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ABSTRACT 
 
Background 
As COVID-19 continues to spread around the world, understanding how patterns of human 
mobility and connectivity affect outbreak dynamics, especially before outbreaks establish 
locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or 
linked to imported cases. 
 
Methods 
In collaboration with Facebook Data for Good, we characterized changes in movement patterns 
in Taiwan since February 2020, and built metapopulation models that incorporate human 
movement data to identify the high risk areas of disease spread and assess the potential effects of 
local travel restrictions in Taiwan.  
 
Results 
We found that mobility changed with the number of local cases in Taiwan in the past few 
months. For each city, we identified the most highly connected areas that may serve as sources of 
importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if 
initial infections occur around holidays. Intracity travel reductions have a higher impact on the 
risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow 
the scope of the outbreak and help target resources. The timing, duration, and level of travel 
reduction together determine the impact of travel reductions on the number of infections, and 
multiple combinations of these can result in similar impact. 
 
Conclusions 
To prepare for the potential spread within Taiwan, we utilized Facebook’s aggregated and 
anonymized movement and colocation data to identify cities with higher risk of infection and 
regional importation. We developed an interactive application that allows users to vary inputs 
and assumptions and shows the spatial spread of the disease and the impact of intercity and 
intracity travel reduction under different initial conditions. Our results can be used readily if 
local transmission occurs in Taiwan after relaxation of border control, providing important 
insights into future disease surveillance and policies for travel restrictions.  
 
Keywords: COVID-19, Taiwan, metapopulation model, mobility data, travel restrictions 
 
List of Abbreviations 
 
COVID-19: Coronavirus Disease 2019 
SLIR: Susceptible-latent-infectious-recovered 
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BACKGROUND 
 
The Coronavirus Disease 2019 (COVID-19) was first reported in Wuhan, China in December 
2019 and has since caused a global pandemic, with over 15,000,000 confirmed cases and over 
600,000 deaths reported by July 23, 2020.1 Scientific discoveries have advanced at an 
unprecedented pace, with numerous clinical trials of drugs and vaccines underway.2,3 In the 
meantime, public health officials must rely on other interventions, such as social distancing and 
travel restrictions, to slow the spread and reduce the peak of the outbreak, in order to prevent 
health systems from being overwhelmed.4,5  
 
In January 2020, as the epidemic in Wuhan grew, many countries implemented travel bans, and 
airlines canceled flights to attempt to slow the spread.6 A number of studies have estimated the 
risk of importation globally, with some suggesting up to two-thirds of all imported cases went 
undetected.7,8 For Taiwan, there have been 411 reported cases as of June 30, 2020 9, with 356 
imported (87%) and 55 local cases (13%). 52 local cases (94.5 %) were linked to imported or 
known cases, and 3 local cases (5.5 %) have unknown origin. Since February 7th, Taiwan has 
implemented entry restrictions on foreign nationals based on their travel histories; 14-day home 
quarantine started being required for visitors from certain locations from February 10th and 
became required for all travelers from March 19th.10 While COVID-19 transmission in Taiwan is 
relatively well-controlled, the number of cases globally is still increasing.1 When border control 
is relaxed in Taiwan in the future, importation from other countries has the potential to lead to 
local outbreaks, especially if other non-pharmaceutical interventions, such as hand washing or 
mask wearing, are not adopted at the same level as in March and April 2020.  
 
As the number of cases globally due to community transmission grows relative to the number of 
imported cases, attention has turned to more local measures to decrease spread, such as 
cancellations of mass gatherings, business closures, and local travel restrictions.11 Mobility data 
can provide critical information for responding to outbreaks and understanding the impact of 
travel restrictions.12 Recent studies have analyzed the effects of human mobility and travel 
restrictions on disease spread during the COVID-19 pandemic.6,13–16 Here, to prepare for 
COVID-19 and its impact, in collaboration with Facebook Data for Good, we describe the 
metapopulation models we’ve built that include human movement data to better understand the 
high risk areas of disease spread and assess the potential impact of local travel restrictions in 
Taiwan.  
 
