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Abstract

The SARS-CoV-2 pandemic led to the closure of nearly all K-12 schools in the United States
of America in March 2020. Although reopening K-12 schools for in-person schooling is desirable
for many reasons, officials also understand that risk reduction strategies and detection of cases
must be in place to allow children to safely return to school. Furthermore, the consequences of
reclosing recently reopened schools are substantial and impact teachers, parents, and ultimately
the educational experience in children. Using a stratified Susceptible-Exposed-Infected-Removed
model, we explore the influences of reduced class density, transmission mitigation (such as the
use of masks, desk shields, frequent surface cleaning, or outdoor instruction), and viral detection
on cumulative prevalence. Our model predicts that a combination of all three approaches will
substantially reduce SARS-CoV-2 prevalence. The model also shows that reduction of class density
and the implementation of rapid viral testing, even with imperfect detection, have greater impact
than moderate measures for transmission mitigation.

Introduction

The best way to reopen K-12 schools has justifiably been a topic of intense discussion among
government officials, the media, teachers and parents. Given transmission of SARS-CoV-2 occurs
through respiratory droplets, any reopening policy must adequately reduce crowded environments
at school to protect children, teachers, staff, and ultimately communities. Unfortunately, many
factors work to the detriment of ostensibly reasonable strategies. For example, splitting a school
day into morning and afternoon blocks may extend teachers’ working hours or fail to adequately
reduce class density in already overcrowded school districts. Primary caretakers who work outside
the home face additional challenges in dropping off and picking up children from school. Finally,
there is the issue of the quality of educational experiences to consider. A recent study on the effects
of school closure in March in the U.S. suggests that it reduced COVID-19 cases in states with low
cumulative incidence [2], yet education researchers worry that teachers will face lagging educational
development of children once schools reopen due to the extended period of remote learning [11]. A

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.20169086doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.08.05.20169086
http://creativecommons.org/licenses/by/4.0/


predictable, regular attendance policy is crucial in balancing social burden with maintaining steady
educational progress.

Having to close schools that have reopened due to an unacceptable risk in COVID-19 cases is a
serious concern and has prompted the inclusion of stopping rules in guidelines for school reopening
[31]. As school systems have proposed different scenarios of reopening to reduce the density of
students and the number of student interactions, it is helpful to investigate quantitatively the
ramifications of the proposed plans. Here we explore a simple and interpretable mathematical
model that compares the infection rates in children and adults under various reopening scenarios.
Our approach stratifies members of a school community into two age groups, school-age children
and adults, and assigns children to a single or two or three different cohorts. The two age groups
differ in size, but within each group all children or all adults exhibit homogeneous disease behavior.
With multiple cohorts, the goal is to limit the density of children in the classroom at a given time.
Specifically, we compare the consequences of (1) reopening at full capacity, (2) allowing half of
all children to return to in-person schooling while the other half continues with remote learning
(parallel cohorts) and (3) alternating sessions in which different cohorts of students attend school
by the week (rotating cohorts). The latter scenario is designed to reduce classroom density and
contacts between children while providing some of the benefits of in-person learning to all children.
Our goal is to provide insight into the epidemiological implications of these reopening strategies
and to quantify their consequences. In particular, we explore implications of the recent guidelines
announced by Governor Gavin Newsom for California schools [31].

We find that reopening schools at half capacity, by running either two parallel cohorts of in-
person and remote learning or two rotating cohorts of in-person learning, is likely to have a greater
impact in controlling virus spread than direct measures that mitigate transmission risk. That is,
reducing the number or density of contacts produces a larger effect than diminishing the transmis-
sion rate per contact. Our models also suggest that the regular administration of rapid surveillance
tests, even with imperfect sensitivity, can significantly delay disease outbreaks. It is our hope that
our results along with further data and modeling by other experts will guide public health policy
decisions.

Methods

Compartmental model. Our approach uses a deterministic Susceptible-Exposed-Infected-Removed
(SEIR) model stratified by age group and cohort. In full generality, let S(t), E(t), I(t), and R(t)
denote the fraction of susceptible, exposed, infected, and removed individuals, respectively, in the
overall population at time t. Infecteds may or may not present with symptoms. The removed pool
accounts for individuals with negligible contribution to the spread of infection, including individ-
uals that have either recovered with full immunity or are no longer part of the population due to
disabling morbidity or death. Although prospects that infection leads to permanent immunity are
unclear, immunity on the time scale of several months or more is plausible [20], so we make the
assumption that individuals do not return to the susceptible pool once they are infected.

