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Abstract  
Twenty years of research improved the classification of ovarian carcinoma, making the 

diagnostic relevant from a scientific and clinical perspective. Our research question was 

to find out if old studies are still pertinent under new diagnostic criteria and how we can 

use machine learning techniques for re-classification purposes.  

The same main investigator re-classified 60 cases of ovarian carcinoma after 15 years, 

using 2014 WHO diagnostic criteria. Selected pathology data only (macro, micro 

information and immunohistochemistry images coming from a seven-stain panel) were 

provided for digital analysis. Biomarker images were digitalized and quantified using 

open source software and a validated methodology. 1080 attributes were classified 

using a random forest (open source) algorithm, using a supervised learning technique 

(the training dataset used 180 attributes). Human results were considered “ground truth” 

for the digital analysis. 

The human analysis maintained the initial histopathologic diagnostic in 61.5% of cases. 

The digital prediction shows 80% accuracy and 73% precision when compared with 

human reclassified data. Based on results, we concluded that “recycling” of old studies 

is possible. Limitation of the study are the low number of cases analyzed, the total 

absence of clinical, treatment and prognostic data and a possible human criteria 

selection bias. Even if technical difficulties related to biomarker selection and 



histological analysis exist, digital investigation of existing, large archival registries is 

feasible, reliable and it can be done at a low cost.     

Keywords: archival ovarian carcinoma diagnostics, machine learning, random forest 

algorithm, immunohistochemistry digital quantification 

         

Introduction 
A precise diagnostic of ovarian carcinoma (OC) is critical for the patient but sometimes 

is a challenge for the pathologist ( ). Twenty years of research proved that OC is not a 1

monolithic disease as it was presumed in the past. In 2004, Shih and Kurman proposed 

a dualistic model based on molecular and morphological features rather than only on 

histological appearance but it was difficult to apply outside research ( ). Over time, 2

molecular genetics, biomarker studies and clinical experience crystallized the actual 

concept of OC as a heterogenic disease. Five sub-classes were proposed, each 

originated from a distinct precursor cell: high-grade serous (HGSC), low-grade serous 

carcinoma (LGSC), endometroid (EC), mucinous (MC) and clear cell carcinoma (CCC). 

Each sub-class has a distinct natural history, distinct pathogenic pathway, different 

response to treatment and different prognostic ( ). The new classification concept (WHO 3

2014) proved to have both clinical and diagnostic benefits and was rapidly adopted ( ). 4

From a pathologist’s perspective, the new classification strategy showed robust validity 

and allowed precise, reproducible diagnostics with reduced inter-observer variability ( ).  5

Because possible observational variability and subjectivity in morphological data 

interpretation ( ) other histologic techniques are necessary for increasing diagnostic 6

precision. Immunohistochemistry (IHC), is able to detect specific tissues biomarkers and 

is used routinely in order to bring objectivity to the morphologic interpretation. It is widely 

adopted by surgical pathology laboratories but has several well-known limitations: 

staining interpretation is semiquantitative and not entirely standardized, fact that makes 

the method time consuming and subjective as well. Some IHC stains lack tumor 

specificity or react to proteins in normal or benign tumoral tissue. A way to circumvent 

these limits is by using IHC diagnostic panels. The use of multiple IHC will increase 



diagnostic precision but results interpretation may become complex and also diagnostic 

costs can soar. Concomitant interpretation of histologic and IHC panel data can make 

diagnostic interpretation even more challenging.  

A way to improve the classification equation is by using artificial intelligence for the 

analytic process, a subject under investigation ( , ). Machine learning (ML), a part of 7 8

Artificial Intelligence scientific domain, is a way a machine will learn from data itself 

rather from programming how to connect, sort and analyze information using 

predetermined algorithms ( ). A machine can be instructed about possible results 9

(supervised learning) or not (unsupervised learning) and will use classification, 

regression, clustering and association algorithms for data interrogation. For 

interpretation of complex data, ML algorithms allows fast, reliable and reproducible 

results. Supervised ML is probably close to the way humans are approaching pathology 

diagnostic: based on characteristics of a given set of data (“training set”), the machine 

will sort and connect information found in a “test dataset” and will generate predictions.    