 
METHODS 
 
Movement data and geographic unit 
We incorporated two different sources of mobility data from Facebook into our models: 
Facebook colocation data and Facebook movement data. Facebook’s newly developed 
colocation matrices (Facebook colocation data) give the probability that people from two 
different geographic units will be in the same 600 m × 600 m location for five minutes using data 
over the course of a week. Facebook’s regular movement data (Facebook movement data) 
aggregates the number of trips Facebook users make between locations every eight hours (Figure 
S1).17 Mobility data between January 26th and June 30th were used. Facebook movement data 
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were disaggregated by weekdays (Monday to Friday), weekends, and holidays (Lunar New Year, 
Ching Ming festival, and Dragon Boat Festival). Facebook colocation data included weeks 
containing holidays and weeks containing only regular (i.e. non-holiday) days. 
 
The geographic unit used in this study was at the centrally-governed level of “city” (here “city” 
indicates city, county or special municipality in Taiwan). Shape files were downloaded from 
Government open data platform (https://data.gov.tw/dataset/7442). We excluded three cities 
outside of the main island of Taiwan from the analysis due to their low connectivity with the 
main island, leaving 19 cities.  
 
Metapopulation Models 
We developed susceptible-latent-infectious-recovered (SLIR) models of the spread of COVID-
19 throughout Taiwan. We ran the models stochastically to understand the initial stages of 
disease spread. We ran the model until either (1) it reached n cumulative infections or (2) the 
total number of infections became 0 to estimate the probability of having more than n infections 
(denoted by Pn,k, where k represents the number of initial infections), the time it takes to reach n 
infections (denoted by Tn,k), and the standard deviation of infection numbers at Tn,k (denoted by 
Vn,k). To assess the initial stages of the outbreak, we used n=1000 and k=3 as our baseline values.  
  
Let Si, Li, Ii, Ri be the number of susceptible, latent, infectious, and recovered individuals in 
location i, respectively, and Ni be the total population in location i. Let DL (=3.5) be the latent 
period, and DI (=3) be the duration of infectiousness.13 Because transmission rates can change 
with non-pharmaceutical interventions, as shown in previous studies, we vary  
R0 in our model (R0 =2.4, 1.2, or 0.9).13,18,19  
 
We modified spatial models from previous studies20–23 and constructed two metapopulation 
models, a contact model and a residence model, with the former using Facebook colocation data 
and the latter using Facebook movement data. In the “contact model”, we assumed that contact 
rates (and therefore transmission rates) varied among locations and was proportional to 
colocation probabilities (Cij, the probability that a person from location i collocates with a person 
from location j) from Facebook colocation data. We scaled R0 by Cij*Nj (for j not equal to i) or 
Cii*(Ni-1), standardized to Cii*(Ni-1) in Taipei. 
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In the “residence model”, we first estimated the proportion of time people living in location i 
spend in location j (Pij) based on Facebook movement data (see details in Supplementary 
Methods), and modeled the transmission dynamics by considering both that (1) non-travelers get 
infected by infectious visitors to their home location (the first part in the following equation) and 
that (2) naïve travelers get infected when they travel (the second part in the following equation).  
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The remaining equations are the same across the two models.  
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In addition to using different movement data, the major difference between two models is that 
the transmission rate within each city (R0/DI) varies with colocation matrices in the contact 
model, while it remains constant in the residence model. In this sense, the contact model is 
similar to the traditional density dependent model, where contact rates (and therefore 
transmission rates) vary with population density, and the residence model is similar to the 
frequency dependent model.24 As it is unclear which is most appropriate for COVID-19, we used 
both and compared the results.  

Risk of infection and regional importation 

We defined three connectivity measures relevant for disease transmission, risk of infection, risk 
of regional importation, and source of importation. Using Facebook colocation data, we defined 
R0ii as intracity R0 and ∑ 𝑅#!""1!  as intercity R0 for location i. The sum of intracity R0 and 
intercity R0 reflects total risk of infection and was standardized to the highest value. 

Risk of infection for location i = ∑ 𝑅#!""	!&'()*+	! . 

Similarly, using Facebook movement data, we defined 4∑ 3!"4!
5!"1! 5 𝑁!6  as risk of regional 

importation (i.e. importation from other cities within Taiwan) for location i, where qj represents 
the average number of subscribers in location j and mji represents the average number of people 
moving from location j to location i per unit of time in Facebook movement data. Source of 
importation was defined as the number of travelers from each location i and standardized to the 
highest value.  