Denote by Iil(t) the fraction of infecteds in age group i and cohort l. We propose the following
frequency-dependent model for the force of infection on individuals in age group j and cohort k:

force of
infection

=

 interaction
between

cohorts k, `

×
 transmission

between age
groups i→ j

×
 fraction of

infecteds in
age group i,
and cohort `


λjk(t) =

∑
`

∑
i

αk` × βij(t)× Ii`(t)
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For pairs of cohorts k 6= `, the choice αkl = 0 reflects complete separation, whereas αkl = 1
corresponds to complete mixing under no mitigating policies. Values in between these limits may
be interpreted as decreased interaction due to physical or social distancing. We allow for weak
cohort interaction (αk` = 0.05, k 6= `) in all our simulations. To capture the variability in exposure
to infectious individuals across age groups and different cohorts, the transmission rate βij(t) is time-
inhomogeneous. These choices effectively model the density dependence of coronavirus transmission
on cohort isolation and contact patterns between different age groups.

We model two age groups, children and adults, and ignore vital dynamics (that is, ordinary
births and deaths) altogether. The latter choice is justified by the relatively short time period over
which the model acts. The resulting ordinary differential equation (ODE) subsystem describing
cohort k is given by

dS1k
dt

= −λ1kS1k
dE1k

dt
= λ1kS1k − σ1E1k

dI1k
dt

= σ1E1k − γ1I1k
dR1k

dt
= γ1I1k

dS2k
dt

= −λ2kS2k
dE2k

dt
= λ2kS2k − σ2E2k

dI2k
dt

= σ2E2k − γ2I2k
dR2k

dt
= γ2I2k,

with the left and right columns corresponding to children and adults, respectively. For simplicity
in communicating the key ideas in our model, we limit the scope of simulations to two age groups,
children in K-12 education and individuals over the age of 18, and to 1 to 3 child cohorts. We also
neglect any inhomogeneity in susceptibility and transmission within each of the two age groups
[4, 9]. To our credit, we emphasize the interplay of transmission across and within age classes,
that is the ratios βii/βjj and βij/βji. By design, our model makes it easy to explicitly incorporate
susceptibility, contact patterns, and, ultimately, finer age stratification. In broad outline, our model
is similar to that of Zhang et al. [26]. However, these researchers emphasize differences in contact
patterns across age groups rather than school reopening policies.

Cohort structure and transmission rates. Previous work suggests that a cyclic attendance
strategy tuned to the latent period of SARS-CoV-2 may curtail secondary infections [10]. To
compare with full-time and online-only instruction, we investigate the consequences of reopening
at 50% and 33% capacity with rotating cohorts. Assuming a latent period within the range of 3–4
days, a weekly rotation schedule synchronizes with peak infectiousness. Our simulations therefore
model transmission between children using periodic rates that cycle between high and low contact
values. Namely, we take β11(t) = c × β on school days and β11(t) = β otherwise, where β is a
baseline rate outside of school and c is a multiplier increasing transmission between children. This
function is phased between cohorts to reflect school rotation. In summary, children in rotating
cohorts attend school for 5 consecutive days and then rotate with the next cohort at the beginning
of the following week. With two cohorts children attend school every other week; for three cohorts
they attend every third week. As noted previously, this is referred to as the rotating cohort strategy.
An emerging national trend in the U.S. is to allow families to opt for remote learning in lieu of
in-person instruction during the SARS-CoV-2 pandemic. Specifically, we divide our virtual school
community into two cohorts of equal size, one of which attends school and thus has the elevated
transmission rate while a second group opts for a remote learning option. This is referred to as the
parallel cohort strategy.
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Choice of model parameters. As of August 3, 2020, the CDC reports 4.6 million COVID-
19 cases in the United States [32]. California, Florida, and Texas are each burdened with nearly
0.5 million cases, which corresponds to 1% infection in their respective populations. Given that
the U.S. has considerable variation in density, we seed all our simulations, which represent school
communities rather than states, with 0.1% infected individuals. Increasing this value accelerates
infections in our model; decreasing it lessens the spread. Our simulations therefore represent
scenarios far from herd immunity [12, 21].

