (HJB) equation is used to solve the optimal control problem [29]. 

Choices of public health interventions are restricted by multiple political, cultural, technological 

and economic factors. Policy optimization is often practically infeasible. Therefore, we do not 

attempt to design optimal control actions.  

  In contrast, we use off-policy methods that evaluate or improve a policy different from that 

used to generate the data to select suitable actions (interventions) from a set of feasible actions 

(interventions). We propose to use RNN-based counterfactual action evaluation as a general 

framework for modeling and forecasting the spread of Covid-19 over time with multiple 

interventions [30]. Second RNN is used for learning counterfactual actions (interventions). The 

RNN forecasts the intervention response (similar to counterfactual outputs) for a given set of 

planned counterfactual actions (interventions) and evaluates the impact of different 

counterfactual actions (intervention) and their implementation times on stopping the spread of 

Covid-19 and provides timely selection of suitable sequence of actions (intervention) [21].  

  The RNN for system identification is called an encoder (Figure 1) and the RNN for action 

selection and evaluation is called a decoder (Figure 2). The RNN encoder models input time 

series (past history of the number of cases of Covid-19 over time) and predicts future response 

time series (number of cases of Covid-19 in the future with a planned sequence of interventions). 

RNN encoder was explained in the previous section. Here, we focus on the RNN decoder. Unlike 

the standard decoder where the decoder reconstructs back the input time series from the latent 
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representation, the RNN decoder uses the learned features of the dynamics of Covid-19 in the 

RNN encoder to forecast the counterfactual response time series, given a sequence of planned 

counterfactual public health interventions as an input to the RNN decoder. The feature vector 

learned in the RNN encoder is then provided as an input to the RNN decoder which initiate 

prediction of the future dynamics of Covid-19 under the future counterfactual interventions 

(Figure 2). The RNN decoder can be represented by the following set of equations: 

ℎ𝑡+𝜏 = 𝑓ℎ(𝑊ℎℎℎ𝑡+𝜏−1 + 𝑊𝑣ℎ𝑉𝑡+𝜏 + 𝑊𝑎ℎ𝐴̃𝑡+𝜏 + 𝑏ℎ) ,    (14) 

𝑦̂𝑡+𝜏+1 = 𝑓𝑦(𝑊ℎ𝑦ℎ𝑡+𝜏 + 𝑏𝑦),        (15) 

𝐴̂𝑡+𝜏+1 = 𝑓𝑎(𝑊ℎ𝑎ℎ𝑡+𝜏 + 𝑏𝑎) ,       (16) 

where 𝑉𝑡+𝜏 is defined as before, 𝜏 ≥ 1.  

The algorithm for action (intervention) evaluation and selection are summarized in 

Supplementary Note A.  

Data Collection 

The analysis is based on surveillance data of confirmed cumulative and new Covid-19 cases 

worldwide as of July 30, 2020. Data on the number of cumulative and new cases and Covid-19-

attributed deaths across 187 countries from January 22, 2020 to July 30, 2020 were obtained 

from John Hopkins Coronavirus Resource Center (https://coronavirus.jhu.edu/MAP.HTML).  

Data Pre-processing  

Data were split into a training dataset (01/22-07/23, 2020) and validation dataset (07/24-07/30, 

2020). All the input number of lab-confirmed cumulative cases 𝑦𝑡 was pre-processed by the 
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following transformation: 𝑦̃𝑡 = log2(𝑦𝑡 + 1). The number of new cases was calculated as 

𝑦𝑡
𝑛𝑒𝑤 = 𝑦𝑡+1 − 𝑦𝑡 .  

Mini-batches, Normalization and RNRL Flowchart  

The RNRL algorithm flowchart was shown in Figure S1. We first randomly picked 𝑘 = 64 

countries with (𝑙 + 𝜏) length of Covid-19 time series data starting from isolated-randomly 

picked days to generate 𝑘 time series with  (𝑙 + 𝜏) length for a mini-batch that was used for 

backpropagation training through time. The 𝑙 length of time series were taken to train the RNN 

encoder and the 𝜏 length of time series were taken to train the RNN decoder. Repeat the above 

training processes 𝑛 times. After the RNN encoder and decoder were trained, the trained RNN 

encoder and decoder were used for forecasting and evaluation. The time series 𝑦𝑡−𝑙+1, … , 𝑦𝑡  were 

fed into the trained RNN encoder, while the RNN decoder were used to forecast the time series 

𝑦𝑡+1, … , 𝑦𝑡+𝜏. Calculate the mean value of each time series in the batch. The values of each time 

series were divided by their mean values.  

