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Abstract6

The lower an individual’s socioeconomic position, the higher their risk of poor health in low-7

, middle-, and high-income settings alike. As health inequities grow, it is imperative that we8

develop an empirically-driven mechanistic understanding of the determinants of health dispar-9

ities, and capture disease burden in at-risk populations to prevent exacerbation of disparities.10

Past work has been limited in data or scope and has thus fallen short of generalizable in-11

sights.Here, we integrate empirical data from observational studies and large-scale healthcare12

data with models to characterize the dynamics and spatial heterogeneity of health disparities13

in an infectious disease case study: influenza. We find that variation in social, behavioral,14

and physiological determinants exacerbates influenza epidemics, and that low socioeconomic15

status (SES) individuals disproportionately bear the burden of infection. We also identify ge-16

ographical hotspots of influenza burden in low SES populations, much of which is overlooked17

in traditional influenza surveillance, and find that these differences are most predicted by vari-18

ation in susceptibility and access to sickness absenteeism. Our results highlight that the effect19

of overlapping factors is synergistic and that reducing this intersectionality can significantly20

reduce inequities. Additionally, health disparities are expressed geographically, as targeting21

public health efforts spatially may be an efficient use of resources to abate inequities. The22

association between health and socioeconomic prosperity has a long history in the epidemi-23

ological literature; addressing health inequities in respiratory infectious disease burden is an24

important step towards social justice in public health, and ignoring them promises to pose a25

serious threat.26
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Author summary27

Health inequities, or increased morbidity and mortality due to social factors, have been demon-28

strated for respiratory-transmitted infectious diseases, most recently evidenced by disparities in29

COVID-19 severe cases and deaths. Many potential causes of these inequities have been proposed,30

but they have not been compared, and we do not understand their mechanistic impacts. Our31

understanding of these issues is further hindered by epidemiological surveillance, which has been32

shown to overlook areas of low socioeconomic status. Here, we combine mechanistic and statistical33

modeling with high volume datasets to disentangle the drivers of respiratory transmitted infectious34

diseases, and to estimate locations where these health inequities are most severe, using influenza35

as a case study. We show that low socioeconomic individuals disproportionately bear the burden36

of influenza infection, and that all proposed factors are synergistic in causing these. Thus, public37

health intervention that targets any one of these drivers may alleviate other issues, as they are38

not mutually exclusive. Additionally, we provide geographical hotspots for improved surveillance.39

This work also demonstrates the imperative need to consider inequities and social drivers in data40

collection, epidemiological modeling, and public health work, as the most vulnerable populations41

may also be the most likely to be overlooked.42

Introduction43

Health disparities are differences in health outcomes between social groups, and they persist in all44

modern public health settings. Health disparities may be the result of health inequalities, which are45

caused by biological or cultural variations, or by health inequities, which are driven by unfair factors46

and are avoidable with policy action [1]. There is extensive evidence that social factors, including47

education, employment, income, and ethnicity have a distinct influence on how healthy a person48

is: the lower an individual’s socioeconomic position, the higher their risk of poor health for both49

chronic and infectious diseases in low-, middle-, and high-income settings alike [2]. There is also a50

role played by geographic context: the spatial distribution of disparity in health cannot be explained51

by variation in social factors alone [3]. As the divide in health disparities grows wider across the52
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world and within countries, it is imperative that we continue to understand how social determinants53

impact health, and how this is reflected geographically [4]. Here, we integrate empirical insights54

from past studies to characterize the impact of social determinants on the dynamics and spatial55

heterogeneity in an infectious disease case study, influenza.56

Influenza is a respiratory infectious disease that occurs in annual epidemics in temperate regions57

that can have severe outcomes, especially in young children and elderly individuals [5]. Several58

studies have demonstrated social differences in influenza morbidity and mortality [6, 7, 8, 9, 10, 11].59

For severe influenza, the most impoverished areas have been shown to experience twice the influenza60

hospitalizations compared to regions with the lowest rates of poverty [12], and low education has61

been shown to be positively associated with influenza hospitalization rates [13]. Past work has62

even shown that socioeconomic factors played a significant role in the morbidity and mortality63

caused by the 1918 influenza pandemic [14, 15, 16]. The proposed determinants of disparities64

in influenza burden include a number of physiological and socio-behavioral dimensions [17, 18].65

