
A comparative analysis between a SIRD
compartmental model and the Richards growth

model

Antônio M. S. Macêdo 1, Departamento de Física, Universidade Federal de Pernam-
buco, 50670-901, Recife, Brazil
Arthur A. Brum 2, Departamento de Física, Universidade Federal de Pernambuco,
50670-901, Recife, Brazil
Gerson C. Duarte-Filho 3, Departamento de Física, Universidade Federal de Sergipe,
49100-000 São Cristóvão, Brazil
Francisco A. G. Almeida 4, Departamento de Física, Universidade Federal de Ser-
gipe, 49100-000 São Cristóvão, Brazil
Raydonal Ospina 5, Departamento de Estatística, CASTLab, Universidade Federal
de Pernambuco, 50740-540 Recife, Brazil
Giovani L. Vasconcelos 6Departamento de Física, Universidade Federal do Paraná,
81531-990 Curitiba, Brazil

Abstract. We propose a compartmental SIRD model with time-dependent para-
meters that can be used to give epidemiological interpretations to the phenomeno-
logical parameters of the Richards growth model. We illustrate the use of the map
between these two models by fitting the fatality curves of the COVID-19 epidemic
data in Italy, Germany, Sweden, Netherlands, Cuba, and Japan.
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1. Background

The pandemic of the novel coronavirus disease (COVID-19) has created a major
worldwide sanitary crisis [1, 2]. Developing a proper understanding of the dy-
namics of the COVID-19 epidemic curves is an ongoing challenge. In modeling
epidemics, in general, compartmental models [3] have been to some extent the tool
of choice. However, in the particular case of the COVID-19 epidemic, standard
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compartmental models, such as SIR, SEIR, and SIRD, have so far failed to produce
a good description of the empirical data, despite a great amount of intensive work
[4, 5, 6, 7, 8, 9, 10, 11]. In this context, phenomenological growth models have
met with some success, particularly in the description of cumulative death curves
[12, 13, 14]. The recent discovery, within the context of a generalized growth mo-
del known as the beta logistic model [15], of a slow, power-law approach towards
the plateau in the final stage of the epidemic curves is another remarkable exam-
ple of this qualitative success. Growth models, however, have the drawback that
their parameters may not be easily interpreted in terms of standard epidemiological
concepts [16], as can the parameters of the usual compartmental models.

As a concrete example, consider the transmission rate parameter β of the SIR
model [3]. It can be easily interpreted as the probability that a contact between a
susceptible individual and an infective one leads to a transmission of the pathogen,
times the number of contacts per day. Although the value of β cannot be measu-
red directly in a model independent way, and it is probably not even constant in
the COVID-19 epidemic curves, the epidemiological meaning of the parameter is
nonetheless easy to grasp conceptually. As a result, models that incorporate such
parameters in their basic equations are sometimes regarded as “more epidemiolo-
gical,” so to speak, than others that do not use similar parameters. This state of
affairs creates a somewhat paradoxical scenario, in which we have, on the one hand,
the striking empirical success of phenomenological growth models sometimes being
downplayed, owing to the lack of a simple epidemiological picture of the underlying
mechanism [16], and, on the other hand, the failure of traditional epidemiological
compartmental models to produce good quantitative agreement with the empirical
COVID-19 data. A glaring instance of the inadequacy of standard compartmental
models for the COVID-19 epidemic is their inability to predict the power-law beha-
vior often seen in the early-growth regime as well as in the saturation phase of the
accumulated death curves—a feature that is well captured by growth models [15],
as already mentioned.

It is clear that a kind of compromise is highly desirable, in which we get the
benefits of the accuracy of the growth models in describing the epidemic, along with
a reasonable epidemiological interpretation of their free parameters. An attempt in
this direction was presented by Wang [16], where an approximate map between the
Richards growth model [16] and the accumulated number of cases of a SIR model
was proposed. The two free parameters of the Richards model were expressed
as a function of the epidemiological based parameters of the SIR model. Here we
improve on this analysis in two ways: (i) we extend the SIR model to a SIRD model
by incorporating the deceased compartment, which is then used as the basis for the
map onto the Richards model; (ii) the parameters of the SIRD model are allowed to
have a time dependence, which is crucial to gain some efficacy in describing realistic
cumulative epidemic curves of COVID-19.
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2. Data

It is in general very hard to estimate the actual number of infected people within
a given population, simply because a large proportion of infections go undetected.
This happens largely because many carriers of the coronavirus are either asympto-
matic or develop only mild symptoms, which in turn makes the number of confirmed
cases for COVID-19 a poor proxy for the actual number of infections. This issue
is well known in the literature and referred to as the “under-reporting problem”
[17, 18]. With this in mind, and in the absence of more reliable estimates for the
number of infected cases, we shall here focus our analysis on the fatality curves,
defined as the cumulative number of deaths as a function of time.

In the present study we considered the mortality data of COVID-19 from the
following countries: Italy, Germany, Sweden, Netherlands, Cuba, and Japan. The
data used here were obtained from the database made publicly available by the
Johns Hopkins University [19], which lists in automated fashion the number of the
confirmed cases and deaths attributed to COVID-19 per country. We have used
data up to July 30, 2020.

