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ABSTRACT 

COVID-19 is still placing a heavy health and financial burden worldwide. Impairments in patient 

screening and risk management play a fundamental role on how governments and authorities are 

directing resources, planning reopening, as well as sanitary countermeasures, especially in regions 

where poverty is a major component in the equation. An efficient diagnostic method must be highly 

accurate, while having a cost-effective profile.  

We combined a machine learning-based algorithm with instrumental analysis using mass 

spectrometry to create an expeditious platform that discriminate COVID-19 in plasma samples within 

minutes, while also providing tools for risk assessment, to assist healthcare professionals in patient 

management and decision-making. A cross-sectional study with 728 patients (369 confirmed 

COVID-19 and 359 controls) was enrolled from three Brazilian epicentres (São Paulo capital, São 

Paulo countryside and Manaus) in the months of April, May, June and July 2020. 

We were able to elect and identify 21 molecules that are related to the disease’s pathophysiology 

and 26 features to patient’s health-related outcomes. With specificity >97% and sensitivity >83% 

from blinded data, this screening approach is understood as a tool with great potential for real-world 

application. 
 

Keywords: machine learning; mass spectrometry; COVID-19; screening; diagnostics; risk; 

metabolomics 

INTRODUCTION  

Coronaviruses (CoVs) are enveloped, single-stranded positive RNA viruses from the 

Coronaviridae family (1). The recent pandemic, caused by a newly discovered strand of coronavirus, 

SARS-CoV-2, was denominated COVID-19 (2), a disease that disseminated fast and is responsible 

for hundreds of thousands of deaths worldwide. Measures to control disease spread have led most 

countries to adopt social distancing and population screening (3). Given its global economic, sanitary 

and social impact, thousands of new studies aiming to understand viral pathology and targets for virus 

dissemination control are being conducted, which directly impact in strategies to provide treatments, 

vaccines, screening tests and patient prognosis.  

Special efforts have been directed towards the development of alternatives for mass testing with 

population-wide capabilities. Currently, available tests are based on the direct detection of 

SARS-CoV-2 virus through antigens or RNA amplification (RT-PCR), serological tests to evaluate 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.24.20161828doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.24.20161828


  

3 
 

patient immunity, and the combination of RT-PCR and chest CT (computed-tomography). 

COVID-19 testing urgency comprises the need for medical decision-making tools for patient’s risk 

stratification and management, which is poorly achieved by standard methodologies. Even though the 

basis for these procedures are well-documented in the literature, there are increased concerns about 

test’s sensitivity and specificity achieved on the field, time and costs associated with procedures, 

reagents and trained personnel availability, and the testing window (4-6).   

Difficulties for an accurate diagnosis of SARS-CoV-2 and patient’s risk categorization are 

consequences of COVID-19 complexity. SARS-CoV-2 infection pathophysiology reflects in a broad 

spectrum of patient symptoms, ranging from mild flu-like manifestations, such as fever, cough, and 

fatigue, to life-threatening acute respiratory distress syndrome (ARDS), vascular dysfunction, and 

sepsis (2, 7). In an effort to eliminate the pathogen, the body response to SARS-CoV-2 severe 

pulmonary infection involves the reduction of natural killer (NK) cells, increased pro-inflammatory 

cytokines (IL-6, IFN- γ, TNFα and others) and lung infiltration, especially by macrophages and 

monocytes (2, 7, 8), possibly resulting in tissue damage and organ injury (8, 9). 

Furthermore, changes in lipid homeostasis, a common characteristic of viral infections, have 

been associated with SARS-CoV-2 pathology (9-11). In lipidomic and metabolomic profiling of 

plasma samples, Song et. al. (2020) suggested that exosomes enriched with monosialodihexosyl 

ganglioside (GM3) are associated with the severity of COVID-19. In the same study, the decrease of 

circulating acyl-carnitines indicates disturbance in oxidative stress and cellular energy support (9). 

Moreover, Fan et al. (2020) proposed the relationship between progressive decrease in serum 

low-density lipoprotein (LDL) and cholesterol within deceased patients (10). Moreover, individual 

susceptibility to COVID-19 symptoms are not fully understood, thereby hampering any potential 

outcome prediction.  

Panels of biomarkers that translate disease pathophysiology and contribute to SARS-CoV-2 

detection may be proposed through “omics” techniques (9, 11, 12). The current trend in associating 
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artificial intelligence-explained algorithms and “omics” techniques has yielded platforms involving 

machine learning (ML) to analyze mass spectrometry (MS) data, aiming at biomarker identification 

of diseases, including COVID-19 severity assessment (11, 13). However, applying traditional 

untargeted mass spectrometry for diagnostic purposes is laborious, since it requires further method 

development and validation steps (13, 14).  