In particular, influenza vaccine coverage and healthcare access are higher in areas with increased66

levels of education and household income [19, 20]. Additionally, low socioeconomic status (SES)67

individuals have been shown to experience increased susceptibility to respiratory infections due to68

increased stress [21, 22] and have less access to paid sick leave, resulting in less school and workplace69

sickness absenteeism, defined as remaining home due to illness [23, 24]. Lastly, it has been proposed70

that the social patterns of low SES populations affect their influenza risk: larger household sizes71

and higher population density may lead to higher infection risk [25, 26], while a less robust social72

network might result in decreased exposure, but also less support during recovery if infected [18].73

Mathematical modeling studies of social disparities in influenza burden have used a simulation74

approach [27, 28, 29] and have focused on the effects of material deprivation (i.e. lack of access75

from income, education, employment) or social deprivation (i.e. lack of social cohesion and support76

due to small household sizes, single parenting, divorce or widowing). Such studies are important77

in uncovering the mechanistic explanations of influenza disparities, but have been limited in their78

geographical extent, or by the use of proxy measures. For example, [27, 29] consider phenomeno-79

logical variation in social contact rates without empirical evidence linking vulnerable groups to that80
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variation, thus limiting insights on the mechanisms that lead influenza disparities; [28, 29] focus on81

dynamics within specific cities, limiting generalizability.82

Surveillance-based statistical studies of influenza disparities have been spatial in nature and have83

highlighted the challenges of disease surveillance under these disparities. Surveillance systems gather84

the data that shapes our understanding of influenza dynamics, and in the US and most European85

countries, influenza-like illness (ILI) surveillance occurs through reporting by sentinel healthcare86

providers. Such sentinel surveillance systems have been resource-efficient means of collecting high87

quality data, but they do not reliably capture data for all populations, since they are dependent88

on health care accessibility, health care seeking behavior, and other reporting issues [30, 31]. As a89

result, studies that rely on healthcare data for characterizing rates of ILI sometimes find decreasing90

rates of disease with increasing social deprivation [18]. While this negative association may be the91

result of lower exposure in impoverished areas (as suggested by [18]), it is likely that there exist92

spatial and social heterogeneities in surveillance caused by healthcare utilization. Indeed, Scarpino93

et al. have shown that the most impoverished areas are blindspots in the US influenza sentinel94

surveillance system, ILINet, and models based on these data make the best predictions in affluent95

areas while making the worst predictions in impoverished locations [32]. To better understand96

and respond to influenza epidemics and pandemics, we must improve our capability to detect and97

monitor outbreaks in at-risk populations.98

In this work, we (a) develop data-driven epidemiological models to assess how social, behav-99

ioral and physiological determinants impact population-level influenza transmission in a controlled100

manner; and (b) develop statistical ecological models from large-scale disease data to estimate la-101

tent influenza burden in vulnerable populations in the United States. We hypothesize that low102

SES populations bear a disproportionate burden of influenza infection, and that a combination of103

social, economic and health factors cause this disparity. We aim to identify geographic areas where104

burden is highest in low SES populations to provide hotspots for additional surveillance. As health105

disparities widen, it is imperative that we develop an empirically-driven mechanistic understanding106

of the determinants of health disparities, and capture disease burden in at-risk populations. Such107

insights can allow for improved influenza forecasting, resource allocation and targeted intervention108
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design.109

Results110

Here, we have evaluated the impact of social, behavioral, and physiological mechanisms on driving111

influenza disparities. We achieved this through epidemiological model experiments in a population112

network with realistic SES-based contact patterns. This increases our understanding of the role that113

SES-driven variation plays in determining influenza dynamics. This also allows us to disentangle the114

effects of multiple proposed drivers of influenza transmission among those of differing SES. We have115

also assessed the impacts of low SES on influenza at the population level. We estimated low SES116

ILI incidence rates at the county-level in half of the states in the US, accounting for transmission117

trends identified in the prior epidemiological model experiments, variation in social, economic and118

health factors, and measurement biases. This provides estimates of ILI incidence rates among low119

SES populations at a fine spatial scale, identifying areas which are likely currently overlooked by120

influenza surveillance systems. These findings also provide an understanding of SES-based factors121

associated with disproportionate burden at the population level, which could guide future public122

health efforts to reduce socioeconomic health disparities.123

Contact patterns vary by socioeconomic status124

Contact patterns have been demonstrated to vary by socioeconomic status [18], but we have lacked125

social contact networks that explicitly incorporate these differences. To enable testing of hypotheses126

about social contact trends, we used an egocentric exponential random graph model (ERGM) to127

simulate networks with realistic social contact patterns based on socioeconomic status (measured128

by education level, [33]) from the POLYMOD social contact survey, a large social contact survey129

conducted across Europe [34] (Additional model details can be found in Methods). The fitted130

network model is consistent with the contact heterogeneity in the data (Fig 1A), and all individual-131

level attributes (i.e. age, sex, contact location, and education level) are significant in predicting132

contact structure (Table S1). Additionally, we incorporated varying levels of low SES individuals133
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into the networks to investigate hypotheses in populations with varying SES composition (details134

in Methods). The resulting networks are consistent in network structure based on degree and135

assortative degree (number of contacts with those of the same attribute) by SES-status (Fig 1B).136