Forecasting Procedures 

The trained RNN decoder was used to forecast the future number of new or cumulative cases of 

Covid-19 worldwide and for each country. The recursive multiple-step forecasting involved 

using a one-step model multiple times where the prediction for the preceding time step and 

intervention strategy were used as an input for making a prediction on the following time step. 

For example, for forecasting the number of new confirmed cases for the next day, the predicted 

number of new cases and intervention measure in one-step forecasting would be used as an 

observational input in order to predict the following day. Repeat the above process to obtain the 

two-step forecasting. The summation of the final forecasted number of new or cumulative 
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confirmed cases for each country was taken as the prediction of the total number of new or 

cumulative confirmed cases of Covid-19 worldwide.  

Results 

Prediction accuracy of the dynamics of Covid-19 using RNRL 

Accurate prediction of the transmission dynamics of Covid-19 is important for health decision 

making. To demonstrate that the RNRL was an accurate forecasting method, the RNRL was 

applied to the lab confirmed accumulated cases of Covid-19 across 187 countries. Figures 3 and 

4 plotted reported and one-step ahead predicted time-case curves of Covid-19 in the world and 

top fifteen most-affected countries where blue and red curves were the number of reported and 

predicted cumulative cases, respectively. The top fifteen most-affected countries included US, 

Brazil, Russia, India, United Kingdom, Spain, Italy, Peru, Columbia, Saudi Arabia, Iran, South 

Africa, Chile, Mexico, and Pakistan. The average absolute of the one-step ahead prediction error 

in the world was 0.01596, ranging from 0.007 to 0.023. The average non-absolute and absolute 

of the one-step ahead prediction error in fifteen countries were -0.0172 and 0.0248, respectively. 

To further reliably evaluate the forecasting accuracy, we reported 7-step ahead forecasted 

numbers of cumulative cases and errors of Covid-19 worldwide and in 15 countries in Table 1 

starting with July 24, 2020. The absolute of forecasting errors ranged from 0.00023 to 0.076.  

Transmission Dynamics of Top Fifteen Most-affected Countries 

Figures 5 and 6 plotted the reported and forecasted trajectory of the new and cumulative cases of 

Covid-19 in the top fifteen most-affected countries, respectively. Tables S1 and S2 listed one 

month forecasted number of new and cumulative cases of Covid-19 in the top fifteen most-

affected countries, respectively. We observed several remarkable features. First, keeping the 
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current intervention measure, all the top 15 most-affected countries have passed the peak. 

Second, the spread of Covid-19 in all the top most-affected countries was curbed. The forecasted 

number of new cases in 12 countries on August 22, 2020 was less than 1,000 (Chile: 108, 

Colombia: 958, Iran: 154, Italy: 23, Mexico: 446, Pakistan: 64, Peru: 701, Russia: 314, Saudi 

Arabia: 109, South Africa: 632, Spain: 256, and United Kingdom: 46), the number of cases in 3 

countries was less than 5,000 (Brazil:  4,183, India: 2,974, US: 3,934).  

Outbreak of Covid-19 worldwide has peaked and is on the decline 

We observed that the number of new cases of Covid-19 worldwide reached a peak (407,205) on 

July 24, 2020 and forecasted that the number of new cases will reduce to 29,517 on August 22, 

2020. The reported and forecasted curves of the number of new cases and the number of 

cumulative cases of Covid-19 worldwide were shown in Figures 7 and 8, respectively. Table 2 

summarized the number of cumulative and new cases of Covid-19 worldwide, starting from July 

24, 2020 to August 22, 2020. The figures and table showed the forecasted number of new cases 

and cumulative cases of Covid-19 for 30 days. 