Although children have fewer symptoms, less severe disease, and lower case-fatality rates than
adults, they may be just as prone to SARS-CoV-2 infections as adults [28]. Children may present
with a variety of symptoms ranging from fever, rhinitis, cough, and GI symptoms, to a Kawasaki-
like disease [22]. However, because children’s symptoms are typically less severe and of shorter
duration than those of adults, the likelihood of pediatric infection escaping symptom-based mon-
itoring, such as temperature screening, is therefore is higher than that of adults and increases
asymptomatic transmission. Thus, detecting transmission between children specifically is difficult;
quantifying it is all the more challenging. An analysis of contact tracing data from Singapore sug-
gests that per contact transmission between children, particularly in educational settings, is low
compared to adult-adult transmission [24]. Yet the number of contacts between children is ex-
pected to be significantly higher compared to other age groups [26]. Li et al. provide estimates for
transmission rates in Wuhan prior to (1.12 per day) and following travel restrictions (0.52 per day)
[16]. Reconciling estimates of transmission rates across populations, which are necessarily based
on different scientific models, is unproductive in proposing policy. Instead, we vary each βij in
simulations to underscore the influence of modeling assumptions on epidemiological consequences.
In later simulations we opt to model child-to-child transmission with lower rates to reflect evidence
suggesting children are rarely index cases [15] and have fewer contacts outside of school. In this
setting, transmission is elevated by a factor c in children only on school days, β11(t) = c× β, so as
to account for increased contacts. A recent study indicates that viral RNA in the nasopharynx of
young children is elevated compared to adults [8], partially justifying this modeling choice.

In contrast to contact rates, the latent, infectious, and incubation periods for SARS-CoV-2
are well characterized in the literature. Lauer et al. estimate a median incubation period of ap-
proximately 5 days [14]. Li et al. [16] infer latency and infectious periods of 3.69 and 3.47 days,
respectively, in a study aimed at characterizing contributions of undocumented infections to disease
spread in China. The review by Bar-On draws from these studies and reports median latent and
infectious periods of 3 and 4 days, respectively [3]. Other studies report serial intervals and incu-
bation periods consistent with these estimates for latency and infectiousness [6, 7]. Unfortunately,
the literature on similar epidemiological inferences in children is sparse. Table 1 summarizes our
choices and lists references pertinent to each choice.

Basic reproductive number. We now characterize the basic reproductive numberR0 indicative
of the growth potential of an epidemic. Specifically, R0 quantifies the expected number of secondary
infections due to a single infected within a completely susceptible population. The threshold R0

value of 1 marks the boundary between explosive growth (R0 > 1) and decline of an epidemic
to extinction (R0 < 1). We characterize R0 using the next generation method as outlined by
Diekmann, Heesterbeek, and Roberts [5]. Under the assumption that viral infections have been
sufficiently contained in the community prior to reopening, it is reasonable to linearize dynamics by
taking S(0) ≈ 1. Thus, the transmission and transition operators T and Σ are given respectively
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by the matrices

T =


0 α11β11S11 0 α11β21S11
0 0 0 0
0 α11β12S21 0 α11β22S21
0 0 0 0

 , Σ =


−σ1 0 0 0
σ1 −γ1 0 0
0 0 −σ2 0
0 0 σ2 −γ2


based on an infectious subsystem defined by x = [E1, I1, E2, I2]

> for a single cohort, where 1 denotes
children and 2 denotes adults. Together, these linear operators define an embedded subsystem
that completely characterizes infectious dynamics, namely dx

dt = (T + Σ)x. The standard theory
identifies R0 as the spectral radius of −TΣ−1, a quantity that can be computed numerically in
practice. In the case of multiple cohorts, the structures of T and Σ as given are repeated in a tiled
fashion, with the appropriate changes in indices for αk` and Sj`.