Thus, networks with increased representation of low SES individuals maintain the same SES-based137

contact patterns as the POLYMOD data. Importantly, the network model captures variation in138

contact structure by SES. In particular, low-SES individuals have lower mean degree and variation139

in degree (Fig 1C), but have higher SES-assortative degree compared to those of higher SES (Fig140

1D).141

Inequities increase low SES influenza transmission142

There appears to be variation in contact trends dependent on socioeconomic status, thus it is143

important to consider how this network structure impacts epidemiological dynamics. To assess the144

role of behavioral and physiological heterogeneity, we integrated into an epidemiological network145

model of influenza transmission five key hypothesized drivers of disparities in influenza burden: a)146

social contact differences, or fewer social contacts and higher assortativity (as represented in our147

empirically-informed contact network model); b) low vaccine uptake; c) low healthcare utilization,148

which results in less access to influenza antivirals; d) high susceptibility, which results from stressful149

environmental factors; and e) low sickness absenteeism from school or work. Fig 2A shows the150

infection burden of low SES individuals (i.e. the ratio of the number low SES infections and the151

number of all infections) in the presence of each factor, combined with social cohesion (included152

in the network structure). The results are compared against a positive control (light green), in153

which there is no SES-based heterogeneity in that factor, and mechanisms are randomly distributed154

throughout the population. Each factor results in a significant increase in the low SES infection155

burden in the presence of SES-based heterogeneity, and the effect is most pronounced when all156

the factors occur simultaneously. In contrast, the epidemic size (i.e. the ratio of the number of157

infections and the population size) for the positive control is larger than the SES-heterogeneous158

treatments, for all treatments (with the exception of the increased stress treatment) (Fig S32).159

This combination of results can be explained by the role that low SES individuals play in the160
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Figure 1: The network characteristics of the networks generated from the ERGM model

based on POLYMOD data. A: The degree distribution of the POLYMOD data (light green)
compared to the simulated networks (dark green). B: The Kolmogorov-Smirnov (KS) statistic to
evaluate the dissimilarity of the ERGM-simulated networks to the POLYMOD data as additional
low education individuals are added to the network. KS statistics compare the dissimilarity of the
overall degree distribution (dark green), the degree distribution of low SES nodes (light blue, solid),
the degree distribution of higher SES nodes (dark blue solid), the assortative degree (e.g. the low
SES contacts of low SES nodes) for low SES nodes (light blue, dashed), and the assortative degree
for higher SES nodes (dark blue, dashed). Low KS values indicate similar distributions. C: The
degree distribution of low SES nodes (light blue) and higher SES nodes (dark blue). D: The relative
assortative degree distribution (e.g. number of low SES contacts of low SES nodes/number of low
SES nodes) of low SES nodes (light blue) and other SES nodes (dark blue).
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Figure 2: Results of epidemiological simulations on ERGM networks with SES-driven

behavioral and physiological differences. A) All of the proposed SES-driven behavioral and
physiological differences result in an increase in infection of low SES individuals (dark green, right
of paired violin plots), compared to simulations where the differences are randomly distributed
throughout the population (light green, left of paired violin plots). This difference is most pro-
nounced when all of the mechanisms occur together. These simulations were performed on a
network composed of 60% low SES, but the results are consistent across networks with different
SES compositions. B) In all networks, when all SES-driven behavioral and physiological differences
are present, low SES individuals (mean percent of infected population that is low SES shown in
light blue dots) are disproportionately infected, relative to the expectation (light blue dashed line).
High SES individuals are disproportionately underinfected compared the expectation (dark blue
dots compared to dark blue dashed line).
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network. On the one hand, low SES individuals have lower mean degree (Fig 1C). When these161

low degree individuals experience transmission-increasing mechanisms, this results in a smaller162

epidemic size, compared to the scenario where high SES, and high degree, individuals experience163

the same mechanisms. Thus, when SES-driven processes that increase transmission affect low SES164

individuals, it results in a smaller overall epidemic. On the other hand, low SES individuals have165

high assortativity with other low SES individuals (Fig 1D). Thus, when health disparities increase166

transmission for low SES individuals, they are more likely to infect other low SES individuals that167

are also experiencing these mechanisms, resulting in increased spread among this assortative group.168