Considering that the testing tool for COVID-19 introduced in this contribution is based on 

metabolites from actual patients, it may be considered a new approach for SARS-CoV-2 screening. 

The proposed end-to-end mass spectrometry and machine learning combination aims at predictively 

identifying and modeling putative biomarkers for COVID-19 identification and risk assessment. This 

is critical for effective implementation on a real-world setting, adding robustness to the model in spite 

of variations in the input data; issues due to noise and minor different variations in acquisition 

conditions will, therefore, not play a major interference in the final output. Therefore, using the 

potential of MS-ML techniques in COVID-19 fighting (15), we enrolled a cohort of 728 individuals 

for the development of this independent platform that simultaneously functions as an automated 

screening test using plasma samples with high specificity and sensitivity, and provides metabolic 

information related to the presence and severity risk for the disease. 

 

METHODS 

 Study design and patient recruitment 

Participants were recruited from selected sites with proven expertise in research and high volume 

of patients with COVID-19 to increase data variability: Central Institute of the Clinical Hospitals, 

University of São Paulo Medical School (localized in São Paulo, capital of the São Paulo State), 

Sumaré State Hospital (localized in the state of São Paulo inland), and Hospital Delphina Rinaldi 

Abdel Aziz (localized in Manaus, capital of Amazonas State localized in the North of the country). 

The study was conducted according to principles expressed in Declaration of Helsinki and approved 

by local Ethics Committees (CAAE 32077020.6.0000.0005, CAAE 31049320.7.1001.5404 and 

CAAE 30299620.7.0000.0068). Inclusion criteria for COVID-19 group (CV) were adult patients with 
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one or more clinical symptoms of SARS-CoV-2 infection in the last seven days (fever, dry cough, 

malaise and/or dyspnea) and positive SARS-CoV-2 RT-PCR in nasopharyngeal samples, following 

local hospital testing protocols based on Charité protocol and WHO recommendations (16). A control 

group (CT) was formed by symptomatic RT-PCR-negative participants (SN) with SARS-CoV-2 

discarded by clinical and tomographic picture, and non-infected controls (AS). 

In this study, 728 participants were included, classified according to symptoms, RT-PCR testing 

results and respective risk (Figure 1a). CV was composed of 487 plasma samples from 369 

symptomatic SARS-CoV-2 confirmed cases upon hospital arrival, and 118 samples representing a 

second collection from hospitalized patients (median 11 days, SD 3.8) that recovered (R) or deceased 

(D). The high-risk group (HRSP) comprised patients with moderate and severe symptoms that 

required hospitalization (n = 197) and the low-risk (LRSP) category (n = 172) contained those with 

mild symptoms redirected to home care. Gender, age, and fasting restrictions were not applied, to 

simulate real-world conditions and to provide results with no patient bias. CT group was formed by 

29 SN and 330 AS, totaling 359 individuals Table S1 (supplementary material) shows detailed 

demographic information and participant breakdown. 

 

Mass spectrometry sample preparation  

Plasma samples from peripheral venous blood were frozen at -80°C until analysis. A 20-µL 

aliquot of each participant plasma was diluted in 200 µL of tetrahydrofuran, followed by 

homogenization for 30 seconds at room temperature. Thus, 780 µL of methanol was added followed 

by a second homogenization for 30 seconds and centrifugation for 5 min, 3400 x rpm at 4°C. An 

aliquot of 5 µL of the supernatant was diluted in 495 µL of methanol and positively ionized by the 

addition of formic acid (0·1% final concentration) prior to direct infusion in a high-resolution mass 

spectrometer. 

 

Mass spectrometry analysis and biomarker elucidation 

Samples from CT and CV groups were randomized for data acquisition intra- and inter-daily. 

Samples were directly infused in a HESI-Q-Orbitrap®-MS (Thermo Scientific, Bremen, Germany) 
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and scanned with 140,000 FWHM of mass resolution on positive ion mode. MS parameters were set 

as follows: m/z range 150- 1,700, 10 mass spectral acquisition per sample, sheath gas flow rate five 

units, capillary temperature 320°C, aux gas heater temperature 33°C, spray voltage 3·70 kV, 

automatic gain control (AGC) at 1 × 106, S-lens RF level 50, and injection time < 2 ms. After machine 

leaning modeling, the presence of each discriminant m/z determined by the algorithm was confirmed 

in mass spectra using Xcalibur 3.0 software (Thermo, Bremen, Germany). Molecule identification 

was proposed using METLIN (Scripps Center for Metabolomics, https://metlin.scripps.edu), HMDB 

(Human Metabolome Database, http://www.hmdb.ca/) and LIPIDMAPS (Lipidomics Gateway, 

https://lipidmaps.org) databases and literature search with mass accuracy ≤ 5 ppm.  