  The figures and table demonstrated that the forecasted number of new cases of Covid-19 

decreased from 407,205 on July 24, 2020 to 29,517 on August 22, 2020, and the number of 

cumulative cases of Covid-19 steadily changed from 15,918,430 on July 24 to 

20,015,990 cases on August 22. The forecasted number of new cases of Covid-19 has decreased 

and will continuously decrease for 30 days. The results strongly show that the outbreak of Covid-

19 worldwide is curbed.  

 

Intervention Measure 

Traditionally, the effects of the interventions on the transmission dynamics of Covid-19 can be 

investigated by the reproduction number 𝑅𝑡 which measures the average number of individuals 

one affected individual will transmit the disease to. The reproduction number 𝑅𝑡 is often used to 
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determine the dynamic behavior of epidemics. Similar to the reproduction number, we defined 

an intervention measure 𝐴𝑡 to control the spread of Covid-19. Intervention measure was a matric 

to quantify the degree of control of the intervention action.  

  Figure 9 plotted the estimated intervention measure curves of the top fifteen most-affected 

countries as a function of time and Table S3 summarized the estimated intervention measures of 

the top fifteen most-affected countries. These results showed some patterns of dynamic changes 

in intervention measures. The shape of the intervention measure curves of these countries 

characterized the trajectory of Covid-19 in these countries. The common feature of these curves 

was that both the intervention curve and the number of new case-time curve shared a similar 

trend. As the number of new cases of Covid-19 increased to peak values, the intervention 

measure also increased to peak value to curb the growth of the number of new cases. When the 

number of new cases fluctuated around the peak, the intervention measure also stayed at the 

plateau for a short time. Then, when the number of new cases decreased toward a small number 

or zero, the intervention measure decreased and converged to a small stationary value. 

Intervention measure and the number of new cases of Covid-19 were highly correlated. 

  To compare the intervention measure 𝐴𝑡 with the reproduction number 𝑅𝑡, we downloaded the 

estimated reproduction number 𝑅𝑡 from https://github.com/lin-lab/COVID19-

Rt/tree/master/initial_estimates, and presented Figure S2 that plotted the reproduction number 

curves as a function of time in the top fifteen most-affected countries and Figure S3 that plotted 

both intervention measure 𝐴𝑡 and reproduction number 𝑅𝑡 curves. In general, the reproduction 

curves were fluctuated decreasing function except for United Kingdom. When outbreak of 

Covid-19 began, the reproduction number was in the top of the curve and much larger than 1. As 

time increased, the reproduction number decreased. When the reproduction number was less than 
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1, the number of new cases quickly converge to a very small number or to zero. We observed 

from Figure S3 that the patterns of intervention measure 𝐴𝑡 and reproduction number 𝑅𝑡 of the 

top fifteen most-affected countries can be divided into two groups (1) 𝐴𝑡 and 𝑅𝑡 were positively 

correlated and (2) 𝐴𝑡 and 𝑅𝑡 were not correlated or negatively correlated. The first group 

included US, Spain, Italy, Iran, France, Germany and Turkey and the second group included 

Brazil, Chile, Russia, India, United Kingdom, Peru, Pakistan, and Mexico. For the countries in 

the first group, when the reproduction number 𝑅𝑡 was large and the spread of Covid-19 was 

strong, government increased intervention which in turn reduced the reproduction number 𝑅𝑡 and 

then the government relaxed the intervention. As a consequence, the intervention measure 𝐴𝑡 and 

the reproduction number 𝑅𝑡 were positively correlated. For the countries in the second group, the 

health interventions were lag to the reproduction number 𝑅𝑡 . When the outbreak of Covid-19 

began, the government did not implement strong health interventions, or implement weak 

interventions, After long time, when the number of virus increased, which in turn, the affected 

patients were detected and isolated, the reproduction number 𝑅𝑡  began to reduce. Due to great 

pressure from the society, the government’s intervention began to be intensified. The correlation 

between the intervention measure and the reproduction number showed negative correlation. The 

second group also included small number of less well controlled countries. The intervention 

measure in these countries was weak and showed small correlation with the reproduction 

number.  