This result highlights the need for surveillance and research focused on low SES populations, as the169

emergent high infection burden of low SES, at-risk individuals could be overlooked due to lower170

epidemic sizes when aggregated.171

Next, we consider how low SES infection burden scales with an increasingly large low SES pop-172

ulation. We find that epidemic size increases with an increasing proportion of low SES individuals,173

and this effect appears to be driven by increasing infection of low SES individuals as they make up174

a larger component of the network (Fig S31). Indeed, low SES individuals experience a dispropor-175

tionately large infection burden when all SES-based behavioral and physiological factors occur (Fig176

2B). Additionally, high SES individuals experience a disproportionately small infection burden in177

the presence of the same factors.178

Low SES infection burden is spatially heterogeneous, and high in the179

southeastern US180

Our results thus far characterize the mechanistic role that social, behavioral and physiological factors181

play on influenza burden in low-SES populations in data-driven controlled experiments. Here, we182

aim to characterize how macroscopic factors impact influenza dynamics in low-SES populations,183

integrating our theoretical findings with population-level data. For population-level influenza data,184

we used medical claims of ILI at the county level in 25 states in the US, based on sufficient data185

availability. This data stream has been demonstrated to provide enhanced surveillance opportunities186

for influenza-like illness [31, 35]. However, we find that these data suggest that ILI burden decreases187
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with increasing low SES representation (measured by proportion of low education individuals) (Fig188

S33). This pattern is counter to our previous mechanistic model findings and to past small scale189

studies, suggesting that there may be measurement biases in these surveillance data.190

Figure 3: County-level map of model estimates of low SES ILI incidence ratio per 1,000

people. Lower values are represented in light blue, and higher values are represented in darker
blue. States in white were omitted due to lack of covariate data.

To better estimate influenza burden in low SES populations, we fit a Bayesian spatial hierarchi-191

cal model that accounts for measurement biases and borrows information from spatial covariates192

pertaining to low SES individuals and the mechanistic modeling experiments (details in Methods).193

Our model estimates of the low SES ILI incidence ratio (defined as low SES ILI divided by total194

visits per 1,000 people) show a positive relationship with low SES population size (Fig S38) , and195

allow us to consider spatial disparities in influenza burden. Fig 3 shows the county-level map of the196

low SES ILI incidence ratio. This map highlights areas with a high incidence rate among low SES197

individuals in the southeastern United States, which is a region where low SES population levels198

are high. This also demonstrates that there are significant levels of heterogeneity both within and199

between states. These estimates can guide targeting of improved surveillance and steps to alleviate200

the influenza burden in low SES populations.201

To validate our findings, we grouped our model estimates by county-level poverty rates, and202

compared the incidence ratio to prior population-level studies that correlate influenza rates and203
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poverty levels, though these studies do not focus on low SES individuals, so the comparison is not204

direct. We find increasing low SES ILI incidence rates in areas with increasing levels of poverty,205

which agrees with trends in [12, 11] (Fig S39). Our results show more consistently high incidence206

rates compared to the larger increases between poverty rates in prior studies. We attribute this to207

the incorporation of the measurement process into our models, which accounts for undersurveillance208

of low SES infection, whereas healthcare access and healthcare seeking differences may have missed209

low SES cases in prior studies. Ideally, data on respiratory infection of low SES individuals would210

be available at a fine spatial scale to more directly assess the validity of our models, but the lack of211

such a dataset highlights the need for future surveillance and data collection that focuses attention212

on lower SES populations.213

Figure 4: Mean model coefficient estimates and credible intervals. Points are colored by
what process each covariate represents (black: measurement bias, red: susceptibility, orange: social
contact differences, green: sickness absenteeism, blue: vaccination, purple: healthcare utilization).

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2020. ; https://doi.org/10.1101/2020.03.30.20048017doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.30.20048017
http://creativecommons.org/licenses/by-nc-nd/4.0/


Susceptibility and sickness absenteeism differences are the strongest drivers214

of ILI in low SES populations215

Fig 4 shows the coefficient estimates and credible intervals resulting from the Bayesian spatial216

hierarchical model. Levels of poor health among low SES individuals, as a measure of susceptibility217

to infection, are positively related with low SES ILI incidence. Thus, areas with more reports218

of poor health among low SES individuals exhibit higher incidence rates of low SES ILI. Also,219

access to sickness absenteeism among low SES individuals, represented by the number of low SES220

students that are absent for more than 10 days in a school year, is negatively related to low SES ILI221

incidence rates. Thus, areas where more low SES students are able to be absent experience lower222

rates of low SES ILI. Student absenteeism may not be a perfect measure of sickness absenteeism223

or paid sick leave access, but other fine-scale data was lacking, and a student’s ability to be absent224

is related to a parent’s ability to be home to care for the child, and differences in access to paid225

sick leave by SES have been related to student sickness absenteeism levels due to influenza [36,226

