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Abstract 

Over 390 million people worldwide are infected with dengue fever each year. In the 

absence of an effective vaccine for general use, national control programs must rely on hospital 

readiness and targeted vector control to prepare for epidemics, so accurate forecasting remains an 

important goal. Many dengue forecasting approaches have used environmental data linked to 

mosquito ecology to predict when epidemics will occur, but these have had mixed results. 

Conversely, human mobility, an important driver in the spatial spread of infection, is often 

ignored. Here we compare time-series forecasts of dengue fever in Thailand, integrating 

epidemiological data with mobility models generated from mobile phone data. We show that 

long-distance connectivity is correlated with dengue incidence at forecasting horizons of up to 

three months, and that incorporating mobility data improves traditional time-series forecasting 

approaches. Notably, no single model or class of model always outperformed others. We propose 

an adaptive, mosaic forecasting approach for early warning systems.  
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Introduction 

More than half the world’s population is at risk of infection from the dengue virus, which 

causes an estimated 390 million infections (Bhatt et al., 2013) and 25,000 deaths per year (CDC, 

2018; Guzman and Harris, 2015; WHO, 2018a). The dengue pathogen is spread in urban and 

peri-urban areas by invasive mosquitoes belonging to the Aedes complex. As a result, dengue 

has emerged as a major threat in the context of a rapidly urbanizing, globally connected world 

(Guzman and Harris, 2015; Tatem et al., 2006; Wesolowski et al., 2015b). For example, despite 

the general decline in the incidence of other communicable diseases, the incidence of dengue 

fever has doubled every 10 years since 1990 (Stanaway et al., 2016). The rapid geographic 

expansion of the vector suggests there will be a continuing emergence of dengue globally 

(Guzman and Harris, 2015; Tatem et al., 2006; Wesolowski et al., 2015b). Currently, there is no 

drug treatment for dengue (Halstead, 2012; WHO, 2012) and only a partially effective vaccine, 

which cannot be used in seronegative individuals (WHO, 2018b). Therefore, despite the mixed 

results of vector control efforts (WHO, 2012), targeted and thorough vector control approaches, 

hospital readiness, and risk communication can improve public health preparedness for seasonal 

outbreaks. Fundamental to the success of these preparations is data on the burden of disease in 

different areas, and some sense of how an epidemic may progress in the near term and on local 

spatial scales relevant to national control programs. 

Forecasting the epidemic trajectory of dengue on weekly or monthly timescales remains a 

relatively new science for infectious diseases (Baquero et al., 2018; Buczak et al., 2018; 

Choudhury et al., 2008; Eastin et al., 2014; Gharbi et al., 2011; Hii et al., 2012; Hu et al., 2010; 

Johansson et al., 2016; Lauer et al., 2018; Martinez et al., 2011; Promprou et al., 2006; Nicholas 

G. Reich et al., 2016; Yamana et al., 2016; Yang et al., 2017). Unlike weather and climate 
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forecasting, where physical laws dictate the dynamics of the system, the social and biological 

dynamics that drive infectious disease outbreaks make forecasting dengue epidemics 

challenging. Recurring epidemics, as opposed to novel pathogens emerging for the first time, 

occur against a backdrop of shifting population immunity, which is difficult to quantify. 

Complicating surveillance, pathogens like dengue are primarily reported based on symptoms 

rather than laboratory confirmation. Like influenza and malaria, dengue causes non-specific 

symptoms, fever in particular, so reporting reliability and time lags impact data quality (Chretien 

et al., 2016; Olliaro et al., 2018; Scarpino et al., 2017). Despite these complexities, routine 

forecasting is an important priority for national dengue control programs (Nicholas G. Reich et 

al., 2016; WHO, 2012). 