  Table S4 summarized the Spearman correlation coefficients between the intervention measures 

and reproduction number in 187 countries or regions. The Spearman correlation coefficients 

between the intervention measures and reproduction number in 107 countries or regions were 

larger than 0.3000, the correlation coefficients in 42 countries or regions were between -0.1000 
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and 0.3000, and the correlation coefficients in 19 countries and regions were between -0.1000 

and -0.5276.  

Clustering Intervention Patterns of the Countries across the World 

Clustering algorithm and geographical information system GIS were used to analyze the 

intervention strategies of all 187 countries across the world. Clustering results would provide 

information about the spread pattern of the coronavirus across the countries and how to best 

combat Covid-19. All 187 countries were grouped into 10 clusters using k-means clustering 

algorithms and intervention measure time curves of the 187 countries across the world (Figure 10 

and Table S5).  

  The first, second and third clusters were the group of the top most-affected countries 

The first cluster included 9 countries: Brazil, France, Germany, India, Italy, Russia, Spain, 

Turkey, US. The second cluster included 9 countries: Argentina, Chile, Colombia, Israel, 

Kyrgyzstan, Mexico, Peru, South Africa. The third cluster included 8 countries: Bangladesh, 

Iran, Iraq, Pakistan, Qatar, Saudi Arabia, United Kingdom. The shapes of the intervention 

curves, the production number curves and the number of new case-time curves in these three 

clusters were the similar. Up to now, the number of cumulative cases of Covid-19 of the 

countries in these three clusters were the largest.  

  The fifth and sixth lusters were the group of the second most-affected countries. The fifth 

cluster included 14 countries: Bolivia, Costa Rica, Dominican Republic, Ecuador, Egypt, 

Guatemala, Honduras, Indonesia, Kazakhstan, Kenya, Oman, Panama, Philippines, Sweden. The 

sixth cluster included 6 countries: Belgium, Canada, Kuwait, Portugal, Singapore, United Arab 
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Emirates. The countries in these two clusters were the second most-affected countries, but well 

controlled.  

  The seventh cluster and ninth cluster were the group of the mildly affected countries. The 

seventh cluster included 23 countries: Afghanistan, Algeria, Armenia, Azerbaijan, Bahrain, 

Cameroon, Cote D'ivoire, El Salvador, Ethiopia, Ghana, Japan, Madagascar, Moldova, 

Montenegro, Morocco, Nigeria, Poland, Romania, Serbia, Ukraine , Uzbekistan, Venezuela, 

West Bank and Gaza. The ninth cluster included 12 countries: Australia, Austria, Belarus, 

Czechia, Denmark, Ireland, Korea South, Luxembourg, Nepal, Netherlands, Norway, Tajikistan. 

The number of cumulative cases of Covid-19 on August 22, 2020 of the countries in the seventh 

and ninth clusters ranged from 7,187 to 58,865. 

 The tenth cluster included only China. This was an independent cluster that showed quite 

different pattern of spread of Covid-19. Countries in the fourth and eighth clusters were less 

affected.  

Discussion 

 As an alternative to the epidemiologic transmission models, we developed the RNRL method to 

help health officers plan public health interventions and combating the spread of Covid-19. We 

viewed interventions to stop the spread of Covid-19 as actions to control the states of dynamic 

system and intervention plan as the design of optimal control. A key step for optimal control 

design was identification of the dynamic system. Therefore, we integrated the identification of 

the dynamic system underlying Covid-19 and formulated a planning intervention strategy 

problem as a novel RNRL problem which included recurrent neural network-based 
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reinforcement learning. The RNRL can learn the complex dynamics within the temporal ordering 

of input time series of Covid-19 and develop suitable interventions for containing the Covid-19. 

  In this study, we presented a new concept of intervention measure. To improve interpretation of 

the intervention measure, we compared the intervention measure with the reproduction number. 

In general, the correlation coefficients between the intervention measure and reproduction 

number was high except for the less controlled and less affected countries Intervention measure 

quantified the strength of intervention (control action), while reproduction number measured the 

state of the spread of Covid-19 being controlled, i.e., measures how well the spread of Covid-19 

was curbed. In other words, intervention measure is to quantify how strong the action is, while 

the reproduction number is to study the effect or the response of intervention. Intervention 

measure is complimentary to the reproduction number. 

