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Abstract

Background: To mitigate the spread of the COVID-19 coronavirus, some
countries have adopted more stringent non-pharmaceutical interventions in
contrast to those widely used (for e.g. the state of Kuwait). In addition to
standard practices such as enforcing curfews, social distancing, and closure of
non-essential service industries, other non-conventional policies such as the total
confinement of highly populated areas has also been implemented.

Methods: In this paper, we model the movement of a host population using a
mechanistic approach based on random walks, which are either diffusive or
super-diffusive. Infections are realised through a contact process, whereby a
susceptible host may be infected if in close spatial proximity of the infectious
host. Our focus is only on the short-time scale prior to the infectious period, so
that no further transmission is assumed.

Results: We find that the level of infection depends heavily on the population
dynamics, and increases in the case of slow population diffusion, but remains
stable for a high or super-diffusive population. Also, we find that the confinement
of homogeneous or overcrowded sub-populations has minimal impact in the short
term.

Conclusions: Our results indicate that on a short time scale, confinement
restrictions or complete lock down of whole residential areas may not be effective.
Finally, we discuss the possible implications of our findings for total confinement
in the context of the current situation in Kuwait.

Keywords: COVID-19; Coronavirus; SARS-CoV2; Random walks; Diffusion;
Population dispersal; Lockdown; Confinement; Movement restrictions; Kuwait

Introduction1

The novel coronavirus SARS-CoV2 referred to by the World Health Organization2

(WHO) as COVID-19 (Coronavirus Disease 2019) is believed to have started from an3

animal source in Wuhan City, Hubei Province, China in December 2019 [1, 2]. Since4

then, the disease has spread worldwide, across 188 countries, territories and regions,5

making it a global health emergency [3, 4]. On 11th March, the WHO officially class-6

fied the COVID-19 outbreak as a pandemic. As of July 22nd 2020, COVID-19 has7

infected 14,960,136 individuals of which 616,769 deaths have occurred and 8,480,0648

have recovered, making the total active infected cases 6,480,072 [3]. Whilst most9

symptomatic cases are mild, characterised by a persistent cough and fever, a sig-10
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nificant proportion of cases are more serious, where individuals develop pneumonia11

- leading to acute respiratory failure, which can possibly be fatal. A combination12

of vastly different non-pharmacological measures have been adopted by national13

governments to suppress the growth of the epidemic, such as: travel bans, school14

closures, social distancing, imposed curfews, household quarantine, complete lock-15

downs, etc [5]. The extent to which of these strategies are most effective, including16

their timing, is not entirely clear. Although studies have attempted to identify key17

intervention policies [6, 7], others have highlighted those which are ineffective [8, 9].18

COVID-19 is highly contagious and more infectious than initially thought, where19

improved estimates have shown that during the early stages of the epidemic spread,20

the number of infected individuals can double every 2.4 days [10]. The virus contin-21

ues to spread in a similar way to influenza, via respiratory droplets from coughing22

or sneezing. Therefore, the primary mode of transmission is attained through a23

‘contact’ process, i.e. if susceptible individuals are in close spatial proximity of in-24

fectious hosts [11]. Once a person is infected, for most people (approx. 81%), no25

symptoms will show [12]. For others, the time between exposure to the virus (be-26

coming infected) and symptom onset, is on average 5-6 days, but can range from27

2-14 days [13, 14]. It is also estimated that a virus carrier will typically only become28

infectious around 1-3 days before symptoms appear [15]. How long it takes, and to29

what extent asymptomatic individuals transmit the disease is not completely un-30

derstood [16, 17]. The preceding suggests that given contact between susceptible31

and infectious hosts, for an initial period of many days, the only, or at least pri-32

mary means of the virus spreading will be from the initial infected individual to33

others, without further transmission. This early period will have qualitatively dif-34

ferent virus spreading characteristics as compared to the later stages, where newly35

infected individuals can also spread the disease. Hence it is of interest to study36

the short-time dynamics of infection levels and of the subtle interplay between the37