Source of importation for location i = ∑ 3"!4"
5""1!  . 

 
Facebook colocation data from regular days were used to calculate risk of infection, and 
weekday movement data were used to calculate risk of regional importation and source of 
importation.  
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Modeling travel reduction 
To assess the potential effect of travel restrictions at multiple levels, we modeled either intra-city 
travel reductions, inter-city travel reductions, or a combination of both travel reductions (“overall 
reduction” in texts and figures) for 1, 2, 3, or 6 months or for the whole period of time. Travel 
reductions started from the beginning of the simulations or when there were 10, 20, 30, 50, or 
100 accumulated infections. The proportion of reduction is denoted by G. In the contact model, 
intracity reduction was modeled by R0ii*(1–G) for all i, and intercity reduction was modeled by 
R0ij*(1–G) for all i not equal to j. In the residence model, intracity reduction was modeled by 
R0*(1–G) and intercity reduction was modeled by Pij*(1–G) for all i not equal to j and Pii +(1–
Pii)*G for all i.  
 

RESULTS 

Varying human mobility across space and time in Taiwan  

We quantified how intercity and intracity mobility varied at the centrally-governed level in the 
past five months using Facebook mobility data. On average, intracity movement was 7-fold of 
intercity movement, and intracity colocation probability was over 200-fold of intercity colocation 
probability. We quantified the difference in connectivity between locations by three measures: 
risk of infection, risk of regional importation, and source of importation (Figure 1 and Table S1). 
Risk of infection identifies locations with larger colocation probabilities. If assuming contact 
rates were proportional to colocation probabilities, disease transmission rates are expected to be 
higher in locations with higher risk of infection, such as Taipei City, New Taipei City, and 
Kaohsiung City. Risk of regional importation represents the relative number of travelers and 
local people, and higher values indicate higher possibility that travelers will transmit virus to 
local people. Source of importation calculates how much travelers from each location contribute 
to other locations. Viruses are expected to spread more quickly if initial local infections in 
Taiwan occur in locations with higher values of source of infection. Taipei and New Taipei City 
are cities with the highest risk of regional importation and source of importation, respectively. 
These three measures quantify different but related aspects of mobility and connectivity that are 
relevant for disease transmission, and while well-connected cities tend to have high values for all 
three measures, there are still some differences among them. 

We found intercity mobility between some of the locations first decreased and then increased in 
the past few months, which is consistent with the changes in the number of local cases in Taiwan 
and global number of cases (Figure S2 and Figure S3), indicating the level of change that can 
happen without travel restrictions imposed by the government. We also observed significant 
changes during holidays. Lunar New Year was within the early stages of the SARS-CoV-2 
outbreak, and for most of cities pairs (95%), colocation probabilities during Lunar New Year was 
significantly higher than regular days, as expected during holidays. However, the proportion of 
city pairs with higher than usual intercity connectivity during the Ching Ming Festival, which 
occurred at the time when the number of cases was increasing dramatically globally and the 
number of local cases was just starting to decrease, decreased to 67%. Dragon Boat Festival was 
at the time the number of local cases remained zero for more than a month, and the proportion of 
city pairs with higher than usual intercity mobility increased to 76%. 
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The impact of the location of initial infections on the risk of the spread  

At the end of June 2020, most cases in Taiwan were imported or linked to imported cases. 
Therefore, we used meta-population models parameterized by human mobility data from 
Facebook to simulate the spread of SARS-CoV-2 under a variety of initial conditions, including 
both the number of initial infections and their locations. We developed a web-based interface 
(https://roachchang.shinyapps.io/TW_CoV_Dynamics/) to show the geographic distribution of 
infections given different initial conditions, which can be readily used to inform targeted 
surveillance and control if SARS-CoV-2 starts spreading locally in Taiwan. Because other 
disease-relevant hygiene behaviors, such as hand washing, mask wearing, or social distancing, 
may also have changed due to the awareness of COVID-19, we explored different transmission 
rates (R0 =2.4, 1.2, or 0.9). 
 