  The RNRL provided a powerful tool for fighting the surge of Covid-19 worldwide. The 

dynamic system consists of two essential components. One is the state of the system and the 

second is action taken. The evolution of the dynamic system highly depends on a sequence of 

actions. Actions influencing the dynamics of Covid-19 cannot be directly measured or observed. 

In this report, we proposed to use an intervention measure to quantify the actions. The 

intervention measure was estimated. The intervention measure curve characterized the dynamics 

of Covid-19 and can be used to assess the stages of the spread of Covid-19 and strength of the 

control. The intervention measure curves were used to cluster 187 countries into five basic 

groups: the most-affected group (26 countries), the second most-affected, but well-control group 

(20 countries), mildly affected group (35 countries), less affected group (105 countries) and the 

independent group (China).  

  Although the number of cumulative cases of Covid-19 worldwide passed 18 million, we are 

happy to observe that outbreak of Covid-19 worldwide has peaked and is on the decline. The 

results strongly show that the outbreak of Covid-19 worldwide is curbed. If the less controlled 
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groups of countries continuously strengthen interventions, our analysis demonstrated that the 

spread of Covid-19 worldwide will be finally stopped. We are confident that we will win the 

combat to contain the Covid-19. 

  Since the politics and economics strongly affect the dynamics of Covid-19, the evolutionary 

trajectories of Covid-19 in most countries will be uncertain. The accuracy of long-term 

forecasting of Covid-19 may not be very high. However, accuracy of short-term estimation of the 

number of new cases can be quite good. We suggest that every 10 days we update the data and 

run the RNRL to forecast the trajectory of Covid-19 in 15 days or one month. 
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Table 1. Forecasting errors of worldwide and 15 countries. 
   