processes involved on this time scale [18, 19].38

Mechanistic movement models provide an alternative modelling approach to con-39

ventional epidemiological models (SIR, SEIR), as a means to better understand40

the dynamics of disease spread [20, 21, 22, 11]. One advantage is that the spatial41

proximity between individuals is explicitly accounted for through individual move-42

ment rules, where susceptible individuals come into close contact with infectious43

hosts, and are possibly infected. Therefore, movement behaviours and the contact44

patterns that emerge due to these encounters directly relate to disease transmis-45

sion. In terms of mathematical modelling, Random Walks (RWs) serve as a useful46

modelling tool to track the movement of individuals in a population across space47

and time [23, 24]. A basic description is given by the Correlated Random Walk48

(CRW), where the orientations between successive steps are correlated, resulting49

in a localized directional persistence [25, 26, 27, 28]. This means that individuals50

in the short term are more likely to keep moving in the same direction than to51

perform abrupt turns. In the absence of directional persistence, the CRW reduces52

to the Simple Random Walk (SRW), which can be considered as a special case, so53

that the movement is uncorrelated and completely random [29, 30]. In the case of54

a population of non-interacting individuals, such movement processes are known to55

be diffusive, particularly at large spatial scales [31, 32]. In movement ecology, the56
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CRW is supported by empirical evidence from animal movement data, and thus fre-57

quently used to model animal movement paths [33, 28, 34, 35]. However, in the case58

of more complicated movement types, such as that observed for humans, the CRW59

does not provide an adequate description, but can still serve as a null model. To the60

best of our knowledge, no epidemiological studies have considered host movement61

as a CRW - even in disease ecology.62

Another conceptual tool for modelling movement is the Lévy Walk (LW), where63

the individual performs short steps forming clusters, with the occasional longer step64

in between them [36, 37, 38]. If the LW is oriented during the clustering phases, the65

corresponding movement type is referred to as the Correlated Lévy Walk (CLW).66

In contrast to the CRW, the movement pattern is much faster, and super-diffusive.67

It is now generally accepted that some animal species perform LWs [39, 40, 41],68

particularly in context-specific scenarios such as foraging, and known to describe69

an efficient searching strategy where resources are scarce and randomly distributed70

[42, 43, 44]. Alongside this, there is growing empirical evidence that human move-71

ments may also exhibit Lévy type characteristics. Such inferences have been reached72

from studies on the daily movement patterns of humans, traces of bank notes, mo-73

bile phone users’ locations and GPS trajectories [45, 46, 47, 48, 49]. Therefore, a74

LW description could be useful to study a wide variety of challenging issues; such as75

traffic prediction, urban planning, and in the context of our study, epidemic spread76

[50]. Despite the clear motivation, few studies have focused on epidemics in popula-77

tions where the host population performs a LW. As an example, it was demonstrated78

in [51] that a disease outbreak is more likely for similar density populations where79

individuals perform the LW, instead of the SRW.80

In this paper we use a mechanistic description based on RWs to model the move-81

ment of susceptible and infectious hosts in 2D space. We consider the early stage of82

epidemic development, during the incubation phase prior to the infectious period,83

where it is assumed that the virus cannot be further transmitted. We demonstrate84

how different modes of host movements can lead to varying levels of infections.85

In addition, we consider various confinement scenarios for both homogeneous and86

overcrowded populations, where the movement is restricted to a certain area. Thus,87

we reveal whether confinement is effective in mitigating disease spread, at least on88

a short time scale.89

Methods90

Random walk framework91

The movement of a walker in 2D space along a curvilinear path in continuous92

space-time, x = x(t) = (x(t), y(t)) can be modelled using a discrete time random93

walk (RW) which links individual location xi−1 at time ti−1 to the next location94

xi at time ti. Each location is recorded at ti = i∆t = {t0, t1, t2, ...} where ∆t is95

considered as a constant time step, independent of i. The step length defined as the96

distance between any two successive steps is li = |xi − xi−1| = {l1, l2, l3, ...} with97

average velocity ui = xi−xi−1

∆t [28, 52]. The complete movement path which begins98

at location x0 can then be expressed through the equation:99

xi = xi−1 + (∆x)i, i = 1, 2, 3, ... (1)
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where (∆x)i = (∆xi,∆yi) is a random step vector for the ith step along the walk.100