Results

Effect of reducing density via cohorts. Transmission of SARS-CoV-2 is thought to occur
primarily through respiratory droplets. Thus, it is critical to first examine the effect of separating
children into several rotating cohorts in our model, which implicitly reduces density via the contact
network of a population. Figure 1 summarizes the influence of time-homogeneous transmission rates
βij(t) = βij on the reproductive number R0 under various scenarios, assuming a population mix
of 55% children and 45% adults and strong adherence to mitigation policies (with αk` = 0.05 for
each k 6= `) that keep both children and adults isolated from members of other cohorts. Splitting a
school community into even 2 or 3 rotating cohorts substantially reduces R0 under a wide range of
parameter values and slows viral spread in cases of moderate transmissibility. For example, moving
from full capacity to 2 cohorts reduces R0 by 50% for the range 0 ≤ β11, β22 ≤ 1 (Figure 1, A and
1B). Using three cohorts further reducesR0 for comparable β11 and β22 (Figure 1C). This parameter
range is of interest because it corresponds to R0 ≈ 2 in the full capacity scenario. Likewise, two or
three rotating cohorts for children also decrease R0 when transmission rates between children and
adults are asymmetric; that is, β12 > β21 or β12 < β21 (Figure 1, D to F). As demonstrated by the
skew present in our contour plots, age structure amplifies the influence of transmission rates.

Reopening under stopping rules. We now consider the effect of a stopping rule on cumulative
prevalence. Inspired by California’s recent guidelines that urge schools to close down whenever the
percent of infecteds within a school reaches 5% over a 2 week period [31], we use a cumulative
prevalence of 5% as a stopping rule. In symbols, the stopping rule is given by the condition

sensitivity×
∑
k

[I1,k(t) +R1,k(t)] ≥ 5%,

which relies on the detection of cases on school days as well as on surveillance reports from outside
of school. Detection is based on testing at the beginning of a school day, after which infected
individuals in the active cohort are immediately isolated and placed in the removed state (I(t)→
R(t)). The isolation rule does not apply to the out of school cohort or cohorts. The sensitivity factor
in the rule captures imprecision in testing and reporting. Because our model does not explicitly
account for adult staff at school, we measure only the cumulative prevalence within the child
population. This choice is partially justified because students typically well outnumber teachers
and ancillary staff. Under the assumption of a 20:1 student-staff ratio, a school with 1000 students
would need approximately 53 cases in a 14-day period to meet the closure criterion. Please note
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that our simulations deviate from California’s proposed policy by tracking cumulative cases rather
than cases within a sliding 14-day window.

Figure 2 reports the number of weeks to reach the 5% threshold in our model in various pa-
rameter regimes, assuming the monitoring program exactly identifies infections in children as they
begin a new day of school. Cohort separation tends to dramatically reduce the spread of infection.
Owing to high child-to-child transmission effects within school (c = 10), our model predicts closures
within a month in a full-capacity high transmission scenario with no mitigation (Figure 2, A and
E). Under the more optimistic assumption of preventive measures, hitting the 5% threshold may
take several weeks and may, in fact, never occur in the ideal circumstances of low density and
effective risk mitigation (Figure 2, B to D and F to H). Notably, under most of the parameter
values we chose, 2 parallel cohorts and 2 rotating cohorts show similar time to 5% infecteds, with
the parallel cohort strategy having a slight advantage when β11 and β22 are large. For example
when β11 = 1 and β22 = 1, 2 rotating cohorts reach the 5% infected level in 6 to 8 weeks, and 2
parallel cohorts reach it in 8 to 10 weeks (Figure 2, B and C). This behavior is partially driven by
the testing protocol, which only detects and isolates cases in the active cohort.

Unfortunately, the issue of detection is complicated by the availability of testing resources,
administration of tests, and specificity of the tests used. In light of this reality, we compare
predictions of our model over 6 months when (1) no action is taken (Figure 3, A and B), (2) the
monitoring program uses a perfectly sensitive test with no delays in reporting (Figure 3, C and
D), and (3) the monitoring program uses a rapid but less sensitive test (Figure 3, E and F). Our
simulations with a single cohort indicate that a 5% percent threshold policy can shift infections
in children from 80% to 55% over a 6 month period when child-to-child transmission rates in
school are high (Figure 3C). Compared to this ideal testing scenario, an imperfect test with 50%
detection leads to an earlier stopping time, owing to infections spread by undetected cases, and
to greater pediatric infections but still far less than the no testing scenario (Figure 3E). Let us
emphasize our finding that reopening with a surveillance program in place may provide 10 to 12
weeks of continuous instruction with low infection risk. Infections after closing are driven by a lack
of interventions outside of school; testing and isolation in this context can curtail this growth. In
general, our results support the importance of testing and the failsafe of complete school closure in
preventing a major disease outbreak after reopening.