  Reported Forecasted Errors   Reported Forecasted Errors 

Global       Chile       

7/24/2020 15792390 15902801 0.0070 7/24/2020 341304 340228 -0.0032 

7/25/2020 16047935 16215293 0.0104 7/25/2020 343592 341257 -0.0068 

7/26/2020 16253034 16546161 0.0180 7/26/2020 345790 342285 -0.0101 

7/27/2020 16487669 16859451 0.0225 7/27/2020 347923 343314 -0.0132 

7/28/2020 16740006 17098627 0.0214 7/28/2020 349800 344034 -0.0165 

7/29/2020 17029155 17333231 0.0179 7/29/2020 351575 344754 -0.0194 

7/30/2020 17305917 17556204 0.0145 7/30/2020 353536 345474 -0.0228 

US 
  

  United Kingdom 
  

7/24/2020 4112531 4088453 -0.0059 7/24/2020 299500 299141 -0.0012 

7/25/2020 4178970 4123199 -0.0133 7/25/2020 300270 299428 -0.0028 

7/26/2020 4233923 4157945 -0.0179 7/26/2020 301020 299715 -0.0043 

7/27/2020 4290337 4192691 -0.0228 7/27/2020 301708 300003 -0.0057 

7/28/2020 4356206 4217013 -0.0320 7/28/2020 302261 300204 -0.0068 

7/29/2020 4426982 4241335 -0.0419 7/29/2020 303063 300405 -0.0088 

7/30/2020 4495015 4265657 -0.0510 7/30/2020 303910 300606 -0.0109 

Brazil 
  

  Iran 
   

7/24/2020 2343366 2334977 -0.0036 7/24/2020 286523 285872 -0.0023 

7/25/2020 2394513 2368228 -0.0110 7/25/2020 288839 287158 -0.0058 

7/26/2020 2419091 2401480 -0.0073 7/26/2020 291172 288444 -0.0094 

7/27/2020 2442375 2434731 -0.0031 7/27/2020 293606 289730 -0.0132 

7/28/2020 2483191 2458007 -0.0101 7/28/2020 296273 290631 -0.0190 

7/29/2020 2552265 2481283 -0.0278 7/29/2020 298909 291531 -0.0247 

7/30/2020 2610102 2504559 -0.0404 7/30/2020 301530 292431 -0.0302 

India 
  

  Pakistan 
   

7/24/2020 1337024 1320112 -0.0126 7/24/2020 271887 271634 -0.0009 

7/25/2020 1385635 1342515 -0.0311 7/25/2020 273113 272498 -0.0023 

7/26/2020 1435616 1364918 -0.0492 7/26/2020 273113 273362 0.0009 

7/27/2020 1480073 1387320 -0.0627 7/27/2020 274289 274226 -0.0002 

7/28/2020 1531669 1403002 -0.0840 7/28/2020 275225 274830 -0.0014 

7/29/2020 1581963 1418684 -0.1032 7/29/2020 276288 275435 -0.0031 

7/30/2020 1634746 1434366 -0.1226 7/30/2020 277402 276040 -0.0049 

Russia 
  

  Spain 
   

7/24/2020 799499 797851 -0.0021 7/24/2020 272421 273373 0.0035 

7/25/2020 805332 800742 -0.0057 7/25/2020 272421 275617 0.0117 

7/26/2020 811073 803634 -0.0092 7/26/2020 272421 277862 0.0200 

7/27/2020 816680 806525 -0.0124 7/27/2020 278782 280107 0.0048 
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7/28/2020 822060 808549 -0.0164 7/28/2020 280610 281678 0.0038 

7/29/2020 827509 810573 -0.0205 7/29/2020 282641 283249 0.0022 

7/30/2020 832993 812597 -0.0245 7/30/2020 285430 284821 -0.0021 

South Africa 
 

  Saudi Arabia 
  

7/24/2020 421996 417257 -0.0112 7/24/2020 262772 262127 -0.0025 

7/25/2020 434200 423700 -0.0242 7/25/2020 264973 263340 -0.0062 

7/26/2020 445433 430144 -0.0343 7/26/2020 266941 264554 -0.0089 

7/27/2020 452529 436587 -0.0352 7/27/2020 268934 265767 -0.0118 

7/28/2020 459761 441098 -0.0406 7/28/2020 270831 266616 -0.0156 

7/29/2020 471123 445608 -0.0542 7/29/2020 272590 267465 -0.0188 

7/30/2020 482169 450119 -0.0665 7/30/2020 274219 268315 -0.0215 

Peru 
  

  Italy 
   

7/24/2020 375961 374220 -0.0046 7/24/2020 245590 249846 0.0173 

7/25/2020 375961 376407 0.0012 7/25/2020 245864 253001 0.0290 

7/26/2020 375961 378594 0.0070 7/26/2020 246118 256156 0.0408 

7/27/2020 389717 380781 -0.0229 7/27/2020 246286 259312 0.0529 

7/28/2020 395005 382312 -0.0321 7/28/2020 246488 261520 0.0610 

7/29/2020 400683 383842 -0.0420 7/29/2020 246776 263729 0.0687 

7/30/2020 400683 385373 -0.0382 7/30/2020 247158 265938 0.0760 

Mexico 
  

  Colombia 
   

7/24/2020 378285 375513 -0.0073 7/24/2020 233541 231546 -0.0085 

7/25/2020 385036 378874 -0.0160 7/25/2020 240795 235167 -0.0234 

7/26/2020 390516 382235 -0.0212 7/26/2020 240795 238788 -0.0083 

7/27/2020 395489 385596 -0.0250 7/27/2020 257101 242409 -0.0571 

7/28/2020 402697 387949 -0.0366 7/28/2020 267385 244944 -0.0839 

7/29/2020 408449 390301 -0.0444 7/29/2020 276055 247479 -0.1035 

7/30/2020 416179 392654 -0.0565 7/30/2020 286020 250014 -0.1259 
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Table S3. The estimated 

intervention measures of the 

top fifteen most-affected 

countries.  