There has been a recent surge of interest and success in building forecasting models for 

seasonal epidemics of dengue fever (Choudhury et al., 2008; Eastin et al., 2014; Gharbi et al., 

2011; Hii et al., 2012; Hu et al., 2010; Johansson et al., 2016; Lauer et al., 2018; Martinez et al., 

2011; Promprou et al., 2006; Nicholas G. Reich et al., 2016; Yamana et al., 2016; Yang et al., 

2017). A distinction can be made between mechanistic epidemiological models and statistical 

models. Mechanistic models in which the mode of transmission (in this case, mosquito-borne 

and strong temperature dependence) is built into the model and drives the predicted infection 

dynamics. In contrast, statistical models rely on the identification of past epidemiological activity 

patterns and historical correlations with external data streams, generated often by human 

behavior on Internet search engines or social media, to monitor disease activity and predict 

future outbreaks. Mechanistic models aim at providing biological insight and a basis for 

interpretation, but for socially and environmentally complex infections like dengue, these models 

are often challenging to parameterize. Dengue is particularly challenging as it is composed of 
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multiple immunologically distinct strains and relies on the interaction of mosquito and human 

population dynamics and microclimate variability. Metapopulation models have been developed 

to incorporate the spatial dynamics of dengue outbreaks, modeling each area with a set of 

location-specific parameters and linking the areas through estimated migration of individuals. 

Metapopulation models play in an important role in our understanding of epidemic outbreaks 

across spatial regions (Arino and Driessche, 2003; Liu et al., 2018; Stolerman et al., 2015), 

synchronicity between regions (Lloyd and Jansen, 2004), oscillations of epidemics (Lourenço 

and Recker, 2013), and strategies to reduce transmission (Lee and Castillo-Chavez, 2015). 

Despite their importance in understanding dynamics, mechanistic models, and metapopulation 

models in particular, may lack sufficient data for appropriate parameterization, and are often not 

feasible in a forecasting context. As a result, statistical models have been more successful for 

outbreak preparedness for which the modeling goal is to provide quantitative, relatively short-

term predictions with explicit uncertainty (11, 13–20, 22, 28–30).  

Most statistical forecasting approaches for dengue have been based on autocorrelation in 

case data, often incorporating environmental information due to the importance of temperature 

and other factors to the availability of mosquitoes and variation of the incubation period of the 

virus in the vector. Many of these have focused on long-term predictions of dengue at the city 

level (Choudhury et al., 2008; Eastin et al., 2014; Luz et al., 2008; Stolerman et al., 2016), or 

larger regions within a specific country (Gharbi et al., 2011; Hu et al., 2010; Martinez et al., 

2011; Promprou et al., 2006). Models often show mixed success with high prediction accuracy in 

the immediate forecasting horizons (e.g., 1-2 months) and rapid decay at longer time horizons 

(e.g. 3-6 months). It is unclear if weather or climate variables substantially improve forecasting; 

at least one study that systematically looked at different model parameters for autoregressive 
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models, with and without a wide range of climate variables, across states in Mexico found no 

conclusive improvement (Johansson et al., 2016). More recently, ensemble models have become 

a powerful way to combine different approaches in order to leverage the strengths of each while 

minimizing the weaknesses (52). This approach has recently been applied to dengue (Yamana et 

al., 2016). Others have incorporated new sources of data from internet search terms to predict 

dengue nationally (Yang et al., 2017), employed novel statistical methods to predict dengue in 

San Juan, Puerto Rico (Ray et al., 2017), or combined common climate covariates with 

generalized additive models to predict annual incidence of dengue hemorrhagic fever (Lauer et 

al., 2018). 

Although dengue outbreaks spread primarily via human travel, incorporating this aspect 

of the spatial connectivity between locations within forecasting frameworks has been 

challenging. Current forecasting models, both mechanistic and statistical, either ignore or make 

crude assumptions about how populations are connected by travel. Parameterizing human 

mobility is challenging due to a paucity of relevant data streams, particularly in low-income 

settings. We have previously used mobile phone records to quantify national movements and 

showed that they provide improved prediction for dengue outbreaks in Pakistan (Wesolowski et 

al., 2015b). Specifically, we used a gravity models to parametrize human mobility in a 

mechanistic framework because dengue was emerging into naïve populations, where statistical 

methods could not be used. Others have used daily commuting data to model mobility using a 

radiation model, which in turn is used to parameterize a mechanistic model (Zhu et al., 2016). 