Any 2D RW can also be described in polar co-ordinates, by expressing the step101

vector in terms of step lengths l and turning angle θ (i.e. the angle between two102

consecutive headings), using the transformation:103

∆x = l cos(θ), ∆y = l sin(θ), l ∈ [0,∞), θ ∈ (−π, π] (2)

with inverse transformation:104

l =
√

(∆x)2 + (∆y)2, θ = atan2 (∆y,∆x) , (3)

where atan2 (∆y,∆x) is equal to arctan
(

∆y
∆x

)
for ∆x > 0 and to arctan

(
∆y
∆x

)
± π105

for ∆x < 0. The 2D RW can then be characterized by the statistical properties of106

the probability distributions of step length λ(l) and turning angle ψ(θ).107

Simple random walk108

The earliest models of movement based on RWs are uncorrelated and unbiased,109

referred to as simple random walks (SRW). This means that the direction of move-110

ment is independent of previous directions moved and completely random [53, 23].111

For our modelling purposes, we consider each component of the step vector to be112

distributed as a zero-centered Gaussian distribution with the same scale parameter113

σ, so that:114

φ(∆x) =
1

σ
√

2π
exp

(
− (∆x)2

2σ2

)
, φ(∆y) =

1

σ
√

2π
exp

(
− (∆y)2

2σ2

)
, (4)

∆x,∆y ∈ R, with mean E[∆x] = E[∆y] = 0 and variance Var[∆x] = Var[∆y] = σ2
115

which quantifies the mobility of the walker [54].116

It can readily be shown that the corresponding step length and turning angle117

distributions are given by:118

λ(l) =
l

σ2
exp

(
− l2

2σ2

)
, ψ(θ) =

1

2π
, (5)

where λ(l) is the Rayleigh distribution and ψ(θ) is the uniform distribution ranging119

from −π to π, see [52] for a derivation. For this step length distribution, the mean120

step length and second moment is:121

E[l] = σ

√
2π

2
, E[l2] = 2σ2. (6)

Correlated random walk122

A correlated random walk (CRW) allows for short term directional persistence, so123

that the movement direction is the same as that of the previous step. For a bal-124

anced CRW, the probability of left and right turns are equal, and the turning angle125

distribution is now considered as a zero centered symmetric circular distribution.126

An example of such, is the von-Mises distribution:127

ψ(θ) =
1

2πI0(κ)
exp(κ cos θ), κ ∈ [0,∞), (7)
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where κ is the concentration parameter and Im(κ) is the modified Bessel128

function of the first kind of order m, defined through the integral Im(κ) =129

1
2π

∫ π
−π cos(mθ)eκ cos θdθ. Note that, other types of circular distributions can also130

be used, for e.g. the wrapped Cauchy or wrapped normal distributions [55]. The131

mean cosine of the distribution of turning angles quantifies the strength of the short132

term directional persistence, defined as:133

c = E cos θ =

∫ π

−π
ψ(θ) cos θdθ, c ∈ [0, 1] (8)

and in the particular case of the von-Mises distribution, this reads:134

c =
I1(κ)

I0(κ)
. (9)

Note that, the SRW corresponds to a special case of the CRW when c = 0 (or iden-135

tically κ = 0), as the von-Mises distribution reduces to the uniform distribution,136

as seen in equation (5). Details of useful metrics which are used to analyse move-137

ment patterns, such as the Mean Squared Displacement (MSD) which measures138

the squared beeline distance between a walkers’ initial and final positions, and the139

Sinuosity Index (S), which measures the amount of turning in a walkers’ movement140

path, can be found in Appendix .141
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Figure 1 Movement paths for CRWs including the special case of a SRW with σ = 1. (a) SRW
c = 0 (S = 1.58) and (b) CRW c = 0.8 (S = 0.59), (c) CRW c = 0.95 (S = 0.29). Each walker
has starting location at (0, 0) (green marker) and executes n = 1000 steps. This corresponds to
times t = 0 and t = 10 using a time increment of ∆t = 0.01.