Biomarker pathway analysis and meaning were attributed based on Kegg database (Kyoto 

Encyclopedia of Genes and Genomes, https://www.genome.jp/kegg/) information and scientific 

literature. 

 

Machine learning data analysis 

The MS-ML platform presented in this study for COVID-19 automated diagnosis and risk 

determination consists of two primary data analysis phases. The first phase comprises developing a 

machine-learning model (ML) using a classification algorithm over MS data to determine 

potential m/z biomarkers for diagnosis and risk determination. The second phase entails a prediction 

model for diagnosing and determining a high-risk versus low-risk program, which will be used for 

individuals screening in the field. 

Data processing is divided into the sequential steps described in Figure 1. First, mass 

spectrometric data are pre-processed for ion annotation (intensity, width, resolution, and m/z values), 

alignment, normalization, and denoising. Three different partitions of resulting data are segregated 

according to the best practices of machine learning, consisting of a fitting partition (training and 
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validation, shuffled in all ten rounds of ML experiments), test partition, and blind test. The final 

classification results are reported using the blind partition (see process in Figure 1a).  

The most discriminant features are determined using the ML algorithms (ADA Tree Boosting 

(ADA), Gradient Tree Boosting (GDB), Random Forest (RF), and Extreme Random Forest (XRF), 

which are based on decision trees. In addition, we also explored the Partial Least Squares (PLS) 

method, which is a linear space transformation (17-19) ), in which a recursive fitting is applied to 

training and validation data (see Figure 1b), with the annotation of averaging and computing the 

related standard deviation of selected performance metrics.  

In all experiments, we adopted the performance metrics defined in Table S2 (supplementary 

material) for each round of validation (optimized through accuracy, F1score, MCC). After the 

observation of performance metrics versus ranked features length, discriminant m/z features are 

evaluated through ∆J importance (see Table S2 and Figure 2a) and selected for metabolomics 

biomarkers identification (see section Mass Spectrometry Analysis and Biomarker Elucidation). The 

marker importance is given by a cumulative distribution function (CDF) analysis: for a specific m/z, a 

CDF of the feature values for the negative samples (CT group) is compared with the CDF of positive 

samples (CV group) used in the fitting partition.  

The CDF comparison uses first the Kolmogorov-Smirnov (KS-test) two samples equality 

hypothesis test to determine whether those distributions are different (failed on equality hypothesis). 

Then the �J metric defined in Table S2 is used to determine if the features contribute negatively �J < 

0, which means the negative samples (CT) have a higher probability of presenting higher values over 

the median of negatives, or positively �J < 0, which means that the positive samples (CV) have a 
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higher probability of presenting higher values over the median of positives. Features are discarded if 

CDFs are equal according to KS-test or �J = 0. The selected biomarkers undergo a second round of 

training and validation with the algorithms mentioned above with the development software (Figure 

1b, see testing results in Tables 2 and 3). As putative biomarkers are validated through the 

development process, they are submitted to the second phase of the machine-learning process 

targeting the final model to deliver an applied untargeted metabolomics diagnosis software. In this 

phase, a pairwise model is created (Figure 1b), where the relationship between the putative 

biomarkers are used instead of their intensity (or relative abundance) provided in each spectrum. 

 

RESULTS 

COVID-19 testing through MS-ML platform: modeling and performance 

The full dataset resulting from the spectrometer acquisition has 846 biological samples, with ten 

replicates each, on average. Table 1 shows the data preparation for the fitting process (shuffled in 10 

rounds of training and validation), and testing.   

In this study, we employed a novel sequential processing of metabolomics data with 

Machine-Learning algorithms for building a model divided into two phases. First, a predictive 

modeling for putative biomarker identification. Then, a combination of biomarker features into 

relative pairs, composing the predictive model used by the diagnosis and risk assessment in the field 

(recursive fitting shown in Figure 1b).   
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The analysis for diagnosis was performed with the full dataset, while the risk assessment relied 

on 369 COVID-19 positive subjects, as this is a second-stage analysis. Out of the COVID-19 positive 

subjects, 197 achieved local clinical criteria for hospitalization while the remaining 172 individuals 

were forwarded to homecare. Tables 2 and 3 show results for the pairwise features for COVID-19 

automated diagnosis and risk assessment classifiers, respectively. The best results were obtained with 

Gradient Tree Boosting (GDB): COVID-19 automated diagnosis with 97.6% of specificity and 

83.8% of sensitivity, and risk assessment with 76.2% of specificity and 87.2% of sensitivity, both in 

the blind test.  