Although considerable difficulty remains in accessing mobile phone records or other scalable 

data sources about mobility, it is clear that gravity models, radiation models, and other proxies 

for travel measures may perform poorly in many settings (Wesolowski et al., 2015a).  
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To date, almost all efforts to forecast dengue have either focused on optimizing a single 

modeling framework across regions, fitting parameters individually, or analyzed multiple models 

for a particular location. Few statistical models used for forecasting dengue incorporate spatial 

dependencies and none incorporate information about mobility patterns. Here, we contribute to 

the existing literature by using seven years of monthly dengue data (2010–2016) from Thailand, 

which has a developed dengue surveillance program, and mobility data from approximately 11 

million mobile phone subscribers to show that long-distance travel is associated with correlated 

epidemiological cases. We compare model structures incorporating time-series approaches or 

spatial dependencies, and mobility data, finding that this improves model prediction, but no 

individual approach provides the best performing model in all locations over all time horizons. 

We quantify the error for each province in Thailand, showing that provinces in the north of the 

country are more difficult to forecast with confidence than those in the south, regardless of 

model choice, and that different models’ performances may be linked to demographic and social 

factors such as population density and gross provincial product per capita. We propose that 

mosaic forecasting approaches, which dynamically adapt over time and space, and end up using 

the best model for that location and time period, are likely to be the most effective for use in 

early warning systems in national control programs.  

Results 

Greater than expected long-distance travel to and from Bangkok 

To assess inter-province migration, we analyzed the call data records (CDR) of 

approximately 11 million mobile phone subscribers between August 1, 2017 and October 19, 

2017. At the time of data collection, the mobile phone operator had about 26% of the market 

share and was the third largest provider in Thailand. Since travel patterns remained stable over 
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our period of observation (coefficient of variation: 1.3%; SI Appendix, Fig. S1), we calculated 

average daily journeys between all pairs of provinces in both directions, and compared observed 

mobility in the CDR data to expected mobility based on gravity models (see Materials and 

Methods) assuming travel over our time period is consistent with travel for the rest of the year 

(SI Appendix, Fig. S2). We found that the routes of travel that deviate significantly from gravity 

model-based predictions in both directions are focused on Bangkok (Figure 1), with more travel 

than expected from long distances around the country such as Phuket and Bangkok itself (Figure 

1, left), and less travel than expected within and around the city (Figure 1, right). These hot and 

cold spots, where higher or lower than expected travel was observed, were robust to the gravity 

model coefficients used (SI Appendix, Table S1).  

 

Figure 1. Under- and over-prediction of outlier travel. Relative under-prediction (left) and 
over-prediction (right) comparing observed mobility data (from CDRs) to estimated mobility 
data from the best fit gravity model. We defined relative prediction error as 
100%*(PredictedTrips – ObservedTrips)/ObservedTrips. We highlight only observations with 
Cook’s distance greater than five times the average Cook’s distance. Note that Bangkok (center 
of the map) is central to much of the over- and under-prediction outliers with most over-
prediction near Bangkok. 
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Long-distance connectivity is associated with correlated dengue incidence 

In Thailand, dengue follows a seasonal cycle across all 77 provinces (Figure 2), with 

variation in the timing of onset and epidemic peak in different locations over our period of 

observation (Limkittikul et al., 2014). We analyzed the correlation between clinical cases in each 

province with different time lags between them. Figure 3 shows the relationship between the 

correlation in dengue cases between pairs of provinces, stratified with respect to geographic 

distance and mobility measured using mobile phone data. Consistent with previous studies 

(Cummings et al., 2004; Panhuis et al., 2015; Salje et al., 2017, 2012), the epidemiological 

correlation between provinces is strongest when they are close to each other and declines with 

distance and over time (i.e. the three-month lagged correlation is weaker than the one-month 

lagged correlation). For provinces less than 1,000 km apart, human mobility estimated using 

mobile phone data does not appear to impact the correlation of clinical cases. For longer 

distances, however, more highly connected locations show higher correlation in clinical dengue 

cases than locations the same distance apart but with low observed connectivity (Figure 3). Note 

that some but not all of these long-distance connections are locations with international airports 

(SI Appendix, Fig. S3), and provinces connected by airports have higher correlation than those 

that are not connected by airports (SI Appendix, Fig. S4).  
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Figure 2. Monthly dengue incidence by province. Monthly crude incidence of dengue (per 
1,000 person-years) by province (y-axis) ordered by centroid latitude (higher is more northern) 
over seven years of observation (x-axis). Dengue in Thailand follows a seasonal cycle with 
geographic variation in both the timing of onset and peak of the epidemic. 
 