37, 38, 39]. Additionally, while not statistically significant, the model estimates lend evidence for227

a negative relationship between low SES mean household size and increased low SES influenza228

incidence; and a positive relationship between low SES influenza vaccination and low SES influenza229

incidence rates. The household size result provides support to the social deprivation hypothesis230

that low SES individuals may have less robust social networks, and this may relate to factors that231

increase transmission, such as increased stress, lack of support when ill that delays recovery, or232

the need to attend work when ill [18]. The vaccination result is contrary to our expectations for233

the protective effects of vaccination. This result could reflect vaccination-seeking behavior being234

higher in areas where influenza rates are typically high thus increasing disease risk perception235

[40]. Additionally, some prior studies have shown mixed results regarding the relationship between236

socioeconomic status and influenza vaccination, and that these differing results may relate to the237

way that socioeconomic status is defined, or what location the study takes place in [41, 42]. Lastly,238

this may be a result of the source of our vaccination data, which has low coverage in some areas and239

may suffer from its own measurement biases, which highlights the need for more data on influenza240
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vaccine uptake and the characteristics of those who vaccinate.241

Discussion242

Increased infectious disease prevalence among lower socioeconomic status populations has been243

observed in many settings. What has been missing, however, is a better understanding of the244

mechanisms that drive this disparity. We used a mechanistic epidemiological network model which245

allowed us to assess the impacts of SES-based behavioral and physiological differences on influenza in246

controlled experiments. This highlighted the role played by all mechanisms in tandem to produce247

disproportionate disease burden in low SES populations. To address the gap that exists in our248

surveillance of ILI and to estimate the spatial distribution of influenza disparity, we then used249

a Bayesian spatial hierarchical model to estimate population-level low SES ILI at a fine spatial250

scale across the United States, accounting for disproportionate infection of low SES individuals,251

measurement biases, and county-level factors hypothesized to be associated with influenza and252

SES. Our results shine light on the spatial distribution of respiratory disease health disparities.253

In our epidemiological model, disease transmission occurs over the contact network structure,254

which accounts for heterogeneity in contact patterns by SES. While past work has integrated con-255

tact heterogeneity by other socio-demographic characteristics such as age and occupation [43, 44],256

SES-based contact heterogeneity has not been integrated into contact network models for epidemi-257

ological purposes. Epidemiological simulations on the SES-heterogeneous network reveals that each258

hypothesized behavioral and physiological factor leads to increased infection of low SES individ-259

uals. Additionally, we find that communities with larger low SES populations experience larger260

epidemics, which is in agreement with prior studies [11, 10, 12]. The proposed drivers are not261

mutually exclusive, so this reveals potential effects that could not be identified in past studies that262

investigate the impact of a single SES-based mechanism or impacts that might be aggregated in263

observational studies. We note that these experiments also include SES-based variation in social264

cohesion (i.e. SES-based contact heterogeneity in the population model), so the effect shown in265

Fig 2 is the result of both mechanisms combined. In Fig S32, we also illustrate the impact of each266
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mechanism independent of social cohesion.267

Our efforts to consider the impacts of low SES on influenza spatial heterogeneity generated268

county-level maps of ILI incidence in low SES populations. Our findings identify pockets of high269

ILI burden in low SES populations across the United States, and represent a first step in filling the270

gap that exists in all healthcare-based surveillance. The model also produced a set of estimates for271

the effect of each hypothesized ecological measure. We find that low sickness absenteeism and high272

susceptibility are significantly associated with influenza in low SES populations. This supports273

our previous finding that multiple mechanisms compound to result in disproportionate low SES274

influenza burden. To validate our findings, we compared the trends in our model estimates to275

previous estimates of influenza incidence rates, stratified by poverty level. This is not a direct276

comparison, as previous studies present the incidence rates for the entire population, not just for277

low SES individuals within those populations. SES-stratified influenza data would be important to278

ground truth our model estimates.279

Our work has several limitations. The network structure of our epidemiological model is based280

on one social survey from 2007 in Europe, and may be less representative of the United States today.281