 

Panel of discriminant metabolites for COVID-19 patients using untargeted metabolomics 

Thirty ions were selected by the ML method and used for COVID-19 diagnosis using the 

introduced pairwise model (see Table 3 for metrics) and further validated through mass spectrometric 

data. From those, we proposed 21 discriminant biomarkers for COVID-19 condition, divided into ten 

with positive (mean values higher for the positive group) and 11 with a negative contribution to the 

condition. Out of 21 molecules, eight belong to the glycerophospholipid class, three glycerolipids, 

three fatty acids, two cholesterol derivatives, one purine metabolite, one prostanoid, one plasmalogen, 

and two unknown peptides. The remaining ten molecules have not yet been identified, a common 

element of non-targeted metabolomics (14). Valid biomarkers and unknown features are available in 

Table 4.  

For risk assessment, 26 ions were used to achieve the metrics displayed in Table 4. Among them, 

nine biomarkers contributed to the COVID-19 higher risk condition and 17 biomarkers contributed to 
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lower risk. The main findings shown in Table 4 pointed to a relative reduction of certain species of 

lysophosphatidylcholine (LysoPC), phospholipids, cholesteryl ester (CE) and triacylglycerols (TG) 

in moderate/severe cases in comparison to patients with mild symptoms (Figure 2a). In Table 4 the 

biomarkers were first grouped by type of contribution, followed by metabolic class/function and 

importance reflected through �J metric. A representation of biomarkers class and ∆J metrics are 

displayed in Figure 2a. 

DISCUSSION 

MS-ML elected biomarkers and COVID-19 pathophysiology 

The use of AI-explained algorithms allowed us to create reliable models that facilitate 

decision-making in clinics and the investigation of the pathophysiological meaning of the distinct 

biomarker’s levels. Viral recognition is an essential step for initial host immune response, and the 

rapid course and cytokine storm associated with SARS-CoV infection may be involved with the 

guanosine- and uridine-rich (GU) single-strand RNA potential role as PAMP (pathogen-associated 

molecular patterns) (1). Deoxyguanosine [268·1050, [M+H]+), a metabolite from purine metabolism 

(Kegg hsa00230), triggers the enhanced signalling of TLR7 in the presence of ssRNA, inducing 

cytokine secretion in macrophages (20). Therefore, further investigations are required to understand 

the potential role of deoxyguanosine in SARS-CoV-2 immune hyperactivation and pathology.  

The main lipidic findings pointed to a remodelling of glycerophospholipid metabolism. We 

identified enhanced presence of phosphatidylglycerol (PG) [PG(35:4), PG(35:1), PG(33.1)] and 

phosphatidylethanolamine (PE) [PE(38:4)], and a diminishment of lysophosphatidylcholines 

(LysoPC) [LysoPC(16:0), LysoPC(16:1), LysoPC(18:0), LysoPC(18:2)] and phospatidylserine 

plasmalogens (PS-PL) (21) [PS(O-36:2) and/or PS(P-36:1)] in COVID-19 positive patients, as 

illustrated in Figure 2a by glycerophospholipid pathway recurrence.  
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LysoPCs [LysoPC(16:0) and LysoPC(18:2)] were also found as negative contributors in plasma 

samples from patients who required hospitalization (moderate and severe cases). Cell responses to 

various stimuli may be mediated by phospholipids, which actively participates in inflammation 

processes. The relative intensities decrease of Lysophosphatidylcholines in positive and, and some of 

them, in moderate to severely-ill patients, are in accordance with recent studies of metabolic changes 

in acute respiratory distress syndrome (ARDS) and sepsis (22, 23), important characteristics of 

COVID-19 severity (2, 7).  

LysoPC is formed through the cleavage of PC mediated by phospholipase A2, (PLA2), whose 

modulation has a crucial role in inflammation processes (see LysoPCs’ related pathways in Figure 

2b). PLA2 up-regulation promotes fatty acids formation, precursors of eicosanoids, and LysoPCs 

(24). Data show that SARS-CoV nucleocapsid protein stimulates the expression of Ciclooxygenase-2 

(COX-2), an essential enzyme in the catalyses of prostanoids production from fatty acids, as those 

found at m/z 407.1821 in positive group (25). Although we identified an ion correlated to eicosanoid 

biosynthesis that indicates PLA2 and COX-2 activity in positive patients, LysoPCs were relatively 

decreased in this group. The availability of LysoPCs is also finely regulated by the acyltransferase 

activity of LCAT (Lysophosphatidylcholine Acyltransferase 1), which may promote the restoration 

of PCs via Lands cycle. The most abundant lipid species found in alveolar surfactant formed by 

LCAT1 activity over LysoPC is Dipalmitoylphosphatidylcholine (DPPC, PC(16:0/16:0)). This 

molecule corresponds to 70-80% of surfactant lipid composition, and the dysregulation of surfactant 

film is directly related to lung injury and ARDS (24). Since DPPC formation is dependent on the 

availability of lipid substrates and the Lands cycle functioning, interferences in this process may 

disturb LysoPC availability. In a metabolomic study, Ferrarini et al (2017) described a decrease in 

LysoPC species and increased MG(18:1) [m/z 379.2807]  in serum of patients with ARDS derived 

from Influenza infection and sepsis, reinforcing our findings (22).  