Figure 1 illustrates a movement path for the SRW and the CRW. With increasing142

mean cosine c, there is an increase in short-term directional persistence, and the path143

is more diffusive. This demonstrates that the walker is more likely to keep moving144

in the same direction as that of the previous step, with a decrease in sinuosity.145

The correlated Lévy walk146

Different types of movement behaviours can be characterized by the rate of asymp-147

totic decay in the end tail of the step length distribution λ(l). If the end tail de-148

cays exponentially or faster (referred to as a ‘thin’ tail), then the variance of step149
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lengths is finite, and therefore the movement process is scale-specific and diffusive150

[28, 23, 56]. See for example, the case of the SRW with Rayleigh distributed step151

lengths in equation (5). Lévy walks (LWs) are another conceptual tool used to152

model movement paths. The main difference between this class of walks, and those153

prior, is that the end tail decays much more slowly (known as a fat or heavy tail),154

according to the power law:155

λ(l) ∼ l−µ, 1 < µ < 3, (10)

where µ is the Lévy exponent. As a result, the walker can execute rare but longer156

steps, and the movement pattern is much faster. In contrast to RWs with a thin end157

tail, the variance is divergent, the MSD does not exist and the corresponding move-158

ment is scale-free and super-diffusive [57, 38]. Similar to the SRW, the LW is also159

uncorrelated and unbiased, and the distribution of turn angles is uniform, corre-160

sponding to completely random movement. For a correlated Lévy walk (CLW), this161

distribution is a zero centered circular distribution, where the LW can be considered162

as a special case.163

Without loss of generality, we choose to rely on the folded Cauchy distribution164

for step lengths:165

λ(l) =
2γ

π(γ2 + l2)
, (11)

which has quadratic decay in the end tail λ(l) ∼ 1
l2 corresponding to Lévy exponent166

µ = 2. Alongside this, we consider the distribution of turn angles to be the von167

Mises distribution, see equation (7) with mean cosine given by equation (9). The168

case 0 < c ≤ 1 now corresponds to a CLW and c = 0 to a LW.169

To compare between a CRW and CLW, with identical distributions of turn an-170

gles, it remains to simply relate λ(l). This can be done by considering the survival171

probability P(l > L) = δ, i.e. the probability of occurrence of move lengths longer172

than some characteristic scale length L, and considering δ and L to be the same173

for both distributions. In addition, by imposing an optimization constraint such as174

minimizing the L2 norm, one can compute an optimal value for δ, and therefore a175

relationship between scale parameters. As an example, to ’fairly’ compare between176

distinct movement types, such as a CRW with step length distribution given by177

equation (5) and a CLW with distribution given by equation (11), one gets:178

γ

σ
= 1.536. (12)

See [58] supplementary information for details of this result.[1]
179

Figure 2 (a) illustrates the movement path of a LW, a specialised type of RW180

composed of clusters of multiple short steps with longer steps in between them181

[38]. Plots (b)-(c) show the CLW, which allows for localized directional persistence182

[1][58] compute a relationship between distribution scale-parameters, but consider

the probability ε that move lengths do not exceed L, i.e. P(l < L) = ε = 1 − δ. In either

case, the result in equation (12) is the same.
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Figure 2 Movement paths for CLWs including the special case of a LW with γ = 1.536. (a) LW
c = 0, (b) CLW c = 0.8, (c) CLW c = 0.95. Note that, scale parameters can be related through
equation (12), so that these RWs are ‘comparable’ to those presented in Figure 1. Each walker
has starting location at (0, 0) (green marker) and executes n = 1000 steps. This corresponds to
times t = 0 and t = 10 using a time increment of ∆t = 0.01

during the clustering phases, with increase in persistence for larger c. In each case,183

the individual is confined within the square domain, see next section for details of184

the boundary condition.185

Simulations186

Consider a susceptible population of N individuals initially homogeneously dis-187

tributed across a residential area Ω represented by a square domain of side lengths188