 

 
Figure 3. Correlation of province-level dengue by distance, at different time lags. We show 
the mean cross-correlation coefficient (y-axis) for pairs of provinces at binned distances (x-axis; 
0 indicates correlation of an area with itself) for synchronous dengue (left panel) and lagged by 1 
month (middle panel) and three months (right panel). The red line shows the bottom quartile of 
provinces in terms of incoming and outgoing travel and the blue line shows the top quartile. 
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No one-size-fits-all: forecasting performance varies in space and time 

We compared several forecasting approaches for the 77 Thai provinces to assess how 

model performance varied by region and over time, and to measure the impact of integrating the 

mobility data. Specifically, for each province, we fit four models: (1) local (non-spatially 

dependent) models commonly used for dengue; specifically, seasonal autoregressive integrated 

moving average models (Plain SARIMA) across a grid of parameters, (2) SARIMA models that 

use information from the top five most connected provinces (in terms of number of incoming 

trips) based on mobile phone data (CDR SARIMA), (3) SARIMA models that use information 

from the top five most connected provinces (in terms of predicted number of incoming trips) 

based on our gravity model estimates (Gravity SARIMA), and (4) a data-driven network 

approach, based on a regularized regression approach, that predicts dengue incidence in a given 

location potentially using dengue incidence from every other location as input (LASSO; see 

Materials and Methods and reference (49) for details).  

Figure 4 illustrates the results of all models at all forecasting horizons for Bangkok (see 

SI Appendix, Text S1 for online-only results for all other provinces). At early forecasting 

horizons (i.e., one-month and up to three-months ahead time horizons), all models performed 

well, with the CDR SARIMA and Gravity SARIMA models outperforming the Plain SARIMA 

models by about 5–10% (Figure 5) as captured by the mean absolute error. After the 3-month 

ahead forecasting horizon, the Plain SARIMA model performance drops substantially faster than 

all other models. Importantly, the grouping of out-of-sample prediction errors, across forecasting 

horizons, tended to be closer in the LASSO models, indicating that across forecasting horizons, 

the network models lose predictive power more slowly than the SARIMA-based models. We 

present all plots for all provinces in an online repository (SI Appendix, Text S1).  
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Figure 4. Mean absolute error (MAE) for all Bangkok models. The mean absolute error (y-
axis) expressed as number of cases for each model (x-axis) and for each forecast. Models are 
grouped as SARIMA with no exogenous variables (Plain), SARIMAs with the top 5 most 
connected regions based on the predicted trips from a gravity model (Gravity SARIMA), and 
SARIMAs with the top 5 most connected regions based on CDR data (CDR SARIMA). The 
rightmost models show a data-driven network model, denoted as LASSO, since it is based on a 
least absolute shrinkage and selection operator prediction model, and mosaic model.  

 
 
 
 

 
Figure 5. Comparing the best models for Bangkok, by model type. Focusing only on the best 
performing model for each model type and each time horizon, we show the relative mean 
absolute error (left panel) and the mean absolute error (right panel). On the left, the baseline of 
comparison is the traditional AR(1) model and the y-axis can be interpreted as the improvement 
over this baseline — i.e., a value of .9 indicates a 10% improvement. We show that both the 
Plain SARIMA (red) and CDR SARIMA (green) models perform better than the LASSO model 
at earlier forecasting horizons but perform worse at later horizons.  
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In general, no single model or class of model outperformed others across all provinces or 

all forecasting horizons (Figure 6; SI Appendix, Fig. S5). We found that across all model types, 

provinces in the south of the country had lower prediction errors compared to those in the north 

of the country (Figure 6). This difference in forecasting power was particularly pronounced on 

longer time horizons. For example, when comparing the out-of-sample prediction errors of the 

CDR SARIMA to the Plain SARIMA, the CDR SARIMAs were worse in 8 tasks for forecasting 

horizons of 1 to 3 months and better in only 3 tasks with no statistically significant difference in 

the remaining 220 prediction tasks. However, for forecasting horizons of 4-6 months, the CDR 

SARIMA outperformed the Plain SARIMA in 40 tasks and only underperformed in 8 with no 

statistically significant difference in the remaining 183 tasks (SI Appendix, Fig. S6). 