Additionally, survey data was not collected for the SES of the contacts of survey participants, which282

required us to make assumptions which could affect our results about SES assortativity. Additional283

social contact data collection across the United States that accounts for SES heterogeneity would284

be useful for future studies given the large socio-economic inequality in the country [45, 46]. In our285

spatial ecological model, we assume that disproportionate burden in low SES populations remains286

constant over influenza seasons. While this is a reasonable first assumption based on social and287

healthcare processes being consistent over our study period, there may be variation in the impact of288

ILI on low SES populations due to strain distribution and environmental features that do vary across289

seasons. Future work could focus on temporal variation in low SES ILI dynamics. Additionally,290

our spatial ecological model is only able to provide estimates for half of the states in the US, and291

the states are mostly on the coasts. This highlights the need for more data collection pertaining to292

low SES individuals, not only for epidemiological data, but also for a wide variety of other topics293

to provide covariate data and to create a better understanding of at-risk populations.294
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As the divide in health disparities grows wider across the United States, we propose the use295

of infectious disease case studies to improve our understanding of this challenging problem. We296

suggest that we move beyond studies based on proxy measures such as income and education297

which may provide an incomplete picture [3], and dig into the mechanisms that may be at the298

root of inequities. Furthermore, we advocate for the prioritization of capabilities to detect and299

monitor outbreaks in at-risk populations so that we may prevent exacerbation of health disparities.300

Addressing health inequities in respiratory infectious disease burden is an important step towards301

social justice in public health, and ignoring them promises to pose a serious threat to the entire302

population. Indeed, the damaging impacts of health inequities for respiratory infectious diseases303

have already been highlighted in the COVID-19 pandemic [47]. Our results suggest that (a) the304

effect of overlapping behavioral and social factors is synergistic and reducing this intersectionality305

can significantly reduce inequities; and (b) health disparities are expressed geographically and306

targeting public health efforts spatially may be an efficient use of resources to abate inequities.307

Further attention to the mechanisms and processes that lead to health inequities, and specifically308

health inequities that may be overlooked by our currently surveillance systems, will be important309

to identifying actionable steps to mitigate negative health outcomes in the future.310

Methods and Materials311

In this study, we use (1) a mechanistic network epidemiological model to assess influenza transmis-312

sion in the presence of individual-level socioeconomic status (SES)-based behavioral and physiolog-313

ical variation; and (2) an inferential spatial model to geographically localize influenza-like illness314

(ILI) burden among low-SES populations in the presence of population-level variation in social and315

health indicators. Data and code for the implementation of these methods is available at [48].316

Modeling Impact of Individual-Based SES factors on Disease Burden317

To achieve the mechanistic understanding, we (a) fitted a contact network model from empirical318

contact data that includes contact heterogeneity stratified by age, sex, contact location, and so-319
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cioeconomic status; and (b) performed epidemiological simulations on these networked populations320

integrating epidemiological differences based on SES, parameterized by empirical studies.321

Contact Network Model322

In a contact network model, nodes represent individuals, and edges represent epidemiologically-323

relevant interactions between individuals. The degree of a node is the number of edges, or contacts,324

of the node, and the degree distribution of a network is the frequency distribution of node degrees325

within the population. To generate realistic contact networks to evaluate epidemic outcomes, we326

used an egocentric exponential random graph model (ERGM) [49]. An egocentric ERGM allows327

for the construction of sociocentric networks based on egocentrically sampled data, in which par-328

ticipants (or egos) report the identity of their contacts (or alters), who may or may not be study329

participants. Our egocentric ERGM model was based on the POLYMOD dataset, a large, egocen-330

tric contact survey that took place across several countries in Europe to identify close interactions331

of over 7000 individuals across eight European countries [34].332

Nodes in the network had the following attributes: (a) age, grouped as infants-toddlers (age333

0-4), school-aged children (age 5-18), adults (age 19-64), and elderly (age 65-100); (b) sex, classified334

as male or female; (c) contact location, in which a node can have known home contacts and known335

school or work contacts; (d) education level as a proxy for socioeconomic status [33], grouped as low336

education (less than a high school education), medium education (high school or vocational school337

education), or high education (any university education or beyond). Age and sex were available in338

the data for egos and alters, while education level was only provided for egos. Therefore, it was339

assumed that an ego’s work contacts had the same education level based on their occupation, and340

that an ego’s home contacts had the same education level as an indicator of household socioeconomic341

status. To represent communities with different SES compositions, we resampled additional low342

education egos from the low education sample in the POLYMOD dataset. We produce networks343

composed of approximately 20-60% low education individuals (Table S3).344

The model was fit using the ERGM package [50, 51]. The best model was selected based on345

collinearity criteria and goodness of fit to the POLYMOD data. From the best fit ERGM model,346
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we simulated 5 networks. Additional model details, including model terms (Table S1), collinearity347

