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Abstract 

Coronavirus disease 2019 (COVID-19) is an unprecedented and fast evolving pandemic, which 

has caused a large number of critically ill patients and deaths globally. It is an acute public health 

crisis leading to overloaded critical care capacity. Timely prediction of the clinical outcome 

(death/survival) of hospital-admitted COVID-19 patients can provide early warnings to clinicians, 

allowing improved allocation of medical resources. In a recently published paper, an interpretable 

machine learning model was presented to predict the mortality of COVID-19 patients with blood 

biomarkers, where the model was trained and tested on relatively small data sets. However, the 

model or performance stability was not explored and assessed. By re-analyzing the data, we reveal 

that the reported mortality prediction performance was likely over-optimistic and its uncertainty 

was underestimated or overlooked, with a large variability in predicting deaths.   
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We read with great interest the recently published article by Yan et al.1 on an interpretable and 

highly needed mortality prediction model for COVID-19 patients. We commend the authors’ 

initiative to timely look into mortality for this unprecedented and evolving global health crisis. 

Based upon a database of blood test samples from 485 infected patients (with multiple blood 

samples per patient) in the region of Wuhan, China, a tree-based machine learning model was 

employed to predict the outcome of individual patients (death/survival). Three biomarkers 

(features) were experimentally selected, including lactic dehydrogenase (LDH), high-sensitivity 

C-reactive protein (hs-CRP) and lymphocyte, with good predictive values of disease deterioration 

or fatality proven in previous studies2-5. The authors claim that the model can predict the outcome 

approximately 10 days in advance with an accuracy of >90%.  

According to the paper and source code by Yan et al.1, the three important features were selected 

based on a training data set of 375 patients using a 100-round five-fold cross-validation and 

XGBoost decision-trees. To empower early identification of COVID-19 mortality, they considered 

only blood samples with complete measurements of the three features. Therefore, with the three 

selected features, a ‘single-tree XGBoost’ model was re-trained on a single subset (70%) of 351 

patients and validated on the remaining 30% of the training data. The resulting model was then 

tested on an external dataset with 110 patients.  

We believe that both the training (including validation) and test data sets are relatively small, 

indicating a potential concern with regards to the precision and stability of the reported prediction 

model, especially when the test dataset contains only 13 deaths out of 110 patients. We are 

concerned that the published results are an over-optimistic estimation of true prediction 

performance6, in particular when training the model is conducted with a single run without cross-

validation. Therefore, this letter aims at addressing the matter of potential model instability in 

predicting mortality for COVID-19 patients, by demonstrating high variability of prediction results.  

We run 1000 times the model training and validation (7:3 random split) using the same three 

features and the same single-tree method as Yan et al.1, and evaluated the variability of prediction 

results on the external test dataset with 110 patients. We applied our approach to both the 110 

latest complete samples used by Yan et al.1 as well as the 251 complete blood samples. Boxplots7 

of the four performance metrics used by the authors over our 1000 runs are presented in Fig. 1.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.20161323doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.29.20161323
http://creativecommons.org/licenses/by/4.0/


 

 

Fig. 1 | Prediction performance of 1000 runs on data from 110 patients in the external test 

set using the three selected features (LDH, hs-CRP and lymphocyte). a, Boxplots of prediction 

results on 110 latest complete blood samples (13 samples corresponding to deaths). b, Boxplots of 

prediction results on all 251 complete blood samples (69 samples corresponding to deaths). Note 

that, for each boxplot, the line within the box, the cross mark, the box and the error bars indicate 

mean, median, quartiles and whiskers, respectively, and the dots correspond to outliers.  

 

As shown in Fig. 1a, the precision, recall and F1 score8 have a small variability in predicting 

survivals, relatively consistent with the original results1. However, they all show a large variability 

in predicting deaths (mean precision of 0.70 ranged from 0.52 to 0.81, mean recall of 0.86 from 

0.62 to 1, and mean F1 score of 0.77 from 0.62 to 0.9) than reported in the original paper1, with an 

obvious discrepancy between training and test results. Similar findings can be observed in Fig. 1b 

when testing on all the 251 blood samples, despite a slightly better performance in predicting 

deaths (likely due to a more balanced distribution in terms of death and survival numbers), but at 

the expense of a reduced prediction in survivals.   

For the analysis of prediction horizon, predicting the clinical outcome in a timely manner can 

provide early warnings to clinicians, allowing improved allocation of medical resources. Yan et 

al.1 applied the trained single-tree model on the 251 blood samples and analyzed the model 

performance over time for different days to outcome. To visualize the variability on days of 

prediction upfront, Fig. 2 illustrates the death prediction performance over the runs versus days to 

outcome (from 0 to 23 days). A remarkable difference across the 1000 models can be noticed in 
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different “days to outcome”, even when close to the day of outcome (day 0). For example, the 

recall at 1 day in advance of outcome ranged from 0.67 to 1, indicating that there was a chance of 

training a prediction model that can miss, on average, 14%, and up to 33% of the actually death 

samples, unlike the result published by Yan et al.1 with an F1 score of 1. This suggests an evident 

overly optimistic view of results in identifying mortality for and over different days in advance 

and disputes the claim of accurately detecting deaths already around 10 days before death. 

 

Fig. 2 | Prediction performance of 1000 runs with respect to the days to outcome for 110 

patients (251 complete blood samples) in the external test set. a, precision, b, recall and c, F1 

score in death prediction, and d, the corresponding sample numbers of death and survival samples. 
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The root causes contributing to the demonstrated instability or uncertainty of the prediction results 

could be twofold. First, the modelling could be overfitting to the training data that is of a small 

size (without cross-validation) and likely not representative of the entire patient population in 

terms of the characteristics of the biomarkers from disease onset to death as well as death cause9,10, 

not generalizable to external unseen data. Second, the external test dataset is too small (in particular 

on different days to outcome) to draw a firm conclusion regarding model stability. In addition, we 

found a discrepancy in class imbalance between the training (159 death cases out of 351 patients) 

and the test dataset (13 death cases out of 110 patients). The percentage of deaths in the training 

set was far from the actually fatality rate of COVID-19 (varying from 1.4%11 to 4.3%12 in different 

regions and hospitals, and higher in critical patients). As a result, the trained model would be more 

likely to predict as death cases compared with the intrinsic prior probability of death (i.e. fatality 

rate), resulting in a higher recall while a lower precision13, in particular when using ensemble 

machine learning models not designed for data with a strongly skewed class distribution14 

including XGBoost15. Therefore, with the existent data used in the study, model stability should 

be carefully considered. 

Although the study by Yan et al.1 shows a recognizable promise in predicting mortality for 

COVID-19 patients with three biomarkers using a single-tree XGBoost model, we reveal that the 

reported prediction performance was over-optimistic. The prediction results remain unstable 

(exhibiting large variabilities) and therefore the assertions made by Yan et al.1 on the effective 

days to predict in advance and the corresponding accuracy seem not sufficiently solid, not fully 

supported by the evidence presented in this article. As the authors discussed as well, a larger 

representative cohort of COVID-19 patients is imperatively required to further verify the 

performance and stability of the proposed mortality prediction model in the future.  

 

Data and code availability 

The data and code used herein were retrieved from the supplementary information of the published 

work by Yan et al.1 on May 16, 2020. 
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