3. Methods

3.1. The Richards Growth Model

The time evolution of the number of cases/deaths in an epidemy can be modelled
by means of the Richards model (RM), defined by the following ordinary differential
equation [20, 21, 22]:

dC

dt
= rC(t)

[
1−

(
C(t)

K

)α]
, (3.1)

where C(t) is the cumulative number of cases/deaths at time t, r is the growth rate
at the early stage, K is the final epidemic size, and the parameter α measures the
asymmetry with respect to the s-shaped curve of the standard logistic model, which
is recovered for α = 1. In the present paper we shall apply the RM to the fatality
curves of COVID-19, so that C(t) will always represent the cumulative numbers of
deaths at time t, where t will be counted in days from the first death.

Equation (3.1) must be supplemented with a boundary condition, which can be
either the initial time, t = 0, or the inflection point, t = tc, defined by the condition
C ′′(tc) = 0, where C ′′(t) = d2C(t)/dt2. A direct integration of (3.1) yields the
following explicit formula:

C(t) =
K

{1 + α exp [−αr(t− tc)]}1/α
, (3.2)

which will be the basis of our analysis.
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3.2. SIRD model with constant parameters
We start by recalling the standard Susceptible (S)-Infected (I)-Recovered (R)-
Deceased (D) epidemiological model

dS(t)

dt
= −βS(t)I(t)

N
(3.3)

dI(t)

dt
=
βS(t)I(t)

N
− (γ1 + γ2)I(t) (3.4)

dR(t)

dt
= γ1I(t) (3.5)

dD(t)

dt
= γ2I(t), (3.6)

where S(t), I(t), R(t), and D(t) are the number of individuals at time t in the
classes of susceptible, infected, recovered, and deceased respectively; whereas N is
the total number of individuals in the population. i.e., N = S(t)+I(t)+R(t)+D(t).
The initial values are chosen to be S(0) = s0, I(0) = i0, with s0 + i0 = N , and
R(0) = 0 = D(0). The parameters γ1 and γ2 are the rates at which infected
individual becomes recovered or deceased, respectively.

We then consider the following modified SIRD model, where in (3.3) and (3.4)
we replace N with only the partial population in the S and I compartments, which
takes into account the fact that the recovered (assuming they become immune) and
the deceased cannot contribute to the transmission. We thus find

dS

dt
= − βS(t)I(t)

I(t) + S(t)
(3.7)

dI

dt
=

βS(t)I(t)

I(t) + S(t)
− (γ1 + γ2)I(t) (3.8)

dR

dt
= γ1I(t) (3.9)

dD

dt
= γ2I(t). (3.10)

A fundamental quantity in epidemiology is the basic reproductive ratio, R0, which
is defined as the expected number of secondary infections caused by an infected
individual during the period she (or he) is infectious in a population consisting
solely of susceptible individuals. In this model, R0 can be calculated using the next
generation method [23, 24] and is given by

R0 =
β

γ1 + γ2
. (3.11)

Next, we define y(t) = S(t) + I(t) and divide (3.8) by (3.7) to obtain

dy

y
=

1

R0

dS

S
. (3.12)
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Integrating both sides of (3.12), and inserting the result into (3.7), yields a growth
equation of the Richards type:

dS

dt
= −βS(t)

[
1−

(
S(t)

L

)α]
, (3.13)

where α = 1− 1/R0 and L = (i0 + s0)
1/αs

1−1/α
0 .

We now seek to approximate the curve of accumulated death D(t), obtained
from the SIRD model, with the Richards function C(t), as defined in (3.2). To this
end, we first impose the boundary conditions K = D(∞) and tc = ti, where ti is
the inflection point of D(t). By definition D̈(ti) = 0, which implies from (3.10) that
İ(ti) = 0 and thus

ti =
R0

β(R0 − 1)
ln

(
(R0 − 1)s0

i0

)
. (3.14)

Furthermore, we require that at t = ti both C(t) and its derivative Ċ(t) respectively
match D(t) and Ḋ(t), thus

C(tc) = D(ti), (3.15)

Ċ(tc) = Ḋ(ti). (3.16)

Using the condition İ(ti) = 0 in the SIRD equations, we find

S(ti) =

(
s0 + i0

R0s
1/R0

0

) R0
R0−1

, (3.17)

I(ti) = (R0 − 1)S(ti). (3.18)

Using equations (3.15) and (3.16), we finally obtain the connection between the
parameters (r, α) of the RM and the parameters (β, γ1, γ2) of the SIRD model

rα

1 + α
= γ2

I(ti)

D(ti)
(3.19)

1

(1 + α)1/α
=

D(ti)

D(∞)
, (3.20)

which are the central equations of this paper.
We can estimate the precision of the above ‘map’ between the RM and the SIRD

model via the relative error function:

η(t) =
|C(t)−D(t)|

D(t)
. (3.21)

We have verified numerically that

sup
α,r∈[0,1]

[η(t)] ≤ ε, (3.22)
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Figura 1: Illustrative picture (left panel) of the map between the Richards model
and the SIRD model with constant parameters. The relative error function between
the two models is shown in the right panel.

where ε is typically of order 0.1. A typical example of the agreement between
the SIRD model, for a given set of parameters (β, γ1, γ2), and the RM with the
parameters obtained from the map described by (3.19) and (3.20), is illustrated
in Fig. 1. In Fig. 2 we show the simple monotonic dependence of the Richards
parameters (r, α) on the parameter β of the SIRD model, for the biologically relevant
interval 0 ≤ r, α ≤ 1. We also show, for comparison, the behavior of the basic
reproduction number R0.