We considered different aspects of disease spread – the probability of outbreak, the speed of 
spread, and the geographic range of outbreak. We estimated the probability of having more than 
1000 infections (denoted by P1000,k, where k represents the number of initial infections) using 
stochastic simulations and used this to represent the probability of an outbreak. As expected, we 
found that, if we assumed that the transmission rates varied among cities (contact model), the 
probability of having more than 1000 infections also varied with the locations of initial 
infections, with the cities with larger risk of infection showing larger P1000 (Figure S4A and 
Table S2). In simulations where 1000 infections were reached, the time it took to reach 1000 
infections (denoted by T1000,k) was also shorter for cities with larger risk of infection (Figure 
S4B). When assuming that the transmission rates in different cities were the same (residence 
model), the probability of having more than 1000 infections and the time to reach 1000 
infections did not vary much with the locations of initial infections (Figure S5 and Table S3). 
The effect of intercity connectivity, however, was reflected in the variation in infection numbers 
across cities at T1000 (denoted by V1000). The variation in infection numbers was lower in cities 
with higher values of source of importation (Figure S4C) as the chance of spreading the virus to 
other cities was higher. In both models, well connected cities played more important roles, as 
they spread the virus to other cities more quickly and more widely. 
 
The impact of varying mobility on the risk of spread  

Above results were based on mobility data on regular days. Given that human mobility varied 
significantly in the past few months without travel restrictions imposed by the government, we 
further quantified the impact of varying mobility in Taiwan on the risk of spreading SARS-CoV-
2. The impact was mainly reflected in the geographic range of infections in both models. When 
initial infections occurred in or around Lunar New Year, the speed of disease spread was 
enhanced (Figure 2). Because mobility during Ching Ming Festival and Dragon Boat Festival 
differed less from regular days and these two holidays only lasted four days, it only led to minor 
differences in the geographic range of infections (Figure 2). In the contact model, the probability 
of local outbreak was higher if initial infections occurred in or around Lunar New Year, and this 
impact was more apparent when initial infections were in locations with lower risk of infection 
(Figure S6).  
 
The effect of travel restrictions  
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We examined the impact of varying mobility that occurred naturally during holidays on the 
disease spread above. Here we explored the level to which travel restrictions imposed by the 
government could potentially reduce the spread of SARS-CoV-2 in Taiwan at the initial stage of 
an outbreak. In both the contact model and the residence model, decreasing intracity movement 
had a much larger impact on P1000,3 (Figure 3) and T1000,3 (Figure S7) than decreasing intercity 
movement. The impact of reducing intercity travel was most evident in influencing how 
widespread the virus was: the infections were located in only a few cities at T1000,3 if intercity 
travel was reduced (Figure S8).  
 
We then investigated the impact of duration and timing of travel reductions (Figure 4, and details 
at https://roachchang.shinyapps.io/TW_CoV_Dynamics/). The probability of local outbreak 
decreased with increased duration of intracity travel reduction, but not change with the duration 
of intercity travel reduction. The results suggest that higher levels of reduction and longer 
periods of reduction for intracity travel can have similar impacts. For example, a 60% intracity 
travel reduction for 20 days had similar outcomes as a 70% reduction for 10 days. While P1000,3 
did not change with the length of intercity travel reduction, longer intercity travel reduction led 
to slower progression of the outbreak (higher T1000,3) in the contact model and more clustered 
infections (higher V1000,3) in both models (Figure S9). Furthermore, among the parameters we 
used, it was the best to reduce travel as early as possible to reduce the risk of outbreak (Figure 
S10).  
 
DISCUSSION 
 
By utilizing aggregated human mobility data from Facebook, we characterized how mobility 
patterns in Taiwan changed since the emergence of COVID-19, and built metapopulation models 
to understand the potential spread of SARS-CoV-2 in Taiwan and assess the potential impact of 
travel restrictions. We identified the top cities with the highest risk of infection as well as the top 
cities with the highest importation risk from other cities based on Facebook data and population 
sizes. We made a web-based interface showing the geographic distribution of infections at 
different time points (T100, T500 and T1000) in the initial stages of the outbreak given different 
locations of initial infections. We demonstrate that these modeling results based on empirical 
mobility data can be obtained before an outbreak occurs, and can be readily used to help the 
public avoid high-risk areas, help public health professionals identify surveillance targets, and 
inform decisions on travel restrictions, providing one of the key elements for COVID-19 
preparedness. 
 