2d:189

Ω = {(x, y) : |x| < d, |y| < d}. (13)

How the population disperses in space can be actualised by modelling the individual190

movement paths using a n step RW, given by the equation:191

xi = xi−1 + ∆xi, i = 1, 2, 3, ..., n (14)

and different movement behaviours can be simulated using the movement rules192

prescribed by the different types of RWs in §. During the course of the movement,193

individuals may encounter the spatial boundary. We assume that the population194

is confined, so that no individual(s) can leave or enter, and therefore the domain195

boundary is considered to be impenetrable. In our simulations, we choose to rely196

on a ‘no-go’ condition, so that if any individual attempts to overstep the boundary197

at any instant in time, then an alternative step is chosen at the previous location198

[59]. In the case that the walk is correlated, a new orientation is assigned in the199

opposite direction, i.e. in the perpendicular direction to the boundary.200

In addition, an infectious host is introduced into the susceptible population at the201

centre of the domain at location ξ0 = (0, 0), whose movement is modelled as a RW202

in 2D space:203

ξi = ξi−1 + ∆ξi, i = 1, 2, 3, ..., n (15)
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where ξi represents the location of the infectious host at each step, and ∆ξi is a204

random step vector. Note that, ξi and xi are uncorrelated, so that the movement205

of the infectious host is completely independent of the movement of any susceptible206

individual in the population. At each subsequent step, the virus is only transmitted207

to those susceptible individual(s) that are within a close spatial proximity of less208

than a distance r from the infectious host [21], with condition:209

|xi − ξi| < r, i = 1, 2, 3, ..., n. (16)

Since the coronavirus is highly infectious, we assume that the probability of disease210

transmission given a contact is 1. This can be considered as an upper limit of a more211

general scenario, where host-host contacts can lead to unsuccessful transmission212

events, known as ‘near misses’. Also, given that our focus is on the short-term213

dynamics, during the incubation period but prior to the infectious period, we assume214

that infected individuals do not go on to further transmit the virus. However, the215

primary infectious host continues to browse throughout the population, as per the216

RW model, and continues to infect others as a result of further contacts. Levels of217

infection can be computed as the proportion of individuals that are infected over218

the course of time.
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Figure 3 Snapshots of the interplay between an infectious host (red marker) and the population.
A susceptible population of N = 2500 individuals perform a SRW with σ = 1, c = 0 within the
residential area. The infectious host browses in space according to a CRW with σ∗ = 1,
c∗ = 0.95, where ∗ is included to distinguish between the parameters. The interaction radius
(r = 10), movement types and parameters are chosen for illustrative purposes.

219

Figure 3 shows that as the infectious host browses through space, the virus is220

transmitted to those susceptible individuals in close spatial proximity less than a221

distance r = 10, and therefore the proportion of infected individuals increase over222

time. The blank space in plots (b)-(d) emerge, as those infected are not shown. Note223

that, if the residential area is considered to be 500m by 500m, a more realistic value224

for r is 1m, which is used in further simulations, and reflects the current public225

social-distancing policy in Kuwait.226

Results227

Variation in infection levels due to host movement228

Figure (4) shows that the proportion of infections depend on the interplay between229

the susceptible population and the infectious host movement. Plot (a) demonstrates230
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Figure 4 Proportion of infections (%) computed for different scenarios of population dispersal,
whilst a single infectious host browses throughout the population, recorded at time t = 40. A
susceptible population of N = 2500 is initially homogeneously distributed across a square domain
of side lengths 2d = 500, referred to as the residential area. Each individual in the susceptible
population moves according to either: (a) SRW or CRW (σ = 1), and in (b) LW or CLW
(γ = 1.536), whilst considering an increase in directional persistence, which is quantified by c
(indicated in the figure legend). These mobility parameters are related through equation (12),
which allows for the proportion of infections to be compared across different host movement
types. The infectious host moves according to a CRW with σ∗ = 1, with varied directional
persistence c∗. The interaction radius is fixed at r = 1. Time is computed as t = n∆t, with n
steps in the RW, and time increment ∆t = 0.01. Simulations were averaged over ten runs, to
reduce the effect of stochastic noise.