As the landscape of OC diagnostic significantly changed in the last 20 years, a 

legitimate question arises: are old studies still useful? Several authors re-visited old OC 

research datasets in order to investigate how recent diagnostic criteria changed the 

tumor classification paradigm over time and if old data can be of use in future research. 

Main barriers for old data use were classification changes and a constant deprecation of 

some IHC panel stains. Results were divergent. Kommoss ( ) considered old OC 10

studies of low value, with a high degree of inter and intra-observational variability. Peres 

( ) and Köbel ( ) considered that historic histotype based datasets are still useful if 11 12

data is re-analyzed under specific constrains.  

The objective of our study was to evaluate how digital technology (digital analysis of 

microscopic images and the use of a machine learning classification algorithm) is able 

to re-classify an OC diagnostics dataset created in 2005 ( ) based only on pathology 13

information.  

Material and method 



An archival dataset of 60 diagnosis of ovarian carcinoma (2005) was reclassified by the 

main investigator (CV) based on 2014 WHO criteria (table 1). Seven IHC markers were 

also selected from the original ten IHC panel stains, based on microscopic slides 

availability, literature and investigator’s experience (table 2). Digital images were taken 

using a standard microscope. The investigator established a Region of Interest (ROI) for 

each IHC stain image based on an area of maximal staining. All data was included in a 

“diagnostic” dataset (60 instances, 18 attributes). A “training” dataset was created based 

on 10 unequivocal OC histotypes.  

The digital re-classification included digital data analysis and algorithm prediction. In the 

digital data analysis, each ROI from IHC image was digitally quantified with the help of 

an open label software ( ). An optical density index (ODI) was determined based on 14

ROI histogram ( ). Using a dedicated plugin (IHC profiler), the total stained surface was 15

measured in terms of pixel intensity of the visualization stain, (fig 1, 2) ( ). An IHC stain 16

index (SI) was calculated for each of five IHC markers (positive multiplied by ODI). For 

the other two markers, a low cut-off intensity was established and the presence of 

marker was defined as present or absent (table 2)   

Table 1 

Attribute Measure Variable Type

Age Years Numeric Ma

Tumor dimension Cm Numeric Ma

Solidity Low, Medium, High Nominal Ma

Necrosis Yes, No Nominal Ma

Bilaterally Yes, No Nominal Ma

Pattern Micro-papillary, 
Papillary, Tubular, 
Cystic, Solid

Nominal Mi

Fibrosis Absent, Low, 
Medium, High

Nominal Mi

Psammoma Bodies Yes, No Nominal Mi



Table 1. Morphologic attributes used in dataset re-classification (Ma: macroscopic 

observation, Mi: microscopic observation)  

Table 2 

Table 2. Immunologic markers used in dataset reclassification 

Fig 1.  

 

Large nucleus Yes, No Nominal Mi

Mitosis Yes, No Nominal Mi

Clear cells Yes, No Nominal Mi

IHC attribute Measurement Type Cut-off

Estrogen Receptor Index Numeric No

Progesterone Receptor Index Numeric No

CA-125 Index Numeric No

p53 Index Numeric No 

Ki-67 Index Numeric No

Her-2 Yes, No Nominal 1%

CEA Yes, No Nominal 15%



Fig 1. Ki67 quantification. a) Original image (ROI) (x200). b) deconvoluted, 8-bit image. 

c) probability analysis. Histogram and log showing 51.1% of image stained positive. 

ODI=0.264. SI=8.6 

Fig 2 

 

Fig 2. p53 quantification. a) Original image (ROI) (x200). b) deconvoluted, 8-bit image. 

c) probability analysis. Histogram and log showing 41.2% of image stained positive. 