Consistent with previous findings showing that international or domestic travel bans are less 
effective than social distancing,6,25 we found that intracity travel reduction has a higher impact 
on disease dynamics than intercity travel reduction and increasing the length of intracity travel 
reduction increases the impact. Intercity travel reduction, however, influences the variation in 
infection numbers across cities and can reduce the number of cities that have infections at the 
initial stage of the outbreak. While intercity travel did not decrease the probability of outbreak, 
containing the infections to a few cities has important public health impacts, as this means 
surveillance system can focus on fewer cities and control efforts can be more targeted. 
Practically, intercity reduction might be easier to implement than intracity reduction. 
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Intracity travel reduction in our model is effectively the same as any measure that can reduce 
contact rates between individuals, such as social distancing, or transmission probability given 
contact, such as hand washing or wearing facemasks. These measures have been shown to be 
effective in reducing the transmission of respiratory viral pathogens in both modeling and 
empirical studies,26–30 and should be encouraged. It has been shown that contact rates can be 
reduced by more than 70% during a lockdown.31  
 
Our study found that similar probabilities of outbreak can occur with various combinations of 
length, level, and timing of travel reductions. Health officials can therefore take into 
consideration feasibility of different interventions, impact on society, and the capacity of the 
healthcare system to determine the optimal interventions and their duration.5 Because the volume 
of travel in and around holidays can increase the speed of virus spread, our results suggest that it 
is important to avoid travel or reduce the impact of travel through measures such as limiting 
social interactions and wearing facemasks when taking public transportation to reduce the spread 
of the virus. 
 
We showed that Facebook mobility data can be used to track how the volume and pattern of 
travel change through time as the outbreak progresses, and we can incorporate any change in 
human mobility into the metapopulation models in nearly real time to help fight COVID-19.12,32 
Moreover, our model utilizing human mobility data from Facebook is not limited to intercity or 
intracity level, or Taiwan. Facebook mobility data are also calculated at finer geographic scales 
(such as towns) and for other countries, and our model can be easily applied in these settings to 
understand disease dynamics of COVID-19.  
 
 
CONCLUSIONS 
 
In Taiwan, most cases to date were imported or linked to imported cases. To prepare for the 
potential spread within Taiwan, we utilized Facebook’s aggregated and anonymized movement 
and colocation data to identify cities with higher risk of infection and regional importation. We 
showed that both intracity and intercity movement affect outbreak dynamics, with the former 
having more of an impact on the total numbers of cases and the latter impacting geographic 
scope. The timing, duration, and level of travel reduction together determine the impact of travel 
reductions on the number of infections, and multiple combinations of these can result in similar 
impact. These findings have important implications for guiding future policies for travel 
restrictions during outbreaks in Taiwan. 
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FIGURES 
 
Figure 1. Connectivity measures. Three kinds of connectivity measures relevant to disease 
spread are shown. The values for bigger cities were larger. (A) Risk of infection. (B) Risk of 
importation. (C) Source of importation.  
  
(A) (B) (C) 

 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2020. ; https://doi.org/10.1101/2020.04.07.20053439doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.07.20053439
http://creativecommons.org/licenses/by/4.0/


Figure 2. The impact of holiday travel on the disease spread. The speed of disease spread, 
quantified by the probability of spreading to 2 or more cities when it reaches 50 infections, from 
simulations with initial infections in Taipei City (representing big cities) or Pingtong County 
(representing small cities) are shown. The impact of Lunar New Year (10-day) was larger than 
Ching Ming Festival (4-day) and Dragon Boat Festival (4-day). Initial infections occurred either 
in (blue) or before holidays (red: 7-day; green: 14-day). R0=2.4.  
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Figure 3. The impact of travel reduction on the probability of having 1000 infections. P1000,3 
from simulations with initial infections in Taipei City (representing big cities) or Pingtong 
County (representing small cities) using both contact and residence models are shown. The 
difference between big and small cities was more significant in the contact model than in the 
residence model. Intracity and intercity travel reduction reduced P1000,3, while the impact of 
intercity travel reduction was minor. Here travel reduction was applied during the whole time 
and R0=2.4.  
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Figure 4. The impact of the duration of travel reduction and the level of reduction on the 
probability of having 1000 infections. P1000,3 from the contact model (A) and the residence 
model (B) with initial infections in Taipei City and R0=2.4. The color represents the level of 
reduction in P1000,3 (white to red represents smaller to larger reduction). As the duration of 
intracity travel reduction increased, P1000,3 decreased in both models. P1000,3 did not change with 
the duration of intercity travel reduction.  
 