(Table S2), model diagnostics, and goodness of fit (Fig S5 - Fig S30) can be found in the Supplement.348

Random regular networks of the same size and mean degree were also generated as null net-349

works to evaluate the effect of contact heterogeneity. We used the Networkx package for network350

generation and analysis [52].351

SES-based Epidemiological Model352

Chain binomial SEIR (Susceptible-Exposed-Infected-Recovered) simulations were performed on the353

networks generated by the egocentric ERGM model and the control networks to examine the spread354

of a respiratory infection, like influenza, through a naive population. Model parameters pertinent355

to seasonal influenza spread were selected from literature (Table S4) [53, 54].356

Five hypothesized drivers for increased influenza in low SES populations were integrated into the357

epidemiological simulations. Each hypothesized driver represents a health behavior or physiological358

factor, and is represented by a single parameter, the value of which was selected from pertinent359

literature (Table S4). Social contact differences represents the SES-based social contact rates of360

individuals, and thus is represented by the ERGM-generated networks. The remaining factors are:361

• Low vaccine uptake: Individuals may be vaccinated before the start of the season with a362

perfectly efficacious vaccine. Vaccinated nodes were randomly selected and removed from363

the network. Vaccination coverage is parameterized by � and �low in high- and low-SES364

individuals, respectively. The value of delta was based on a US population survey of vaccine365

coverage related to education level [19].366

• High susceptibility: Those who experience a more stressful environment are more susceptible367

to infection, and thus have a greater probability of becoming infected upon contact with368

an infected individual. Susceptibility is parameterized by � and �low in high- and low-SES369

individuals, respectively. This is based on an immune challenge experiment that found that370

those of high SES were about half as likely to become infected with a cold compared to those371

of low SES [22].372
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• Low healthcare utilization: Infected individuals who do not seek healthcare and receive an-373

tivirals have a longer infectious period, based on a model of within-host and population-level374

dynamics [55]. The proportion of the infected population seeking healthcare is parameterized375

by � and �low in high- and low-SES individuals, respectively.376

• Low sickness absenteeism: Infected individuals may exhibit sickness absenteeism from school377

or work if they have access to leave and care at home. Those exhibiting sickness absenteeism378

remove school or work contacts. Access to sickness absenteeism is parameterized by ⇢ and379

⇢low in high- and low-SES individuals, respectively. These values are based on rates of paid380

sick leave by education level in a survey across the US [56].381

For our experimental design, each SES-based factor was tested separately and together on each382

network. Disease outbreaks for each treatment were simulated 200 times on each network, with383

5 replicate networks. We also considered two controls to compare our experimental results: a)384

a homogeneous control, in which each factor was randomly distributed across a random regular385

network; b) a heterogeneous control, in which each factor was randomly distributed across the386

ERGM-generated networks.387

Modelling Impact of Disease in Low-SES Populations388

To achieve an inferential understanding, we (a) integrated the network model findings with empirical389

ILI data for an estimate of ILI burden among low-SES individuals; and (b) fitted a spatial Bayesian390

hierarchical model with population-level covariates to account for measurement biases and improve391

our estimate of low-SES ILI burden at the population-level.392

Spatial Inferential Model393

We used a Bayesian spatial hierarchical model to estimate latent ILI cases among low SES individ-

uals, accounting for measurement biases and county-level factors associated with ILI in low SES
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populations. We modeled low-SES ILI (Yit) in county i in flu season t as:

Yit|Ni ⇠ Binomial(Ni, pi,t)

where pi,t is the probability of detecting low-SES ILI cases, and Ni is the true ILI cases among394

low-SES individuals.395

We modeled the probability of detection pi as:

logit(pi,t) = ↵0 +
kX

1

↵kzi,t,k + ⌫c + ⌫s

where ↵0 is the intercept, ↵k represents the measurement process predictor variables, and ⌫c and396

⌫s are group effects for county and state, respectively.397

We modeled the latent low-SES ILI cases as:

Ni ⇠ NegBin(�i, ✓)

where the negative binomial distribution is parameterized by probability �i and size ✓.398

The �i is modeled by:

log(�i) = �0 +
jX

1

�jxi,j + µc + µs

where �0 is the intercept, �j represents coefficient estimates for low-SES ILI process covariates,399

and µc and µs represent county-level and state-level group effects, respectively. We performed400

approximate Bayesian inference using Integrated Nested Laplace Approximations (INLA) with the401