ODI=0.202. SI=8.3 

   

For ML classification we used a random forest supervised trained algorithm. We opted 

for an open source machine learning toolkit (WEKA) software ( ) solution that is widely 17

accepted in bioinformatics, has a good graphical interface and requires no programming 

skills ( ).  18

Human reclassification results were considered “ground truth” for the digital 

investigation. The accuracy and precision ( ) of algorithm prognosis was judged against 19

the “ground truth”. Algorithm results were considered “true” when classification was 

concordant. Diagnostics were considered “positive” for serous carcinoma (the most 

clinically significant). Any other diagnostic was considered “negative”.  

No clinical, treatment or prognostic information was available for the digital re-

classification. The initial pathological methodology for sampling and staining of the 



microscopic slides (for both morphology and Immunohistologic characterization) was 

already described in the original publication. 

Statistics 
All data was stored in a standard spreadsheet. Numerical data was analyzed using 

MedCalc Statistical software (version 19.0.7, MedCalc Software bvba, Ostend, 

Belgium). Basic statistic results were expressed as mean ± standard deviation. Because 

of the low number of cases in some categories, differences between means were not 

tested for significance. More info concerning the random forest classification algorithm 

can be found here ( ) 20

Ethics 
Patients provided written, informed consent before the initial treatment, specifically 

agreeing with the processing and analyze of the pathology samples. As the study used 

only archived, published data, a new IRB approval was waived by the hospital IRB 

committee.  

Results 
60 OC archived diagnostics were reviewed and reclassified by the same pathologist, 

after 15 years. The initial cohort contained 45 serous, 12 mucinous and 3 borderline 

carcinomas. The human re-classification produced 37 HGSC, 2 LGSC, 11 EC, 6 MC 

and 4 CCC. The algorithm prognosis generated 35 HGSC, 2 LGSC, 4 EC, 15 MC and 4 

CCC diagnostics. The original Mucoid diagnostic was maintained in 25% of cases by 

human and 50% by machine. The Serous carcinoma diagnostic was maintained in 75% 

of cases by human and in 71% of cases by machine.    

In 48 cases (table 3), the diagnostic was concordant: 36 cases were “true positive” (34 

HGSC, 2 LGSC), 12 were “true negative” (2 EC, 4 CCC and 6 MC). In 12 cases the 

diagnostic was divergent (table 4): 8 cases were “false positive” (EC classified as MC; 

No MC case was classified as EC). 4 cases were “false negative” (2 HGSC as EC, 1 

HGSC as MC, 1 EC classified as HGSC) (fig 2). 



Table 3. 

Table 3. Concordant Diagnostics. Age (mean ± standard deviation). Calculated Index for 

selected biomarkers (ER, PR, CA125, p53 and Ki67): mean ± standard deviation. 

Origin: initial (2005) OC classification. TP: true (concordant) positive (serous). TN: true 

(concordant) negative (non-serous)     

Table 4. 

Table 4. Non-concordant Diagnostics. Age (mean ± standard deviation). Calculated 

Index for selected biomarkers (ER, PR, CA125, p53 and Ki67): mean ± standard 

deviation. Origin: initial (2005) OC classification. FP: false (non-concordant) positive 

(non-serous). FN: false (non-concordant) negative (serous)     

Concordant human – machine diagnostics: biomarkers index

Histo Nr. Age 
(years)

ER PR CA125 p53 Ki67 Origin Cat.

B M S

HGSC 34 68.7±3.83 66.7±9 27.4±13.1 86.25±5.6 47±5.48 34.85±11.08 1 2 31 TP

LGSC 2 49 84 45.5 92.75 21.25 3.5 1 0 1 TP

EC 2 55.5 70 54.5 75 8.5 10.5 0 2 0 TN

MC 6 50.1±4.95 3.2±2.2 12.83±3.43 13.1±3.4 11.08±4.14 12.75±3.32 0 1 3 TN

CCC 4 56.25±0.9 9.6±0.5 2.63±0.25 51.75±10.9 5.25±0.5 5.8±0.95 0 3 3 TN

Tot 48 2 8 38

Non-concordant human machine Diagnostics

Histo Nr Age ER PR CA125 p53 Ki67 Origin Cat.