 (A)                                                                 (B)  
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SUPPLEMENTARY MATERIALS 
 
SUPPLEMENTARY METHODS 
 
Estimating Pij 

We built a travel model to estimate the proportion of time people living in location i spend in 
location j (Pij) by fitting the model to the Facebook movement data. Xij represents the proportion 
of people living in location i currently in location j, and  𝑋678  represents the equilibrium state of 
Xij, and its value under the fitted model is used as our estimate of Pij. People living in location i 
travel with probability Fi, and the probability that a traveler from location i travels to location j is 
denoted by Tij. Travelers go back to their home location at probability	𝜆! per unit of time. Mij,t,t+1 
represents the number of people moving from location i to location j between time t and t+1. 
 

𝑋!"(𝑡 + 1) = 𝑋!"(𝑡) + 𝑋!!(𝑡)𝐹!𝑇!" − 𝑋!"(𝑡)𝜆! 	

𝑋!!(𝑡 + 1) = 𝑋!!(𝑡) − 𝑋!!(𝑡)𝐹! +'𝑋!"(𝑡)𝜆!
"1!

 

𝑀!",9,9:; = 𝑁!𝑋!!(𝑡)𝐹!𝑇!" + 𝑁"𝑋"!(𝑡)𝜆" 

𝑀!!,9,9:; = 𝑁!𝑋!!(𝑡)(1 − 𝐹!) +'𝑁"𝑋"!(𝑡)=1 − 𝜆">
"1!

 

 
At equilibrium,  
 
										𝑋678 = <","!

<":="
, 𝑋668 = ="

<":="
, 𝑀678 = 4"<","!="

<":="
+ 4!<!,!"=!

<!:=!
, and 𝑀668 = 4"(;/<")="

<":="
+ ∑ 4!<!,!"(;/=!)

<!:=!"1! . 

 
For simplicity, we assumed that the majority of travel is work-related travel and on average 
travelers spend eight hours in the travel destination (𝜆! =1 given the unit of time is 8 hours) and 
that Tij is proportional to Mij, leaving Fi the only parameters to be fitted. We used a gradient 
descent algorithm to find the local optimum solution for Fi, where the cost function is defined by 
the sum of the squared difference between normalized mij and the normalized value of Mij  from 
the model. We calculated 𝑋678  under fitted parameters to obtain estimates of Pij.  
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SUPPLEMENTARY FIGURES 
 
Figure S1. Movement patterns estimated from the Facebook data in Taiwan. (A) Regular 
movement data. (B) Colocation matrices.  
 
(A) (B) 
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Figure S2. Mobility change over time. Two examples of city pairs where the baseline travel 
first decreased and then increased between February and June were shown for both (A) 
colocation and (B) movement data. The dates of major holidays (Lunar New Year, Ching Ming 
Festival, and Dragon Boat Festival) are shown in blue. 
 
(A)  

  
(B)  
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Figure S3. Cumulative number of local cases in Taiwan. 
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Figure S4. Disease spread was associated with measures of connectivity. In the contact 
model, (A) the probability of having more than 1000 infections (P1000) increased with risk of 
infection (Spearman's correlation test, rho= 0.95, p-value=5´10-10), and (B) the time it took to 
reach 1000 infections (T1000) decreased with risk of infection (Spearman's correlation test, rho= -
0.46, p-value=0.05). (C) In the residence model, the variation in infection numbers across cities 
at T1000 (denoted by V1000) decreased with values of source of importation (Spearman's 
correlation test, rho= -0.64, p-value=0.004). R0=2.4. 
 