  Brazil Chile 

2020/1/22 0.00000 0.00000 

2020/1/23 0.00000 0.00000 

2020/1/24 0.00000 0.00000 

2020/1/25 0.00000 0.00000 

2020/1/26 0.00000 0.00000 

2020/1/27 0.00000 0.00000 

2020/1/28 0.00000 0.00000 

2020/1/29 0.00000 0.00000 

2020/1/30 0.00000 0.00000 

2020/1/31 0.00000 0.00000 

2020/2/1 0.00000 0.00000 

2020/2/2 0.00000 0.00000 

2020/2/3 0.00000 0.00000 

2020/2/4 0.00000 0.00000 

2020/2/5 0.00000 0.00000 

2020/2/6 0.00000 0.00000 

2020/2/7 0.00000 0.00000 

2020/2/8 0.00000 0.00000 

2020/2/9 0.00000 0.00000 

2020/2/10 0.00000 0.00000 

2020/2/11 0.00000 0.00000 

2020/2/12 0.00000 0.00000 

2020/2/13 0.00000 0.00000 

2020/2/14 0.00000 0.00000 

2020/2/15 0.00000 0.00000 

2020/2/16 0.00000 0.04995 

2020/2/17 0.00000 0.09801 

2020/2/18 0.00000 0.10784 

2020/2/19 0.04126 0.11853 

2020/2/20 0.05701 0.12921 
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Figure Legend 

Figure 1. Architecture of RNN encoder.  

Figure 2. Architecture of RNN decoder. 

Figure 3. Reported and predicted time-case curves of Covid-19 worldwide where blue curve and 

red curve were the number of reported and predicted cumulative cases, respectively.  

Figure 4. Reported and predicted time-case curves of Covid-19 in top fifteen most-affected 

countries where black curve and red curve were the number of reported and predicted cumulative 

cases, respectively. 

Figure 5. The trajectory of the new cases of Covid-19 in the top fifteen most-affected countries 

where solid curve and dotted curve were the number of reported and predicted new cases, 

respectively. 

Figure 6. The trajectory of the cumulative cases of Covid-19 in the top fifteen most-affected 

countries where solid curve and dotted curve were the number of reported and predicted 

cumulative cases, respectively.  

Figure 7. The reported and forecasted curve of number of new cases of Covid-19 worldwide 

where solid curve and dotted curve were the number of reported and predicted cumulative cases, 

respectively.  

Figure 8. The reported and forecasted curve of number of cumulative cases of Covid-19 

worldwide where solid curve and dotted curve were the number of reported and predicted 

cumulative cases, respectively.  

Figure 9. The estimated intervention measures of the top fifteen most-affected countries.  
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Figure 10. All 187 countries were grouped into ten clusters. 
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Supplementary Figure Legend 

Figure S1. RNRL algorithm flowchart.  

Figure S2. The reproduction number and intervention measure curves as a function of time in 

the top fifteen most-affected countries where blue and red curve represented the reproduction 

number and intervention measure, respectively.  
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Figure 1. Architecture of RNN encoder.  

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2020. ; https://doi.org/10.1101/2020.07.08.20149146doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.08.20149146
http://creativecommons.org/licenses/by/4.0/


31 
 

 

Figure 2. Architecture of RNN decoder. 
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Figure 3. Reported and predicted time-case curves of Covid-19 worldwide where blue 

curve and red curve were the number of reported and predicted cumulative cases, 

respectively.  
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Figure 4. Reported and predicted time-case curves of Covid-19 in top fifteen most-

affected countries where black curve and red curve were the number of reported and 

predicted cumulative cases, respectively. 
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Figure 5. The trajectory of the new cases of Covid-19 in the top fifteen most-affected 

countries where solid curve and dotted curve were the number of reported and predicted 

new cases, respectively. 
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Figure 6. The trajectory of the cumulative cases of Covid-19 in the top fifteen most-

affected countries where solid curve and dotted curve were the number of reported and 

predicted cumulative cases, respectively.  
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Figure 7. The reported and forecasted curve of number of new cases of Covid-19 

worldwide where solid curve and dotted curve were the number of reported and predicted 

cumulative cases, respectively.  
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Figure 8. The reported and forecasted curve of number of cumulative cases of Covid-19 

worldwide where solid curve and dotted curve were the number of reported and predicted 

cumulative cases, respectively 
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 Figure 9. The estimated intervention measures of the top fifteen most-affected countries.  
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 Figure 10. All 187 countries were grouped into ten clusters. 
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