that in the case of slow population diffusion (i.e. low values of c), infection levels231

increase at a much faster rate with respect to the directional persistence of the232

infectious host, but this rate decreases with larger c. This suggests a mechanistic233

explanation for ’super-spreaders’ based on the movement of the host population234

as a driver for increasing epidemic spread. In the case of much faster population235

diffusion (i.e. c close to 1), infection levels tend to remain constant - which is also236

observed if the population is super-diffusive, as seen in Plot (b). Interestingly, the237

Lévy movement patterns suggest that the rapid movement of individuals cannot238

explain rising levels of infection.239

Impact of confined neighbourhoods240

Figure 5 (a)-(b) illustrates the free movement of four infectious hosts amongst a241

homogeneous population. In (c)-(d), confinement restrictions are imposed by sepa-242

rating the residential area into four neighbourhoods, demarcated by solid red lines.243

The proportion of infections can be computed due to contacts between individuals244

in the susceptible population and each infectious host. In this manner, we aim to245

assess the impact of sub-population confinement.246

Figure 6 represents a similar scenario, whereas now we consider an overcrowded247

neighbourhood. Note that in plots (d)-(f), due to the super-diffusive properties of248

the LW, the sub-population mixes much faster with the remainder of the population,249

c.f. with plots (a)-(c).250

Figure 7 plot (a) shows that for susceptible individuals that perform a SRW, the251

disease spread depends on the movement of the infectious host, with an increase252
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Figure 5 Introduction of neighbourhood confinement. (a) A susceptible population of N = 4000
individuals is homogeneously distributed across a residential area with dimensions d = 500 by

d = 500. We consider four infectious individuals at initial locations
(
± d

2
,± d

2

)
. (b) The host

population moves freely across the whole domain, where each individual performs a RW.
Susceptible individuals that come into close contact of either of these infectious hosts are also
infected, with interaction radius r = 1. (c)-(d) An alternative scenario is considered where
confinement restrictions are imposed, by partitioning the residential area into four neighbourhoods
of equal population density. Each sub-population of N = 1000 individuals, and also the
corresponding infectious host, is thus confined to each neighbourhood of dimensions d = 250 by
d = 250. A ‘no-go’ boundary condition is also prescribed to the inner boundaries, as described in
§. As a result, potential contacts and hence the transmission of the virus is also confined.
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Figure 6 The overcrowded neighbourhood has a population of N = 2500 (top-right in each plot
indicated in blue), and N = 1500 in the remaining part of the residential area, corresponding to
an initial high population density which is five-fold. Plots (a)-(c) demonstrate the case where each
individual in the susceptible population performs the SRW, and in (d)-(f) the LW. Plots (g)-(i)
illustrate confinement of overcrowded area. All other details are the same as that in the caption of
Figure 5

observed for larger c∗, however, from plot (c), in the case of a LW population they253

remain the same - as seen previously in Figure 4. Plots (b) and (d) confirm that254

this also applies to heterogeneous populations, for e.g. in the case of overcrowded255
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Figure 7 Plot of infection count trajectories against time, whilst considering either a
homogeneous population distribution, or the case of an overcrowded sub-population, including the
different confinement scenarios depicted in Figures 5 and 6. We also consider two different modes
of susceptible population movement, where individuals either perform the SRW or the LW. Each
infectious host, browses throughout the population whilst performing a SRW (c∗ = 0) or a CRW
with high directional persistence (c∗ = 0.95).

neighbourhoods. This suggests that infection levels depend on the underlying move-256

ment behaviours which govern contacts between individuals, but not on the spatial257

distribution of the host population. On comparing free movement across the whole258

residential area (solid lines) and restricted movement within confined space (dotted259

lines), the impact on infection counts is negligible, at least in the short-term.260