(A) 
 

 

(B) 

(C) 
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Figure S5. P1000 and T1000 did not vary much with the locations of initial infections. R0=2.4. 
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Figure S6. The impact of holiday travel on the probability of outbreak. The probability of 
outbreak (P1000) increased with mobility during Lunar New Year (10-day). The impact of Ching 
Ming Festival (4-day) and Dragon Boat Festival (4-day) is less apparent. Initial infections 
occurred either in (blue) or before holidays (red: 7-day; green: 14-day). R0=2.4.  
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Figure S7. The impact of travel reduction on time to reach 1000 accumulated infections. If 
initial infections were in a big city, it took less time to reach 1000 infections in the contact 
model. The difference between big and small cities was not significant in the residence model. 
Intracity and overall travel reduction delayed the time to reach 1000 infections in both models, 
while intercity reduction did not. For some conditions, P1000,3 was 0 and no bar was shown. Here 
travel reduction was applied during the whole time and R0=2.4. 
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Figure S8. The impact of travel reduction on the geographic distribution of infections. 
Standard deviation of infection numbers across different cities when there are 1000 infections 
(V1000,3) was shown. Intercity travel reduction increased the variation in infection numbers across 
cities in both models. Here travel reduction was applied during the whole time and R0=2.4. 
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Figure S9. T1000,3 and V1000,3 under different lengths of intercity travel reduction. T1000,3 
(upper panel) and V1000,3 (lower panel). Here initial infections were in Taipei city and R0=2.4. 
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Figure S10. P1000,3 when travel reduction started at different conditions. P1000,3 when travel 
reduction started from the beginning of the simulations (denoted by 0), or when there were 10, 
20, 30, 50, and 100 infections in both contact (left) and residence (right) models. Two different 
lengths of travel reduction duration were shown: (A) 10 days (B) 1 month. Only intracity travel 
reduction was shown here because intercity travel reduction only had minimal impact on P1000,3 
and the results from overall reduction and intracity reduction were qualitatively similar. It was 
best to reduce travel at the beginning if the duration was for 10 days or 1 month. Here initial 
infections were in Taipei city and R0=2.4. 
 
(A) 

 
 
(B) 
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SUPPLEMENTARY TABLES 
 
Table S1. Intracity R0, intercity R0, risk of infection, and risk of importation. 
 
City Intracity 

R0 
Intercity 
R0 

Risk of 
infection 

Risk of 
importation 

Source of 
importation 

Keelung City 1.016 0.348 0.451 0.107 0.095 
New Taipei City 2.247# 0.368 0.865 0.125 1.000 
Taipei City 2.500 0.523 1.000 0.155 0.951 
Taoyuan City 0.985 0.162 0.379 0.073 0.321 
Hsinchu County 0.562 0.187 0.248 0.123 0.136 
Hsinchu City 1.023 0.241 0.418 0.143 0.138 
Miaoli County 0.425 0.104 0.175 0.044 0.062 
Taichung City 1.051 0.081 0.375 0.026 0.130 
Changhua County 0.475 0.074 0.182 0.029 0.089 
Yunlin County 0.348 0.071 0.138 0.019 0.031 
Chiayi County 0.258 0.121 0.125 0.073 0.084 
Chiayi City 0.836 0.212 0.347 0.141 0.075 
Nantou County 0.408 0.092 0.166 0.036 0.047 
Tainan City 0.842 0.063 0.299 0.019 0.069 
Kaohsiung City 1.323 0.066 0.459 0.022 0.124 
Pingtung County 0.482 0.087 0.188 0.036 0.071 
Taitung County 0.468 0.072 0.179 0.004 0.003 
Hualien County 0.590 0.063 0.216 0.006 0.005 
Yilan County 0.524 0.106 0.208 0.018 0.019 

#Top five values in each column are bold. 
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Table S2. The probability of having 1000 infections given different numbers of initial 
infections in different cities (contact model). Colocation matrices in regular days were used. 
R0=2.4.  