 

Figure 6. Mean absolute error for the best model in each class at t+1, t+3, and t+6 
forecasting horizons for all provinces. The mean absolute error (y-axis) on the prediction (i.e., 
log) scale of the best model for each class for all provinces (x-axis). Provinces are ordered by 
latitude (x-axis, right is more northerly). There is a general decline in predictive power at farther 
forecasting horizons and at more northerly provinces; however, no single model or class of 
model performs best across all areas and all prediction horizons. 
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We measured the characteristics of provinces in which different models performed better 

or worse and found that the Plain SARIMA models performed similarly when comparing top and 

bottom deciles of total number of dengue cases, median number of monthly dengue cases, 

median monthly rate of dengue, population density, and GPP per capita. In contrast, the LASSO 

and mobility-augmented SARIMA models performed better in places with higher total annual 

cases, higher population, and lower GPP per capita (see SI Appendix, Fig. S8–S13), suggesting 

systematic and generalizable differences in model performance that — with more validation and 

in combination with geographic variation in model performance — could be used to inform 

model choice.  

We show the feasibility of combining different classes of models by using a simple 

winner-takes-all voting system approach we named an adaptive mosaic model. This ensemble 

model selects the best performing model for each province and forecasting horizon based on the 

out-of-sample prediction error of previous three months, which allows the underlying base model 

to change over time (Figure 7). When comparing the out-of-sample prediction errors to an AR(1) 

model, the mosaic model outperforms the AR(1) in 107 tasks (i.e., province and forecasting 

horizon), underperforms the AR(1) in 3 tasks, and is not statistically significantly different from 

an AR(1) in the remaining 352 tasks (SI Appendix, Fig. S7). Further exploration of location-

specific and task-specific voting predictions systems is outside of the scope of this study but 

should be explored in future research efforts. 
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Figure 7. Mosaic model vs AR(1) for Bangkok at t+1, t+3, and t+6 forecasting horizons. We 
show the predictions for a simple mosaic model at t+1, t+3, and t+6 forecasting horizons for 
Bangkok in blue. For comparison, we show predictions from an AR(1) in red and observed cases 
in grey bars. Under each bar, we indicate the base model selected by the mosaic ensemble using 
a winter-takes-all approach based on the previous three out-of-sample prediction months.  
 

Discussion 

Dengue forecasting remains an important public health challenge in Thailand and other 

endemic countries. Given the complexity of dengue transmission, statistical forecasting 

approaches like those examined here have been shown to produce meaningful disease estimates 

in multiple locations, and may therefore be suitable for immediate use by national control 

programs. In addition, we have shown that integrating additional data streams, such as 

information about human mobility, can improve forecasts in many areas, but the added benefit 

will be specific to the area and time horizon of interest. The interesting geographic variation in 

forecasting accuracy, which is not linked to population density or GPP per capita, may reflect the 

proximity to international borders with countries where frequent migration occurs. Overall, no 

single modeling approach can be expected to provide an optimal early warning system across all 

areas, even within a single country or region, or across all time horizons. So adaptive, mosaic 

forecasts are likely to provide the most effective approach. This type of approach could be easily 
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integrated within the data platforms recently developed in Thailand (Nicholas G. Reich et al., 

2016), which are flexible enough to accommodate different modeling approaches and forecasts. 

We show that simple network methods (that implicitly incorporate human mobility) can 

improve upon commonly-used local SARIMA models. Also, given that the network-based 

approach we studied relied only on dengue case count data routinely collected by most endemic 

countries, we envision that similar approaches may be easily extended, and may prove to be 

meaningful, in many other locations around the Globe. The regularized multi-variate regression 

framework can also flexibly identify and incorporate additional province-level data, time lags, 

and other factors in the predictive model, that could be used as a hypothesis-generation tool that 

may capture temporal changes in inter-regional human mobility. We highlight the fact that even 

though the mobility data we used covered only a small fraction of time represented in the dengue 

case data (3.2%; i.e., 81 days vs 7 years), it was still able to improve the local (non-augmented) 

SARIMA, suggesting that even relatively coarse travel information would improve naïve 

SARIMA models. Although mobile phone data is challenging to obtain, the coarse granularity of 

mobility information that we used completely protects individual subscriber privacy while 

adding substantially to forecasting performance. Since it is continuously collected, there is no 

reason these data could not be aggregated by mobile operators and provided on a relatively 

frequent basis to disease control programs. A limitation of using CDR to model dengue 

transmission is that it reflects movement patterns of the entire population whereas dengue tends 

to occur more in children and young adults in urban areas (Limkittikul et al., 2014). 