Moreover, COVID-19 pathophysiology seems to impair cholesterol homeostasis (9, 10). We 

found cholesteryl ester (CE) associated with mild symptoms, which was similarly reported by Song 

et. al (2020). They demonstrated the correlation between CE abundance and BMP(38:5), a lipid that 

influences cellular exportation of cholesterol from endosomes. During recovering progression, it was 
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found an increased alveolar macrophages BMP with enhanced CEs (9). Cholesterol and LDL 

(low-density lipoprotein) lowering was also observed in clinical practice associated with COVID-19 

poor prognosis (10), such as triacylglycerol in ARDS (26).  

Herein, based on the proposed m/z ions we discriminated COVID-19 patients using a diagnostic 

and risk assessment classifier generated from a MS-ML combination. Although the proposed 

biomarkers correlates COVID-19 pathophysiology to the mathematical process, a more 

comprehensive biomarker evaluation is needed to better understand their contribution to COVID-19, 

and identify the unknowns. 

 

Use of untargeted metabolomics and ML for automated COVID-19 diagnosis and risk 

assessment 

The combination of artificial intelligence algorithms for biomarker mining in complex data is a 

common approach for problem-solving and implementing new technologies in health sciences. The 

use of machine learning as a mean for the discrimination of diseases from mass spectrometric data 

aims to develop diagnostic and prognostic biomarkers, treatment targets and patient management 

systems (13). 

Our methodology introduced the pairwise m/z analysis, an essential advance in untargeted 

metabolomics application. By combining different m/z, this approach supports the spectra acquired 

by different mass spectrometers, including the robust use of flow-injection mass spectrometry 

(FI-MS), in an effort to overcome the ion competition effect (27).  

The model optimization with pairwise features can be easily transferred to an independent 

diagnosis platform. Given that the process key is available from biological sample “ion-fishing”, this 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.24.20161828doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.24.20161828


  

13 
 

approach does not require chromatography and biomarkers quantitation for independent diagnosis. 

Moreover, the proposed MS-ML platform for COVID-19 presented reliable qualitative results, with 

specificity of 97·6% and sensitivity of 83·8% (in a blind test data), similar or even better in 

performance when compared to available serology (5) and RT-PCR methods (6). Our analysis also 

brings molecular information about disease pathophysiology that may aid in prognostic markers and 

treatment targets for COVID-19. Overall, our test aggregates, in one solution, an alternative for 

populational COVID-19 screening and guidance for public health efforts through risk classification. 

The same approach may be applied to other diseases involved with patient management during the 

pandemic and contribute to the COVID-19 MS Coalition’s collective effort (15) by consolidating the 

combination of mass spectrometry and artificial intelligence in a real-world setting. 
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FIGURES AND TABLES 

Figure 1 End to end process for putative biomarkers determination and diagnosis test generation. a) 

Based on clinical symptoms and diagnosis results, subjects were grouped in low-risk symptomatic 

positive (LRSP), high-risk symptomatic positive (HRSP), recovered (R) or deceased (D), 

symptomatic negative (SN) and asymptomatic negative (AN). Samples were prepared injected in a 

high-resolution mass spectrometry (HR-MS) equipment for data acquisition and datasets generated 

for data analysis according to the partitions; b) Sequential steps of machine learning data analysis and 

metabolomics biomarkers determination were followed for diagnosis model generation and 

deployment. 

 

Figure 2 Putative biomarkers elucidation and related class/ pathways. a) Recursive fitting of mass 

spectra data followed by model optimization processes allowed the determination of putative 

biomarkers ranked by DeltaJ importance and group contribution. b) Proposed role of identified 

biomarkers in COVID-19 pathophysiology. Abbreviations: ARDS – acute respiratory distress 

syndrome, COX-2 – cyclooxygenase-2, DeoxyGU, deoxyguanosine, LPCAT1 - 

lysophosphatidylcholine acyltransferase 1, LysoPC – lysophosphatidylcholine, PC – 

phosphatidylcholine, PLA2 – Phospholipase A2 

  

Table 1 Dataset subdivisions for model fitting (training and validation), testing and blind test for 

COVID-19 diagnosis and risk assessment. 

Model COVID-19 diagnosis (n= 846) COVID-19 risk assessment  

Class Positive Negative Subtotal High-risk Low-risk Subtotal 

Fitting - Training 219 195 
414 on avg. 

(49%) 
96 92 

188 on avg. 

(51%) 

Fitting - Validation 89 79 
168 on avg. 

(20%) 
39 37 

76 on avg. 