Next, we explore the ramifications of two parallel cohorts using the simulation study design just
considered. Specifically, we assume the elevated transmission rate β11(t) = c×0.15 during a regular
5-day school week and and the reduced transmission rate β11(t) = 0.15 during the off week. The
remaining transmission rates are chosen with R0 > 1 to capture outbreak conditions. These choices
lead to more rapid acting infection and earlier school closure than those chosen in Figure 3 under
the single cohort policy. Figure 4 reports the same indices recorded in our simulation study with
the single cohort policy. As our earlier figures illustrate, reducing density through the community’s
contact network successfully decreases cumulative prevalences, sustained contact between children
notwithstanding (Figure 4, A to D). The in-person stopping rule (the entire school goes online
when cumulative prevalence reaches 5%) is triggered even when detection is imperfect (Figure 4,
E to F). Because cohorts reduce contacts, our model predicts a longer period of instruction (18-22
weeks) with the parallel strategy (Figure 4, C and E) compared to the previous simulation with all
students attending at once (10-12 weeks) (Figure 3, C and E). We note that, despite the remote
cohort child-to-child transmission rate being 1/10 of the in-person cohort child-to-child rate, the
remote cohort has more infections than the in-person cohort in both surveillance scenarios. This
result occurs because only the latter cohort is monitored through the school’s testing program. One
may interpret this as an upper bound on infections for the remote learning cohort as there will
likely be some monitoring for this group in practice.
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Mitigating transmission between children. Transmission mitigation strategies that may
work well for adults may be less practical to implement with children. As an example, although face
masks have been shown to reduce the spread of SARS-CoV-2 by 40% [17], there are valid concerns
about the ill effects of mask wearing by elementary school children. These concerns include im-
paired learning, speech development, social development, and facial recognition [29]. There is also
doubt about whether young children can properly keep their masks on. The protection gained from
mask wearing needs to be weighed against the disadvantages just enumerated. Regardless of their
form, we assume that effective strategies will be employed. Using reasonable approximations for
contact and transmission risks, we explore the impacts of varying degrees of protection conferred
by combined risk reduction strategies, including but not limited to mask wearing, desk shields,
hand washing, vigilant cleaning of surfaces, improved ventilation, and outdoor instruction. The
combined impacts of these risk reduction strategies are modeled as 20%, 40%, 60%, and 80% reduc-
tions in the transmission rates β11 and β12 relative to reference values. We particularly examine the
changes in infection levels under each scenario, taking care in selecting the adult values β21 and β22
to account for simultaneous risk reduction strategies among adults. Specifically, we take β11 = 0.1
and β12 = β21 = β22 = 0.5 as natural rates. Under a baseline model reducing transmission rates
in adults to β21 = β22 = 0.2, we achieve an R0 ≈ 1.8 when schools remain closed. We choose to
model increased contact rates β11(t) = c × 0.1 by taking c = 10, which corresponds to R0 ≈ 3.3
under the full capacity reopening scenario. This necessarily represents an extreme that illustrate
effects in a poor situation.

Figure 5 compares prevalence trajectories by interventions directly targeting transmission under
a single or two rotating child cohorts. With a single cohort and no mitigation, our choices lead to
approximately 2%, 46%, and 65% infected children after 1, 3, and 6 months following reopening,
respectively (Figure 5A). However, with measures that lead to an 80% reduction in transmission,
it would take more than 24 weeks to reach a cumulative prevalence of 5% in children (Figure 5A).
Achieving an 80% reduction in transmission would be difficult in practice. With a more realistic
reduction factor of only 20%, our model predicts that 5% cumulative prevalence in children would
be reached in roughly 8 weeks (Figure 5A). Targeting transmission rates in children also reduces
infections in adults to a similar degree (Figure 5B). Although policies such as mask use and hand
washing have an appreciable effect in reducing infections, our model predicts the intuitive conclusion
that stricter adherence to transmission mitigation measures is required to lead to low levels of
infection when there is a single cohort than when there are two cohorts. In fact, we show that an
80% reduction in child-to-child transmission is required to lead to 0.5% pediatric infections over
6 months, which is roughly equivalent to the effect of 2 rotating cohorts (Figure 5C, D) without
mitigation strategies. A combination of both types of interventions ultimately results in even fewer
infections.