As governments prioritize how and where to spend money to improve dengue 

surveillance, our study suggests new regularized regression frameworks that incorporate mobility 

data can improve forecasts substantially. Any forecasting model will depend on the quality of the 
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case data that it is trained upon, highlighting the primary importance of good epidemiological 

data. A limitation of this work is that most dengue cases in Thailand, as in most countries, are 

not confirmed with a diagnostic test, instead relying in syndromic surveillance. This can be 

unreliable with the case definition for dengue fever overlapping substantially with other causes 

of acute febrile illness and the completeness of the data relying on individual healthcare workers 

to complete the reporting forms. Thus, much of the money for better dengue forecasting should 

be focused on faster and better dengue case detection, more widespread diagnostic testing, 

sentinel surveillance of serotypes, a robust computational framework for sharing case data across 

regions to be analyzed centrally, and capacity building within control programs.  

Materials and Methods 

Dengue incidence data 

We obtained monthly dengue case counts for over 7,000 subdistricts in Thailand from the 

Ministry of Public Health. These data are not available publicly and are used with the permission 

of the Ministry of Public Health. They consist of monthly dengue incidence counts from January 

2010 through December 2016, by mutually-exclusive disease type (i.e., dengue fever, dengue 

shock syndrome, or dengue hemorrhagic fever). We aggregated these data to the province level 

and overall dengue case counts. In our data, there was a national average of 91,000 dengue cases 

per year with a range of 39,368 (2014) to 145,600 (2013) cases per year.  

Mobile phone data 

To assess inter-province travel, we analyzed call data records (CDRs) of approximately 

11 million mobile phone subscribers between August 1, 2017 and October 19, 2017. At the time 

of data collection, the mobile phone operator had about 26% of the market share and was the 

third largest provider in Thailand. In order to ensure the privacy of the mobile phone subscribers, 
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and in compliance with national laws and the privacy policy of the Telenor group, special 

considerations were taken with the CDRs. First, only the mobile operator had access to the CDR 

and all data processing was performed on a server owned by, and only available to, the operator, 

thus ensuring that detailed records never left the operator or Thailand. Second, the operator 

provided researchers with a list of approximate cellular tower locations. For every tower 

location, we returned a corresponding, unlinked geographic identifier (“geocode”) of the nearest 

subdistrict. Mobile operator employees then aggregated the detailed CDRs up to the researcher-

provided geocodes. Further spatial and temporal aggregation was performed by the researchers. 

These data are not publicly available and are used with the permission of Telenor Research.  

To quantify travel, every subscriber was assigned a daily “home” location based on their 

most frequently used geocode. We tabulated daily travel between a subscriber’s home location 

on one day relative to the day before. Trips were aggregated to geocode-to-geocode pairs for 

every day and thus are memoryless — preventing the ability to trace a user (or group of users) 

across more than two days or more than two areas. We normalized the number of trips from 

geocode i to geocode j by the number of subscribers at geocode i. We then multiplied this 

proportion by the estimated population at geocode i to get the flow from i to j. This assumes that 

subscribers are more or less uniformly distributed across provinces (weighted by the population 

in each province). While this assumption cannot be fully tested, there is a strong correlation 

(Pearson’s r = .90) between subscribers and population for each province. 

On average, 11.4 million subscribers (16.7% of the total population) recorded at least one 

event (i.e., phone call, text message, internet activity) per day (SI Appendix, Fig. S1). At both the 

national and provincial levels, no significant deviations from the number of subscribers or the 

numbers of trips occurred during this time period. For example, at the national level, the 
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coefficient of variation for daily number of subscribers was 1.3%. Therefore, we used the mean 

number of trips over this time period as our estimate of inter-province travel. 

Population, gross provincial product per capita, and distance estimates 

To estimate province-level population, we used the United Nations-adjusted 2015 

population estimates from WorldPop (Gaughan et al., 2013), which combines remote-sensing 

data with other data sources to create random-forest-generated population maps. Each file 

contains the estimated population per pixel and was overlaid with the official administrative 

shapefile. We then summed the value of all pixels within each province. We used publicly 

available 2015 gross provincial product per capita provided by the Office of the National 

Economic and Social Development Board of Thailand (NESDB, 2017). The concept of 

“distance” is flexible in the gravity model and geodesic distance often ignores important 

geographical (e.g., mountain ranges) or social and behavioral constants to human mobility. In 

addition to calculating geodesic distance between provinces, we calculated road distance and 

travel time based on OpenStreetMap data using Open Street Routing Machine (Luxen and 

Vetter, 2011).  