(21%) 

Testing 49 44 93 (11%) 23 22 45 (12%) 

Blind Test 130 41 171 (20%) 39 21 60 (16%) 
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Table 2 Performance metrics for diagnostics model using pairwise features on the 10 validation tests 

with 6 different classifier algorithms for Covid-19 positive/negative diagnosis, final development 

testing and deployed software blind test. Numbers correspond to individual’s classification average 

and standard deviations in parenthesis. 

Model COVID-19 diagnosis development validation Test Blind Test 

Algorithms ADA GDB RF XRF PLS SVM GDB GDB 

Vector length 39 39 39 39 39 39 39 39 

# of Estimators 260 (3) 260 (3) 260 (3) 260 (3) NA NA 256 256 

TN 73 (3) 72 (3) 70 (3) 69 (3) 67 (4) 71 (3) 42 41 

FP 7 (2) 7 (2) 9 (3) 11 (3) 12 (3) 8 (2) 2 1 

FN 5 (2) 4 (1) 10 (4) 7 (2) 7 (2) 9 (2) 3 21 

TP 84 (4) 85 (3) 79 (4) 83 (3) 82 (3) 80 (4) 46 109 

Accuracy (%) 93·0 (1·6) 93·5 (1·6) 88·6 (2·2) 89·7 (2·0) 88·5 (1·8) 90·1 (1·6) 94·7  90·7 

Sensitivity (%) 94·2 (2·1) 95·4 (1·3) 88·4 (4·0) 92·7 (2·2) 92·3 (2·0) 90·2 (2·6) 93·9 83·8 

Specificity (%) 91·7 (2·6) 91·5 (2·4) 88·7 (3·1) 86·7 (3·4) 84·7 (3·8) 90·0 (2·8) 95·5 97·6 

Precision (%) 92·0 (2·4) 91·8 (2·2) 88·8 (2·7) 87·6 (2·8) 85·9 (2·9) 90·1 (2·5) 95·4 97·2 

F1 Score (%) 93·1 (1·5) 93·6 (1·5) 88·5 (2·3) 90·0 (1·9) 88·9 (1·6) 90·1 (1·5) 94·6 90·0 

MCC 0·86 (0·05) 0·87 (0·05) 0·77 (0·05) 0·79 

(0·06) 

0·77 (0·06) 0·80 (0·05) 0·89 0·82 

 

Table 3 Performance metrics for the risk assessment model using pairwise features on the 10 

validation tests with six different classifier algorithms, final development testing, and deployed 

software blind test. Numbers correspond to individual’s classification average and standard 

deviations in parenthesis. 

Model Risk assessment diagnosis development validation Test Blind 

Test 

Algorithms ADA GDB RF XRF PLS SVM GDB GDB 

Vector length 33 33 33 33 33 33 33 33 

# of Estimators 260 (3) 260 (3) 68 (3) 260 (3)   256 256 

TN 31 (3) 31 (3) 30 (3) 30 (3) 31 (3) 31 (4) 15 16 

FP 6 (2) 6 (3) 7 (3) 7 (3) 6 (3) 6 (4) 7 5 

FN 6 (2) 6 (2) 9 (2) 9 (2) 9 (2) 8 (2) 2 5 

TP 33 (2) 33 (2) 30 (2) 30 (2) 30 (2) 31 (2) 21 34 

Accuracy (%) 84·2 (4·1) 84·5 (4·1) 79·2 (4·2) 79·4 (3·9) 80·5 (4·2) 81·2 (5·0) 79·7 81·7 

Sensitivity (%) 84·3 (5·5) 85·3 (4·0) 77·9 (5·4) 77·1 (4·9) 77·0 (5·0) 78·7 (5·8) 91·3  87·2 
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Specificity (%) 84·2 (5·8) 83·7 (7·3) 80·5 (8·2) 81·7 (6·6) 84·1 (8·2) 83·7 (9·4) 68·2 76·2 

Precision (%) 84·4 (5·0) 84·3 (5·9) 80·5 (6·3) 81·2 (5·6) 83·5 (6·8) 83·7 (8·2) 74·2  78·5 

F1 Score (%) 84·2 (4·2) 84·7 (3·7) 78·9 (3·9) 78·9 (3·8) 79·8 (4·0) 80·8 (4·8) 81·8 82·6 

MCC 0·68 (0·11) 0·68 (0·13) 0·58 

(0·12) 

0·58 

(0·10) 

0·61 

(0·13) 

0·63 (0·15) 0·61 0·64 
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Table 4 Proposed biomarkers to m/z discriminant features elected by Machine Learning algorithm group first by model contribution (COVID-19 diagnosis and risk 1 
assessment), followed by metabolic function and deltaJ. 2 

Average 
Exact m/z 

DeltaJ Molecular 
Formula Adduct Error 

(ppm) Biomarker Metlin 
ID 

Kegg 
ID Pathway/Function Ref. 