3.3. SIRD model with time-dependent parameters

The SIRDmodel with constant parameters proved to be insufficient to accommodate
properly the human intervention biased dynamics of the COVID-19 epidemics. The
simplest solution to this problem is to allow the epidemiological parameter β to
change in time according to the simple exponential decay function [4]

β(t) =

β0, t < τ0

β0

(
β1 + (1− β1)e−

(t−τ0)
τ1

)
, t ≥ τ0,

(3.23)

where τ0 is the starting time of the intervention and τ1 is the average duration of
interventions. Here β0 is the initial transmission rate of the pathogen and the pro-
duct β0β1 represents the transmission rate at the end of the epidemic. Remarkably,
the central map equations, (3.19) and (3.20), are still valid, although ti is no lon-
ger given by (3.14) and should be determined from the maximum of the curve I(t)
obtained from the numerical solution of the SIRD equations, with the parameter β
replaced by the function β(t).
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Figura 2: Behavior of the Richards parameters (r, α) and R0 as a function of the
parameter β of the SIRD model.

4. Applications and Discussion

In Fig. 3 we demonstrate some applications of the SIRD-RM map by showing the
cumulative number of deaths (red circles) attributed to COVID-19 for the following
countries: Italy, Germany, Netherlands, Sweden, Japan and Cuba. In all figures
shown, the continuous (black) curve is the numerical fit to the empirical data, as pro-
duced by the SIRD model with the time-dependent parameter β(t) given in (3.23),
and the dashed (bright green) curve is the corresponding theoretical curve predicted
by the RM, with the parameters as obtained from the map (3.19) and (3.20). The
statistical fits were performed using the Levenberg-Marquardt algorithm [25], as im-
plemented by the lmfit Python package [26], to solve the corresponding non-linear
least square optimization problem. In other words, the lmfit package was applied
to each empirical dataset to determine the parameters (β0, β1, γ1, γ2, τ0, τ1) of the
SIRD model described in Secs. 3.2 and 3.3.

One can see from Fig. 3 that the agreement between the RM and the SIRD model
is very good in all cases considered, which satisfactorily validates the map between
these two models. This result thus shows, quite convincingly, that the parameters
of the Richards model do bear a direct relationship to epidemiological parameters,
as represented, say, in compartmental models of the SIRD type. Although the
interpretation of the Richards parameters (r, α) are less obvious, in that they involve
a nonlinear relation with the probability rates used in compartmental models, these
parameters should nonetheless be regarded as bonafide epidemiological parameters.
Furthermore, it is important to emphasize the flexibility of the RM: this model,
which has only two time-independent parameters, is equivalent (in the sense of the
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(a) (b)

(c) (d)

(e) (f)

Figura 3: Cumulative number of deaths (red circles) attributed to COVID-19, up
to July 30, 2020, for (a) Netherlands, (b) Italy, (c) Germany, (d) Cuba, (e) Sweden,
and (f) Japan. The solid black curves are the best fits by the SIRD model with
a time-dependent β(t), where the parameter estimates are given in the inset. The
bright green dashes curve is the theoretical curve obtained from the Richards model,
with the parameters computed from the numerically determined parameters of the
SIRD model via the map (3.19) and (3.20).

map discussed above) to a SIRD model with time dependent parameters. In other
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words, the two constant parameters of the RM are sufficient to characterize, to
a rather good extent, the entire evolution of the COVID-19 epidemic in a given
location.

It is worth pointing out that the discovery of power-law behaviors in the early-
growth regime as well as in the saturation phase of the accumulated death curves,
both of which are well described by the beta logistic model (BLM) [15], brings about
the challenge to accommodate power laws into a compartmental model. A prelimi-
nary analysis [15] shows that substantial modifications in the SIRD equations may
be required to achieve power law-behavior in the short-time and long-time regimes
of the epidemic curves. The possibility of a map between the BLM and a modified
SIRD model with time-dependent parameters is currently under investigation.

5. Conclusion

The present paper provides a map between a SIRD model with time dependent
parameters and the Richards growth model. We illustrated the use of this map
by fitting the fatality curves of the COVID-19 epidemics data for Italy, Germany,
Sweden, Netherlands, Cuba and Japan. The results presented here are relevant
in that they showcase the fact that phenomenological growth models, such as the
Richards model, are valid epidemiological models not only because they can succes-
sfully describe the empirical data but also because they capture, in an effective way,
the underlying dynamics of an infectious disease. In this sense, the free parameters
of growth models acquire a biological meaning to the extent that they can be put in
correspondence (albeit not a simple one) with parameters of compartmental model,
which have a more direct epidemiological interpretation.
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