Comparing observed and predicted travel 

We compared observed travel between provinces with CDRs to those estimated by a 

gravity model with three different measures of distance: geodesic distance, road distance, and 

travel time. The gravity model is a popular econometric model (Tinbergen, 1963), often used to 

estimate mobility between areas (Lewer and Berg, 2008). The basic gravity model is: 

𝑌!" = 𝑘	
𝑃!#𝑃"

$

𝐷!"
%  
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where 𝑌!" be the number of people who move from area 𝑖 to area 𝑗, 𝑘 is a constant term, 𝑃! is the 

population in area 𝑖, 𝑃" is the population in area 𝑗, and 𝐷!" is some measure of distance between 𝑖 

and 𝑗, noting that distance may not be symmetric. The parameters 𝑘, 𝛼, 𝛽, and 𝛾 are estimated by 

fitting a Poisson model: 

log/𝑌!"0 = 𝑘 + 𝛼	log	(𝑃!) + 𝛽 log/𝑃"0 − 𝛾	log	(𝐷!"). 

In addition to the naïve gravity model, we also adjusted for gross provincial product per 

capita. The best fit according to in-sample error metrics was the adjusted travel time model (SI 

Appendix, Table S1). We identified outlier observations as those observations with a Cook’s 

distance greater than five times the mean Cook’s distance.  

Quantitative methods 

We evaluated the predictive accuracy of two different types of models: (1) one data-

driven network approach built using an L1-regularized regression approach (the least absolute 

shrinkage and selection operator, LASSO) and (2) autoregressive integrated moving average 

(ARIMA) models both with and without a seasonal component (SARIMA). In addition, for the 

mobility-augmented autoregressive models, human mobility is accounted for by also including 

lagged case data from the top five areas (i.e., origins) of travelers as covariates in the model. We 

compared both sets of autoregressive models to the network approach predictions using a sliding 

window of observation and rolling forecast target as described below.  

Network models 

Based on a previous model designed to leverage spatially-correlated cases of influenza 

(Lu et al., 2019), we fit a multivariate linear regression on the log of dengue case counts for area 

𝑖 in month 𝑡 with the log of dengue case counts in areas 𝑗 at time 𝑡 − ℎ where ℎ is our 
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forecasting horizon as the covariates. Let 𝑦!,' = ln	(𝑐!,' + 1) where 𝑐 is the count of cases of 

location 𝑖 at time 𝑡: 

𝑦!,' = 𝛽(! +<𝛽"𝑦",')*

+

",-

+ 𝜖. 

We used a sliding window of 42 months and h between 1 and 6. All values of 𝑦!,' were 

standardized to be mean-centered with unit variance in order to ensure the coefficients are not 

scale-dependent. For all prediction months, there were more areas, 77, or input variables, than 

observations, 42, and thus this formulation cannot be solved using an ordinary least squares 

(OLS) approach. To address this, we used an 𝐿- regularization approach to identify a 

parsimonious model that uses fewer variables as input than the number of available observations. 

This penalization approach acts to both prevent overfitting as well as selecting the most 

informative covariates (i.e., provinces). Specifically, we used the least absolute shrinkage and 

selection operator, LASSO, which minimizes the same objective function as a regular OLS while 

penalizing the number of non-zero coefficients with a hyper-parameter 𝜆: 

min $
1
𝑁
‖𝑦 − 𝑋𝛽‖!! + 𝜆‖𝛽‖". 

where the magnitude of the hyper-parameter 𝜆	is identified using cross validation on the 

training set. This approach shrinks the coefficients of non-informative or redundant areas to zero 

and provides for straightforward interpretation of the results allowing for identification of which 

areas contributed the most predictive power for any given window of observation and target area.  