COVID-19 diagnosis positive contribution  

774·5259 32·4 C41H73O10P [M+NH4]+ -2·71 PG(35:4) ≠ 79115 
C00344 

Glycerophospholipids metabolism - 
785·5267 29·6 C41H79O10P [M+Na]+ -4·58 PG(35:1) ≠ 79152 

806·5056 28·6 C43H78NO8P [M+K]+ -4·96 PE(38:4) ≠ 40317 C00350 

752·5441 22·6 C39H75O10P [M+NH4]
+ 0·53 PG(33:1) ≠ 78970 C00344 

907·7721 29·8 C57H104O6 [M+Na]+ -0·44 TG(54:0) ≠ 4947 C00422 Glycerolipids – MG(18:1) was found 
increased in ARDS derived from 
Influenza infection 

(22) 

577·5177 18·5 C37H70O5 [M+H-H2O]+ -3·29 DG(34:1) ≠ 4260 C13861 

379·2807 12·2 C21H40O4 [M+Na]+ -3·16 MG(18:1) ≠ 62321 C01885  

407·1821 28·8 C20H32O6 [M+K]+ -2·21 Prostanoids 

3819 
3812 
74981  
3508 
36259 

  
C05962 
 
C05956 
C05964 

Prostanoids – 
e.g. Hydroxy-PGE2, Keto-PGE1, 
Hydroxy-PGD2, PGG2 and/or 
Dehydro-thromboxane B2 §  

(25) 

268·1050 18·1 C10H13N5O4 [M+H]+ 3·73 
Adenosine and/or  
Deoxyguanosine § 

86 
3395 

C00212  
C00330 

Purine metabolism – SARS-CoV 
presents guanosine-rich ssRNA 
fragments that have been associated 
with cytokine storm. Deoxyguanosine 
induce type 1 interferon response in 
macrophages and dendritic cells 
though TLR7 activation. TLR7 
receptors are activated when both 
ssRNA and deoxyguanosine binds. 

 (1, 20) 

581·3651 38·9 C24H44N12O5 [M+H]+ 3·61 Peptide 1§ 178173 - Unknown - 

822·4806 25·1 - - - Unknown 1 - - - - 

851·3953 25·1 - - - Unknown 2 - - - - 

385·2613 21·7 - - - Unknown 3 - - - - 

1171·0891 21·4 - - - Unknown 4 - - - - 

673·6592 17·4 - - - Unknown 5 - - - - 
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429·3718 16·3 - - - Unknown 6 - - - - 

605·3154 12·5 - - - Unknown 7 - - - - 

376·2597 12·3 - - - Unknown 8 - - - - 

COVID-19 diagnosis negative contribution  

367·3350 -27·7 C27H44O [M+H-H2O]+ -4·08 Cholesterol derivative 1§ 3902 C01164 

Precursors of Vitamin D and 
oxysterols 
e.g. Dehydrocholesterol, pre-Vitamin 
D3 and/or Keto-cholesterol  

- 

408·3087 -15·1 C24H38O4 [M+NH4]
+ -5·14 Cholesterol derivative 2 § 84469 - 

Bile acid derivatives 
e.g. Dihydroxy-cholenoic acid and/or 
hydroxy-oxo-cholanoic acid 
(Ketodeoxycholic acid) 

- 

518·3208 -24·5 C24H50NO7P [M+Na]+ -1·74 LysoPC(16:0) ≠ 61692 

C04230 
 

Glycerophospholipid – reduced levels 
of LysoPCs are found in ARDS and 
sepsis. Precursor of DPPC (surfactant)  
Acyl-carnitines - diminished in 
severely-ill SARS-CoV-2 patients  
PS-PLs have been detected in 
macrophages. 

(7, 9, 21-24) 
494·3232 -21·9 

C24H48NO7P 
C29H45NO4 

[M+H]+ 
[M+Na]+ -1·82 

LysoPC(16:1) ≠ and/or 
Cervonyl carnitine § 

61693 
58436 

546·3533 -16·8 C26H54NO7P [M+Na]+ 0·55 
LysoPC(18:0) ≠ and/or  
PAF C16 §  

61694 
34488 

520·3387 -13·7 C26H50O7P [M+H]+ -2·11 LysoPC(18:2) ≠ 61696 

796·5447 -23·0 C24H80NO9P [M+Na]+ -2·01 
PS(O-36:2) ≠ and/or 
PS(P-36:1) ≠§ 

78675 
78831 

 

430·2432 -18·3 C22H31N5O4 [M+H]+ -3·95 Peptide 2 § 19676 - Unknown - 

345·2183 -15·9 C20H34O2 [M+K]+ -2·03 Eicosatrienoic Acid 34828 - 
Fatty acids – may be derived from 
membrane phospholipids 