Discussion261

Traditional models of infectious diseases usually assume that susceptible and host262

populations mix readily, and fail to capture the interactions between individuals263

[60, 61, 62, 63], whereas mechanistic models account for the spatial proximity be-264

tween individuals and explicitly model the contact process - which is directly related265

to the disease transmission process [20, 11]. Also, much focus in the literature is266

on the long term effects of epidemic spread, which is important to address ques-267

tions related to disease spread/control and the resulting socio-economic impacts268

etc. [7, 64]. In contrast, very few studies focus on the short time scale of infection269

dynamics following an outbreak. There is growing attention towards asymptomatic270

yet infectious carriers, as they are hard to track and could be a critical factor in271

the spread of some diseases [65, 66, 67], however, not much information is available272

at very early stages i.e. prior to when individuals become infectious. In this paper,273

we set out to investigate how infection levels are driven by the interplay between a274

susceptible population and a single infectious host on a short time scale, whilst con-275

sidering different types of movement behaviours, heterogeneous population spatial276

distributions and the role of neighbourhood confinement. An individual mechanistic277

modelling approach was used based on RWs, which is increasingly recognised as a278

fundamental tool of infectious disease epidemiology [20, 11].279

We found that infection levels increased more rapidly for a slowly diffusive sus-280

ceptible population with increase in short term persistence in host movement, but281
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remained stable in case of faster or super-diffusive population diffusion. The for-282

mer may be more relevant in the context of disease ecology with infectious disease283

spread amongst animals [68, 69, 70, 71], whereas the latter is more applicable to284

human movement, due to the plausible evidence that human mobility patterns con-285

tain statistically similar features observed in super diffusive spread or Lévy walks286

[45, 46, 47, 48, 49, 72]. This suggests that the rapid movement of humans fails287

to explain rising levels of infections. We also investigated whether there were any288

changes in infection levels based on the population spatial distribution (i.e. over-289

crowded scenarios) and/or neighbourhood confinement. We found that, on a short290

time scale, there was no noticeable difference.291

The state of Kuwait is a typical example amongst many other countries that have292

implemented strict intervention policies to curb the spread of the disease. The first293

case was recorded on 24th February 2020. As of July 22nd 2020, the total number of294

infected cases is 60,434, with 412 deaths, 50,919 recoveries and the number of active295

cases is currently 9,515 [3, 73]. Some standard approaches such as discontinuation296

of commercial flights, school closures, social distancing policies, quarantine etc. are297

common, whilst others are unique to Kuwait, for e.g. extreme household curfew298

timings up to 22 hours, imposed movement restrictions so that residents can only299

purchase groceries in their locality subject to prior appointment, total confinement300

of overcrowded neighbourhoods etc. For the latter, barricades were set up at all301

entry and exit points and monitored at all times by security officials, ensuring that302

people were not allowed to leave or enter these areas, except under very special303

circumstances. See [74] for a detailed timeline of all government interventions. Al-304

though, these strict measures have far-reaching consequences beyond the spread of305

the disease, with clear social-economic impacts [64], the swift response by Kuwait306

has been recognized and generally praised by the WHO [75]. Given that this strat-307

egy is unique, some theoretical questions need to be addressed regarding its efficacy308

c.f. [76], and whether they can be implemented at larger spatial scales, i.e. it may be309

challenging or even non-feasible for countries with large populations, particularly310

in case of cities which are densely populated.311

Our results indicate that during the early stages of infectious spread, imposed312

confinement restrictions or complete lock down of whole residential areas may be313

ineffective, irrespective of the population demographics, and therefore other types314

of measures are more likely to be beneficial. On a much larger time scale, lockdowns315

are known to be effective and there are recommendations that they should remain316

in place for a time period of about 60 days [77]. This highlights that there is an317

optimal time frame, precisely when and how a lockdown should be enforced [78, 79].318

It is plausible that the exact timing may depend on the population characteristics319