Autoregressive models 

As a baseline for comparing model predictions, we used autoregressive integrated 

moving average (ARIMA) models, which is a common time series method applied to 

epidemiological modeling and dengue forecasting. These models have been used extensively in 
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dengue prediction efforts and often incorporate a seasonal component called Seasonal ARIMA or 

SARIMA. Using the (p, d, q)(P, D, Q)s convention where p indicates the autoregressive order, d 

indicates the amount of differencing, and q indicates the order of the moving average. The 

seasonal component, (P, Q, D)s, represent the same parameters with a seasonal period of s 

months. Additional exogenous variables (i.e., timeseries) can be added as covariates in this 

framework.  

We reduced the parameter space of the SARIMA models using previous literature 

(Johansson et al., 2016) and our expert opinion. Specifically, we systematically search models 

with lags of up to four months (p = 1, 2, 3, or 4) or three years (P = 1, 2, or 3) and include a 

differencing order up to 1 (d and D = 0 or 1) and exclude all moving averages (q and Q fixed at 

0). This results in a set of 15 model parameterizations: eight non-seasonal ARIMAs and seven 

seasonal ARIMAs. For each parameterization, we perform a univariate SARIMA as well as a 

mobility-augmented SARIMA. The mobility-augmented SARIMA incorporates the timeseries of 

cases from the top five connected areas, based on observed mobility, as exogenous covariates. 

Similar to the LASSO, we used a sliding window of 42 months, and in the case of augmented 

SARIMA models, we lagged the exogenous covariates by ℎ. 

Adaptive mosaic model 

 We show the feasibility of combining different classes of the above models by using an 

ensemble approach we call the “adaptive mosaic model.” For each province and forecasting 

horizon, we select the best performing model using a winner-takes-all approach based on the out-

of-sample prediction error of the previous three months. By repeating this procedure for every 

prediction month, forecasting horizon, and province, the underlying base model can adapt over 

time (Figure 7).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 28, 2020. ; https://doi.org/10.1101/2020.07.22.20157966doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.22.20157966
http://creativecommons.org/licenses/by-nc-nd/4.0/


Accuracy metrics and model comparison 

Consistent with previous research (Lauer et al., 2018; Nicholas G Reich et al., 2016), 

when assessing predictive performance of a single model, we used mean absolute error (MAE) 

and when assessing the relative performance of two models, we used relative mean absolute 

error (relMAE). The MAE of the log transformed counts is as follows: 

𝑀𝐴𝐸 =
1
𝑇<| ln(𝑦' + 1) − ln	(𝑦E' + 1)|

.

',-

 

where 𝑦' and  𝑦'F  are the observed and average counts for prediction month 𝑡. One 

strength of this approach is that the MAE will be the same regardless of magnitude as long as the 

ratios are the same (i.e., 100 and 110 for predicted and observed will result in 1.1, just as 10 and 

11 or 11 and 10). This is an important feature given the differences in population size and case 

counts between provinces. 

When comparing model 𝐴 to model 𝐵 at forecast horizon ℎ, we take the ratio of their 

MAEs: 

𝑟𝑒𝑙𝑀𝐴𝐸/,0,* =
𝑀𝐴𝐸/,*
𝑀𝐴𝐸0,*

. 

To assess the predictive performance of each model, we used retrospective out-of-sample 

estimates of the mean absolute error, assuming we only had data prior to the time of estimation 

and based on a 42-month sliding window of observation. For example, the 6-month prediction 

for June for one year would only include data up to December for the year before and only as far 

back as 42 months from that December. This provides 42 months of evaluation data or up to 41 

separate models to evaluate prediction error (noting that the number of months available in the 

evaluation period is also a function of the prediction horizon). To compare across multiple 

models (e.g., to find the model with the best t+1 month forecast in a single province), we used 
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the baseline AR(1) (i.e., ARIMA(1,0,0)(0,0,0) with no exogenous variables) as our referent 

model. Thus, the relMAE can be interpreted as the relative under- or over-performance of our 

model compared to a standard epidemiological model, averaged over all prediction months. 

To assess the utility of call detail records, for each province and forecasting horizon we 

selected the best performing model of each class. We then compared the CDR SARIMA to each 

other class using a Wilcoxon signed-rank test to compare the out-of-sample prediction errors. 

Statistically significant differences are shown in the province-specific reports (SI Appendix, Text 

S1) and in Figure S7. Similarly, we compared the proposed mosaic model to a simple AR(1) 

using a Wilcoxon signed-rank test (SI Appendix, Fig. S8).  
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