(24) 242·2110 -11·5 C14H24O2 [M+NH4]
+ -2·06 Tetradecadienoic acid 73932 - 

228·1955 -10·3 C13H22O2 [M+NH4]
+ -1·31 Tridecadienoic acid 73920 - 

423·3072 -21·1 - - - Unknown 9 - - -  

266·1721 -16·8 - - - Unknown 10 - - -  

High-risk markers  

379·2817 10·2 C21H40O4 [M+Na]+ -0·53 MG(18:1) ≠ 62329 C01885 
Glycerolipids – MG (18:1) was found 
increased in ARDS derived from 
Influenza infection 

(22) 

219·0269 8·9 C6H12O6 [M+K]+ 1·82 Hexose § 63118 C00267 - - 

659·2673 14·9 C31H40N8O6 [M+K]+ -4·40 Peptide 3 § 205477 - Unknown - 
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246·1241 18·5 - - - Unknown 11 - - - - 

398·3745 29·1 - - - Unknown 12 - - - - 

958·6456 12·0 - - - Unknown 13 - - - - 

974·6407 15·9 - - - Unknown 14 - - - - 

1073·4946 8·4 - - - Unknown 15 - - - - 

1172·7748 9·2* - - - Unknown 16 - - - - 

Low-risk markers  

542·3220 -38·2 C26H50NO7P [M+Na]+ 0·55 LysoPC(18:2) ≠ 61696 

C04230 

Glycerophospholipid – reduced levels 
of LysoPCs are found in ARDS and 
sepsis. Precursor of DPPC (surfactant)  
Acyl-carnitines are diminished in 
severely-ill SARS-CoV-2 patients. 

(7, 9, 22-24) 496·3402 -23·1 
C24H50NO7P 
C29H47NO4 

[M+H]+ 

[M+Na]+ 
0·81 
1·01 

LysoPC(16:0) ≠ 
And/or 
Docosapentaenoyl-carnitin
e § 

61692 
58392 

822·5127 -18·6* C41H73O13P [M+NH4]
+ 0·49 PI(32:3) ≠ 800389 C01194 

851·7090 -24·9 C53H96O6 [M+Na]+ -1·06 TG(50:3) ≠ 4753 
C00422 

Glycerolipid metabolism – 
polyunsaturated TGs are associated 
with poor prognosis of ARDS 

(26) 

877·7264 -15·3* C55H98O6 [M+Na]+ 0·91 TG(52:4) ≠ 4829 

671·5733 -24·1 C47H74O2 [M+H]+ -4·16 CE(20:5) ≠ 41710 C02530 

Sterol – decreased levels of blood 
LDL and CEs have associated with 
poor prognosis of COVID-19. CE 
homeostasis may be impaired due to 
changes in BMP. 

(9, 10) 

687·5482 -14·3 C38H71NO8 [M+NH4]
+ -5·24 GlcCer(32:2) ≠ 103281 C01190 

Alterations in sphingolipid 
metabolism during COVID-19 
infection.  

(9, 11) 

427·3049 -8·0 C20H47NO4 [M+H-H2O]+ 3·74 Peptide 4 §  171019 - Unknown - 

1008·9089 -30·8 - - - Unknown 17 - - Unknown - 

984·9098 -30·4 - - - Unknown 18 - - Unknown - 

804·5520 -21·4 - - - Unknown 19 - - Unknown - 

410·7622 -17·2 - - - Unknown 20 - - Unknown - 

285·1403 -12·0 - - - Unknown 21 - - Unknown - 

369·384 -10·6 - - - Unknown 22 - - Unknown - 

256·2254 -9·2 - - - Unknown 23 - - Unknown - 

1006·6304 -9·0 - - - Unknown 24 - - Unknown - 
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521·3816 -7·2 - - - Unknown 25 - - Unknown - 

 3 
≠ (Carbon number : double bond); § Isomers with the same exact m/z and similar fragmentation profile to be distinguished by FI-MS; *Isotopic selection by ML 4 
model. 5 

Abbreviations: ARDS – Acute respiratory distress syndrome; BMP - bis(monoacylglyero)phosphate; DG – Diacylglycerol; DPPC – 6 
Dipalmitoylphosphatidylcholine; GlcCer – Glucosylceramide; LDL – Low-density lipoprotein; LysoPC – Lysophosphatidylcholine; MG – Monoacylglycerol; PAF 7 
– Platelet Activating Factor; PC – Phosphatidylcholine; PE – Phosphatidylethanolamine; PG-Phosphatidylglycerol; PI – Phosphatidylinositol; PS – 8 
Phosphatidylserine; TG – Triacylglycerol.9 
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