(movement, spatial structure etc.) and the rate of initial spread, and this would320

constitute an important research line of enquiry in a future study. Such informa-321

tion is vital for stakeholders (government, health officials, policy makers etc.), as322

some countries are past their (first) epidemic peak, and a second wave of the pan-323

demic is predicted [80, 81]. One important aspect of this study is that no further324

disease transmission was assumed once individuals in the susceptible population325

were infected, which is adequate on a short time scale. However, to investigate the326

long-term effects, one would need to account for further transmission from newly327
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infected individuals. It would be interesting to analyse the infection dynamics based328

on population spatial distributions, the interplay between host movements and var-329

ious confinement scenarios on this time scale. Considering this, one could estimate330

variations in a key epidemiological metric - the effective reproduction number (R),331

i.e. the average number of secondary cases per infectious case in a population [82].332

In terms of contact specifics, we assumed that those individuals who were in close333

spatial proximity of the infectious host to be instantly infected – which could be334

justified in the case of highly contagious viruses. A more realistic scenario would335

assign a transmission probability, so that the virus is transmitted to only a pro-336

portion of those individuals who come into close contact. This would allow disease337

modellers to identify and quantify ‘near misses’ and to explore possible alternative338

epidemic outcomes given shifts in epidemiological parameters [11]. Moreover, if con-339

tact rates and transmission probabilities can be estimated from epidemic/movement340

data, mechanistic models could prove to provide a powerful modelling framework341

for a broader category of diseases [11].342

Conclusions343

Our findings indicate that infection levels can vary depending on the movement344

rules that govern host-host movement. In the case of a slowly diffusive susceptible345

population, the level of infection increases, but remains the same for a highly or346

super diffusive population. We also found that in the short-term, prior to when347

susceptible individuals becomes infectious, confinement restrictions are ineffective,348

even in the case of overcrowded populations. This study demonstrates how useful349

insights of disease dynamics can be obtained from a random walk framework, in350

contrast to traditional modelling approaches.351

Appendix A: Useful metrics for CRWs352

The Mean Squared Displacement (MSD), which is defined as the expected value of353

the squared beeline distance between a walkers’ initial and final positions in a n354

step RW, serves as a useful metric to analyse movement patterns. For a balanced355

CRW, this can be computed as:356

E
[
R2
n

]
= nE

[
l2
]

+ 2E[l]2
c

1− c

(
n− 1− cn

1− c

)
, (A1)

which is expressed in terms of moments of step length l, mean cosine c and the357

number of steps n [26]. In the special case of a SRW (c = 0), the MSD reduces to:358

E
[
R2
n

]
= nE

[
l2
]
. (A2)

For a large number of steps n (or equivalently in the long term), the MSD ap-359

proaches:360

E
[
R2
n

]
a

= n

(
E
[
l2
]

+ 2E[l]2
c

1− c

)
, (A3)

where the subscript ‘a’ is included here, to distinguish between the asymptotic361

MSD and the actual MSD in equation (A1). Note that, the asymptotic MSD grows362
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linearly with n and therefore the RW becomes diffusive in the large step limit, and363

can be related to the diffusion coefficient D [83, 84, 85, 23, 86], through the relation:364

E
[
R2
n

]
a

= 4Dn∆t. (A4)

Another useful metric is the sinuosity index S, which quantifies the amount of365

turning in a walkers’ movement path (tortuosity), defined as:366

S =

√
u

D
=

√
E[l]

D∆t
, (A5)

where u = E[l]
∆t is the mean speed [87]. On combining equations (A4)-(A5), an367

equivalent expression for the sinuosity index can be written as:368

S =

√
4nE[l]

E [R2
n]a

. (A6)

In the particular case of a balanced CRW with Gaussian increments, this index is369

given by:370

S =
1√
σ

( √
2π

1 + π
2 ·

c
1−c

) 1
2

(A7)

where the moments are computed in equation (6).371

List of abbreviations372

WHO World Health Organization

RW Random Walk

SRW Simple Random Walk

CRW Correlated Random Walk

LW Lévy Walk

CLW Correlated Lévy Walk
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