R-INLA package [57]. INLA has demonstrated computational efficiency for latent Gaussian models,402

produced similar estimates for fixed parameters as established implementations of Markov Chain403

Monte Carlo (MCMC) methods for Bayesian inference, and been applied to disease mapping and404

spatial ecology questions. We evaluated DIC, WAIC, model residuals and compared modeled and405

observed outcomes in order to assess model fit. Additional model details can be found in Fig S34,406

Fig S36, Fig S37.407
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Response data408

We define the response in our model to be the observed influenza-like illness (ILI) burden in low-409

SES populations. In particular, we use influenza-like illness reports from a medical claims database410

from across the United States collected during 2002-2008. [Additional details on the dataset can411

be found in [31, 35]]. To normalize these observed counts, we divide ILI visits by visits for any412

diagnosis during the influenza season. These data are at the county-level but are not stratified by413

SES. This normalization was incorporated into the response data, rather than the measurement414

model, because the values vary greatly from season-to-season as database coverage increased, but415

INLA does not allow temporally varying measurement covariates [58]. To produce a county-level416

estimate of ILI in low-SES populations for our spatial model, we use the observed ILI burden in the417

total population and scale this by the proportion expected among low-SES individuals as predicted418

by the epidemiological model from the first part of our study (as summarized in Fig 2B). These419

scaled-up incidence rates were then multiplied by 1000 to be appropriately scaled for the model.420

Covariate data421

All covariate data are at the county level, and are centered and standardized. Covariate data cannot422

be included in a temporally-specific way in R-INLA, thus we assume that all values are constant423

over time from 2002-2008. We make the assumption that county characteristics remain relatively424

constant over time, and harness together covariate data from different years based on availability425

and coverage. All covariate data was evaluated for collinearity, and all included covariates had a426

VIF < 2. First, covariate data was included for the measurement submodel to characterize database427

coverage and population size. For database coverage, we used the number of physicians reporting428

the medical claims database, which was reported by the database and averaged over reported years.429

Additionally, the population of low SES individuals was included since that measures the size of430

the considered population. Low SES population size was measured as the county population size,431

reported by the US Census Bureau [59], multiplied by the percent of the population with less than432

a high school education from County Health Rankings [60]. Then, for the process model, covariate433

data were included as a marker for each hypothesized driver of low SES influenza. We ensured that434
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all process covariate data pertained just to low SES populations. For a measure of susceptibility,435

reports of poor health in individuals with less than a high school education, divided by the sample436

size of low education individuals, were collected from the the Behavioral Risk Factor Surveillance437

System (BRFSS) from the CDC, which is available at the individual level and reported by county438

in 2012 [61]. For a measure of social cohesion, mean household size reported by those with less439

than a high school education was also collected from BRFSS. To measure access to healthcare, rates440

of reporting having health insurance, reporting having a personal doctor, and reporting avoiding441

healthcare due to cost by those of low education were divided by low education sample size from442

BRFSS. To measure sickness absenteeism, the rate of chronic sickness absenteeism, or students443

absent for more than 10 days, was collected from the US Department of Education [62]. This444

data was only available stratified by race, thus the chronic sickness absenteeism reports of Black445

students, divided by the number of Black students, was used due to the correlation between race446

and socioeconomic status in the US [63]. To measure vaccination, reports of adult vaccination in447

low education individuals were divided by the low education sample size in BRFSS [61]. Much of the448

data was available through BRFSS, which lacked coverage in many counties. Thus, counties with449

a low education sample size of less than 10 were omitted. Additionally, due to this sparse coverage450

in covariate data, we restricted our analyses to states that had complete covariate data for more451

than 50% of counties. This is to ensure that sparse covariate data does not skew the model, since452

we only want to provide inference for states that have enough data to provide reliable estimates.453

These challenges highlight the need for more high resolution data on low SES populations across454

the country. See supplement table for additional covariate data details (Table S5).455

Imputation and Validation456

Based on the assumption that counties that are close to one another are similar to one another, we457

imputed covariate values for missing counties in states that were included in the model. The model458

was run with only the counties that had complete covariate data. Then, for each missing county,459

we took the mean of the adjacent counties for each covariate value, to assign covariate values to460

the missing counties. We then used these imputed covariate values to calculate model estimates461
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for the missing counties. The model estimates prior to imputation are available in Fig S35. We462

grouped the resulting full model estimates by county-level percent living in poverty, according to463

Small Area Income and Poverty Estimates reported by the US Census Bureau [64]. We collected464

incidence/incidence rate values reported by the same poverty level groupings from [12, 11]. Each465

set of incidence values was min-max normalized for comparison due to variations between reported466

value and population considered.467
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