Discussion

Our models highlight the profound potential impact of reducing cohort size with parallel or rotating
cohorts under a range of transmission rates and reproduction numbers. For example, if we take
transmission rates β11 = β22 = 1, it would take approximately 2 weeks to reach a threshold of 5%
children infected, whereas under the same transmission rates splitting the school population into
two or three rotating cohorts would lead to a month or more of uninterrupted instruction (Figure 2).
Quite apart from cohort strategies, our work also reveals the importance of tracking infections and
setting a threshold for reverting to remote learning. In the absence of any intervention to in-person
instruction, the cumulative proportion of the school children population can quickly reach 20%
within 6 weeks (Figure 3A). This compares with keeping that cumulative proportion at 5 − 10%
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for at least 3 months under the combination of a rapid testing program, a stopping rule, and
just a single cohort (Figure 3C). Finally, our results demonstrate that simultaneous adherence to
transmission mitigation measures and multiple separated cohorts can keep cases low, for example
under 0.5% (Figure 5C,D).

There are several limitations to our simulations. First, we account only for two separate age
classes, children and adults. A finer level of age stratification may be better suited for predicting
outcomes in specific communities and is, in principle, straightforward to implement within our
modeling framework. For example, our model currently makes no distinction between high school
and elementary school children. High school students may be more easily convinced into wearing
masks reliably and practicing physical distancing, but they also may have transmission rates closer
to those of adults. Second, we treat all adults, including teachers, as having the same transmission
rates and omit interactions between students and teachers within a classroom. The latter are clearly
critical in implementing backup protocols that allow the switch to remote learning. A network-
based model that accounts for households and classrooms in more detail would be better equipped
to identify optimal policies. Third, our model treats school communities in isolation. Schools in
urban settings undoubtedly have more diverse commuting patterns and face a greater potential
for importing cases from outside adjacent neighborhoods. Finally, our models are deterministic
and cannot account for the stochastic nature of infections. The caveats outlined here limit the
quantitative accuracy of our predictions, but we contend that our qualitative conclusions are correct.

As already mentioned, our simulations suggest that measures that reduce class density by
rotating cohorts between in-person and online schooling are likely to have the greatest impact in
reducing the spread of SARS-CoV-2 brought on by the resumption of in-person instruction. From
the perspective of mathematical epidemiology, this is to be expected as separating a contact graph
into disconnected pieces ultimately limits the proliferative potential of an infectious disease. Parallel
cohorts present an attractive alternative to rotating cohorts because the latter require a great
deal of coordination and place a burden on parents to adjust their work schedules to match their
children’s in-class and at home schedules. Although less than ideal from an educational perspective,
educating children under either cohort strategy should be a priority in school reopenings. Even
so, our findings indicate that implementation of specific in-class policies such as mask wearing,
hand washing, and physical distancing in the classroom will be helpful in reducing transmission
rates. Our simulations of a backup plan to switch to remote learning when the number of infections
climbs to an unacceptable level emphasize the need for rapid testing and efficacious surveillance
programs. These results are consistent with a recent study on the influence of viral kinetics, test
sensitivity, test frequency, and sample-to-answer reporting time in surveillance protocols [13]. This
study concludes that test efficacy should be a secondary concern in implementing testing given the
dangers of the current pandemic.

Finally, different communities should be treated differently. High-risk communities with large
class sizes need to be especially careful in exposing children to unnecessary risks. We are happy to
share our software and assist in its improvement. Until effective vaccines become available, we are
in a battle against time in limiting mortality and morbidity.
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Figures & Tables

Parameter Description Range/Estimate

β11 child-to-child transmission 0.05− 2.0 per day
β12 child-to-adult transmission 0.05− 2.0 per day
β21 adult-to-child transmission 0.05− 2.0 per day
β22 adult-to-adult transmission 0.05− 2.0 per day

1/σ1 child latent period 3 days
1/σ2 adult latent period 3 days
1/γ1 child infectious period 4 days
1/γ2 adult infectious period 4 days
c multiplier modeling increased child-child contact 10

Table 1: Summary of model parameters with ranges, estimates, and references. The range for
transmission between adults is informed by [16]. Latent and infectious period estimates are based
on [3, 16].