Human Machine B M S

HGSC EC/MC 3 69.67±1.52 54.33±8.5 17.16±4.75 89.83±2.25 46.16±1.15 14.5±2.29 0 1 2 FN

EC HGS 1 57 71 8.5 80 72.5 12 0 0 1 FN

EC MC 8 55.37±1.5 25.5±10.6 7.25±1.28 72.5±11.45 16.38±4.04 10.81±1.25 1 3 4 FP

Tot 12 1 4 7



Fig 2 

 

Fig 2. Reclassification of OC diagnostics based on WHO 2014 histotype criteria (Human 

– main investigator; Machine – random forest classifier) 

   

Discussions 

Ovarian cancer represents more than 30% of all cancer cases of the female genital 

tract. 90% of them are carcinomas, originated from different precursor ovarian 

epithelium cells. Following new genomic, histologic and clinical data, the OC 

classification criteria changed in time, fact that improved clinical response to therapy 

and disease prognostic. Recent classification (WHO 2014) still maintain histologic 

differentiation as the main classification factor, fact that create place for inter and intra-

observational variability. To improve diagnostic precision, large IHC panels can be used 

(up to 22 biomarkers) but results interpretation can be challenging. A possible way to 

interpret large datasets in which morphology, IHC, genomics, clinical and treatment 

information have to be analyzed together is provided by digital technology. ML 

algorithms can sort and interpret large datasets in a fast, reliable and reproducible way. 

ML algorithms can combine digital pathology data with any socio-demographic, macro 

and microscopic data for predicting diagnostics based on new diagnostic classification 

criteria. Good classification results were already published.      

Our study question was to investigate if an old OC study (2005) may still have scientific 

validity, in the context of changing both of disease classification criteria and IHC panel 
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structure. Our presumption was that digital technology will allow “recycling” of old 

studies possible, saving time and resources, both important in basic research.  

For reclassification we used only pathology data (macroscopic, microscopic data and 

IHC images) selected by the main (initial) investigator. The dataset (60 instances) was 

interrogated using a random forest algorithm. The “training” dataset included 10 

unquestionable diagnosed OC subtypes (two per subtype) and was provided by the 

main investigator as well.  

Under 2014 OC classification criteria, the human investigator confirmed 37 (61.5%) 

from initial diagnostics (representing 25% of mucinous and 75% of serous initial 

diagnostics). The random forest algorithm confirmed 35 (58%) of the initial diagnostics 

(50% mucinous and 71% serous).  

The algorithm classification performed well with 80% accuracy and 73% precision (90% 

sensitivity and 60% specificity) in reclassification of serous carcinoma. The most 

challenging diagnostic for the algorithm was the EC-MC classification, and that can 

allow an explanation for the low sensitivity (8 cases – 13%). The relative high number of 

errors (8) was probably generated by the absence of a specific stain in the used IHC 

panel to allow differentiation between non-serous carcinoma. The most serious error (4 

cases – 6.67%) was the classification of HGSC tumors as EC or MC. One essential 

morphology criterion used for serous tumors differentiation was using nominal (large 

nucleus – yes/no) and not a numeric value and that created the diagnostic confusion. 

Digital segmentation and nuclear measurement will certainly improve the classification. 

On the other hand, even when narrative data was used, a precise differentiation of 

some histotypes (LGSC and CCC) was still possible.  

Other limitations of the study were the absence of any clinical, staging or prognostic 

information and the low number of cases included. In order to reduce overfitting of the 

machine analysis, even important pathology pieces of information were blinded. 

Technical difficulties of IHC data capture on archived slides have to be also 

emphasized. Re-staining of the tissue (when possible) and the use of tissue microarrays 



for IHC analysis are solutions for improving archival analysis but the tissue can be 

scarce and supplementary analysis will certainly increase the costs of re-classification.    

With an 80% accuracy, algorithm OC classification can be used in research. “Recycling” 

old research data is possible, and with the help of digital technologies, research costs 

can be reduced significantly. The process may be of interest for some research centres 

as the costs increase and availability of tissue samples decrease. It will also give 

researchers an idea about the disease trends in time and a way to homogenize 

diagnostics coming from different research registries.       
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