1 2 3 4 5 6 7 8 9 10 
Keelung City 0.396 0.611 0.783 0.849 0.904 0.944 0.967 0.979 0.985 0.992 
New Taipei City 0.619 0.871 0.933 0.982 0.997 0.997 1.000 1.000 1.000 1.000 
Taipei City 0.677 0.882 0.953 0.983 0.993 0.997 1.000 1.000 1.000 1.000 
Taoyuan City 0.285 0.473 0.603 0.733 0.805 0.835 0.907 0.924 0.936 0.948 
Hsinchu County 0.102 0.207 0.264 0.342 0.405 0.487 0.575 0.603 0.649 0.676 
Hsinchu City 0.203 0.354 0.503 0.636 0.713 0.748 0.789 0.827 0.865 0.908 
Miaoli County 0.058 0.103 0.160 0.185 0.233 0.287 0.318 0.362 0.388 0.397 
Taichung City 0.162 0.302 0.394 0.492 0.565 0.620 0.708 0.735 0.800 0.824 
Changhua County 0.032 0.066 0.090 0.115 0.152 0.158 0.201 0.225 0.256 0.285 
Yunlin County 0.020 0.038 0.064 0.105 0.116 0.141 0.160 0.183 0.197 0.220 
Chiayi County 0.031 0.057 0.089 0.097 0.128 0.145 0.158 0.179 0.207 0.230 
Chiayi City 0.084 0.144 0.217 0.272 0.303 0.402 0.434 0.479 0.533 0.554 
Nantou County 0.026 0.057 0.102 0.115 0.139 0.183 0.193 0.214 0.245 0.279 
Tainan City 0.104 0.170 0.244 0.353 0.389 0.467 0.482 0.540 0.559 0.619 
Kaohsiung City 0.310 0.557 0.678 0.781 0.858 0.906 0.927 0.961 0.971 0.980 
Pingtung County 0.042 0.103 0.166 0.240 0.280 0.299 0.317 0.371 0.419 0.461 
Taitung County 0.042 0.073 0.109 0.141 0.173 0.204 0.216 0.269 0.283 0.298 
Hualien County 0.070 0.142 0.180 0.251 0.281 0.324 0.372 0.392 0.470 0.429 
Yilan County 0.096 0.188 0.283 0.326 0.406 0.453 0.491 0.558 0.622 0.651 
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Table S3. The probability of having 1000 infections given different numbers of initial 
infections in different cities (residence model). Movement data on weekdays were used. 
R0=2.4. 
  

1 2 3 4 5 6 7 8 9 10 
Keelung City 0.571 0.820 0.942 0.962 0.988 0.997 0.994 0.998 0.999 1.000 
New Taipei City 0.593 0.835 0.923 0.968 0.987 0.992 1.000 1.000 1.000 1.000 
Taipei City 0.646 0.842 0.926 0.973 0.989 0.996 0.998 0.999 1.000 0.999 
Taoyuan City 0.614 0.826 0.922 0.965 0.988 0.995 0.999 0.999 1.000 1.000 
Hsinchu County 0.587 0.824 0.933 0.956 0.984 0.996 0.997 1.000 1.000 1.000 
Hsinchu City 0.615 0.821 0.910 0.975 0.993 0.997 1.000 1.000 1.000 1.000 
Miaoli County 0.612 0.824 0.932 0.967 0.989 0.994 0.996 1.000 0.999 1.000 
Taichung City 0.594 0.807 0.923 0.975 0.987 0.993 0.996 0.998 1.000 1.000 
Changhua County 0.590 0.841 0.925 0.970 0.993 0.996 0.999 0.999 1.000 1.000 
Yunlin County 0.583 0.833 0.938 0.964 0.987 0.998 0.996 1.000 1.000 1.000 
Chiayi County 0.589 0.804 0.924 0.964 0.988 0.996 0.998 1.000 1.000 0.999 
Chiayi City 0.568 0.848 0.937 0.967 0.993 0.995 0.997 1.000 1.000 1.000 
Nantou County 0.587 0.810 0.927 0.975 0.982 0.993 1.000 0.999 1.000 1.000 
Tainan City 0.563 0.830 0.934 0.969 0.987 0.993 0.998 0.999 0.999 1.000 
Kaohsiung City 0.561 0.834 0.913 0.975 0.987 0.996 0.998 0.999 1.000 1.000 
Pingtung County 0.565 0.844 0.939 0.969 0.989 0.995 1.000 1.000 1.000 1.000 
Taitung County 0.616 0.843 0.922 0.964 0.982 0.993 0.998 1.000 1.000 1.000 
Hualien County 0.574 0.836 0.922 0.955 0.992 0.994 0.998 0.999 1.000 1.000 
Yilan County 0.586 0.823 0.928 0.979 0.985 0.997 0.997 0.999 1.000 1.000 
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