Figure 1: Predicted R0 under various density and rotating cohort scenarios. Results are based on a
latent period of 3 days (σ1 = σ2 = 1/3) and an infectious period of 4 days (γ1 = γ2 = 1/4). We also
assume weak interaction between cohorts (αk` = 0.05 when k 6= `). As the color gradient changes
from purple to blue, R0 changes from < 1 to > 1. (A–C) Varying values of β11 (child-to-child) and
β22 (adult-to-adult) rates, assuming transmission between both is equal (β12 = β21 = 0.5). (D–F)
Varying values of β12 (child-to-adult) and β21 (adult-to-child), assuming transmission within adults
is dominant (β11 = 0.1 and β22 = 0.5).
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Figure 2: Number of weeks to reach the 5% stopping threshold in a community with equal propor-
tions of adults and children. We use children as representatives of the entire school subpopulation.
The 5% threshold tracks cumulative prevalence over all cohorts,

∑
k[I1,k(t) + R1,k(t)] ≥ 0.05 × 1

2 ,
thus accounting for the size of the schoolchildren population (50%) relative to the overall commu-
nity. In each simulation, children have an elevated transmission rate due to school contacts over
the rate they have when they are not in school; for example, β11(t) = 1 = c × 0.1 with c = 10.
Results are based on latent and infectious periods of 3 and 4 days, respectively (σ1 = σ2 = 1/3,
γ1 = γ2 = 1/4), and the additional assumptions that (A–D) transmission between age classes is
equal (β12 = β21 = 0.5), and (E–H) where adult-to-adult transmission dominates outside of school
(β11 = 0.1 and β22 = 0.5). Deep purple is used to indicate scenarios in which the threshold is hit
after 22 weeks or more.
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Figure 3: Comparison of outcomes when a school does not track infections (A,B) and when a school
reverts to online instruction as a result of a careful screening program (C,D). In both scenarios,
the school is assumed to operate at full capacity. Simulations are based on parameter values
β12 = β21 = β22 = 0.5, σ1 = σ2 = 1/3, and γ1 = γ2 = 1/4. For child-to-child transmission, we set
β11(t) = 0.1 outside of school and β11(t) = 1 = c× 0.1 during school (c = 10). Curves correspond
to active infections (blue), removed individuals (orange), and cumulative prevalence (green). The
school switches to online instruction when detected cases affect 5% of the school population (vertical
line), dramatically reducing spread. (E,F) Closures occur earlier and the cumulative prevalence is
larger compared to the ideal detection scenario. However, there is not an appreciable increase
in long term-infections when the monitoring program has poor detection, and both monitoring
scenarios have appreciably less long term infectious than the no intervention scenario.
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Figure 4: Comparison of cumulative prevalence when half of the school community chooses remote
learning (orange) over in-person instruction (blue). Simulations are based on parameter values
β12 = β21 = β22 = 0.75, σ1 = σ2 = 1/3, and γ1 = γ2 = 1/4 and assume weak cohort interaction.
For child-to-child transmission, we set β11(t) = 0.15 outside of school and β11(t)1.5 = c×0.1 during
school where c = 10. Importantly, only one cohort attends school and detection is based on this
group. (A,B) Predicted prevalence without any intervention. (C,D) Perfect detection prevents
virus spread under modest transmission rates. (E,F) Infections do not increase by a significant
amount over a 6 month period when using a less sensitive detection strategy.
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Figure 5: Cumulative prevalence trajectories under risk reduction strategies for children while at
school. Simulations are based on parameter values β12 = β21 = β22 = 0.2, σ1 = σ2 = 1/3, and
γ1 = γ2 = 1/4, assuming a population with equal numbers of children and adults. For child-child
transmission, we set β11(t) = 0.1 outside of school and β11(t) = (1−r)×c×0.1 during school, where
r is a reduction factor due to effective risk reduction strategies and c = 10 accounts for increased
contact between children. (A,B) Mitigation that reduces transmission between children can lead to
a substantial reduction in infections, provided the mitigation effects are large. (C,D) The impact of
risk reduction strategies persists when children are separated into 2 rotating cohorts but does not
demand as strict adherence to be effective. An 80% reduction in pediatric transmission is nearly
equivalent to separating children into 2 rotating cohorts as both strategies result in fewer than 0.5%
pediatric infections over 6 months.
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